
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 919 | P a g e

Destructive Software Testing: A New Testing Paradigm
B. Avinash, R. Ravi, M. Nagendra Rao

Assistant Professor, Dept. of CSE, Mallareddy Institute of Engineering and Technology, Hyderabad.

Abstract- Traditional software testing analyzed to see if a
software product meets its specifications. This generally

involves testing to illustrate if the software performs all the

functions called for in the Software Requirements

Specifications (SRS). In contrast, this work-in-progress paper

proposes a testing paradigm that does not have this objective.

The proposed testing paradigm performs testing to see if a

software product exhibits proper behavior when subject to

improper usage or improper input. For lack of a more
descriptive name and in compliance with similar testing

performed on hardware systems, this new paradigm is called

“destructive software testing”. As presented in this paper,

destructive software testing does not replace conventional

testing; rather destructive software testing supplements

conventional testing (calls for additional testing beyond

conventional testing). This paper discusses other uses of the

term “destructive software testing” as applied to software

systems. Conventional testing techniques are ranked based on

applicability to destructive testing. Techniques of

incorporating destructive testing requirements into the SRS
are proposed, the need and rational for destructive testing is

discussed, and ongoing and future work in destructive

software testing is outlined.

Keywords- software, engineering, testing,

destructive

I. INTRODUCTION

The Conventional software testing has been defined in

various ways. Some common definitions are [2] [3][7] [9]:

“Testing is the activity or process which shows or

demonstrates that a program or system performs all intended

functions correctly”

“Testing is the activity of establishing the necessary

„confidence‟ that a program or system does what it is

supposed to do, based on the set of requirements that the user

has specified”

“Testing is the process of executing a program/system with
the intent of finding errors”

“Testing is any activity aimed at evaluating an attribute
or capability of a program or system and determining

that it meets its required results”

Destructive software testing, as proposed in this paper, does

not conform to any of the above definitions. In fact, a lot of

destructive testing can be performed without knowledge of

the original software requirements of a software product.

Some knowledge of the requirements may however

sometimes help in developing a good comprehensive

destructive testing strategy. These will be discussed later in

this paper.

II. BASIC TENETS OF DESTRUCTIVE

TESTING

Destructive testing is not a replacement for conventional

testing. Rather, destructive testing should be performed in

addition to conventional testing. Destructive testing

acknowledges the fact those users of software product will

sometimes not use the software correctly. Improper or

incorrect input data will be supplied, improper or incorrect

commands will be typed, improper or incorrect GUI

sequences will be applied, and so on.

The old adage of “garbage in, garbage out” is not good
enough for high quality, robust, and reliable software. A

better adage would be something like “garbage in, proper
predictable behavior out”. Hence, destructive software
testing improves the quality of a software product.

The terminology, “destructive software testing”, was chosen
in compliance with the corresponding relative concept of
“destructive hardware testing”, in which hardware systems

are destroyed as part of testing. A good example is the testing
of automobiles for passenger safety in the event of an
automobile accident. The usual practice is to subject the

automobile in question to an actual accident in which the
automobile is heavily damaged or destroyed.

The term may be a misnomer in the case of software, because
the software is not actually destroyed.

Some possible definitions for destructive testing are:
“Testing that assures proper software behavior when the
software is subject to improper usage or improper input”
“Testing that attempts to crash a software product”

“Testing that tries to crack or break a software product”
“Testing that checks the robustness of a software product”
“Testing that assures predictable software behavior when the

software is subject to incorrect usage or input”

The term “destructive testing” as used in this paper should

not be confused with the same term as sometimes used for

conventional software testing.

In the case of conventional software testing, the term

“destructive testing” has sometimes been used to indicate

software that fails conventional testing (see, for example, [2]

[10]).

III. APPLICABILITY OF CONVENTIONAL

TESTING STRATEGIES TO

DESTRUCTIVE SOFTWARE TESTING

Table 1 shows the applicability of several popular

conventional testing strategies/concepts, to destructive

testing. For more information about each strategy and/or

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 920 | P a g e

concept, see [3] [7] [8]. The three classifications used in the

table are:

A – the strategy cannot be used for destructive testing
B – the strategy can, with modifications, be used for
destructive testing

C – the strategy can, without any modifications, be used for
destructive testing
1.Incorporation of Destructive Testing into Software

Specifications
The requirements for a software system can be
written so that it mandates and/or promotes destructive
testing. Such requirements are, by definition, non- functional

[8]. Functional requirements by nature fall into category A in
table 1 (cannot be used for destructive testing). To
incorporate mandatory destructive testing into non-functional

requirements,
clauses similar to the following have to be part of the
requirements:

Table 1. Applicability of Conventional Techniques to
Destructive Testing.

TESTING STRATEGY/

CONCEPT APPLICABILITY TOWARDS
DESTRUCTIVE TESTING

Black Box Testing C

Bottom-Up Testing B

Top-Down Testing C

Regression Testing C

Basis Path Testing B

Interface Testing C

Security Testing B

Equivalence

Partitioning C

Test Cases C

Quality Assurance C

Quality Control C

Verification Testing A

Validation Testing A

Acceptance Testing C

Benchmark Testing A

Boundary Value

Testing C

Loop Testing C

Defect Testing B

Stress Testing C

Alpha Testing C

Beta Testing C

Smoke Testing B

Performance Testing B

Unit (Module) Testing B

System (HighOrder)

Test

C

Integration Testing B

Object-Oriented Testing

B

a. The software shall not prematurely, unconditionally or

unintentionally terminate as a result of any combination of

user keyboard or mouse input.

b. The software shall never accept or process invalid input

data.

c. The software shall always produce proper output data

regardless of the validity or correctness of input data.

For specific software products, it is important to explicitly

define the following and similar terms as used above:

• Proper software behavior as per specifications.

• Improper software behavior according to requirements.
• Improper usage of requirements.

• Improper input data.

• Proper output data.

The author of this paper is currently working with a team to

develop requirements specification for an example case study

involving a data conversion program. The requirements being

developed mandate the use of destructive testing as described

above. Subsequent to the completion of the requirements

specification and implementation of the software, test cases

will be developed for destructive testing of the software.

IV. CONCLUSION
This work-in-progress paper has proposed a software testing

paradigm (destructive testing) that deviates from

conventional software testing. The goal of conventional

software testing is to ensure a software product correctly

performs all the functions specified in the requirements

specification. In contrast, the goal of destructive testing is to

ensure a software product exhibits proper behavior when

subject to improper usage or improper input. Ongoing work

includes the development of requirements specification that

mandates destructive testing of a case study software product.

Destructive testing does not replace conventional testing,
rather, destructive testing supplements (requires additional

testing beyond) conventional testing. In other words,

destructive testing is a reflection of the fact that, despite the

best of intentions, a software user will sometimes use a

software product in an improper manner. Since destructive

testing does not replace conventional testing, and it is

performed in addition to conventional testing, destructive

testing cannot be detrimental. Destructive testing can only be

beneficial.

V. REFERENCES

[1]. Drake, Thomas, “Measuring Software Quality:A Case
Study”, IEEE Computer, Nov 1996.

[2]. Drake, Thomas, “Testing Software Based Systems: The
Final Frontier” Software Technical News, Department of
Defense, US Government, Vol 3, No 3, 1999.

[3]. Hetzel, Bill, “The Complete Guide to Software Testing”,
John Wiley, 1988.

[4]. Institute of Electrical and Electronic Engineers, IEEE Std
829-1998, IEEE Standard for Software Test
Documentation, 1998.

[5]. Institute of Electrical and Electronic Engineers, IEEE Std
1008-1997 (R2003), IEEE Standard for Software Unit
Testing, 2003.

[6]. Kan, Stephen, Metrics and Models in Software Quality
Engineering, Addison-Wesley, 2003.

[7]. Myers, G. J., The Art of Software Testing, John Wiley,
New York, 1979.

[8]. Pressman, R. S, Adaptable Process Model: Software Test
Specification, www.rspa.com, 2005.

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 921 | P a g e

[9]. Reifer, Don, “Testing Software: Challenges for the Future”,
Software Technical News, Vol 3, No 2, Department of
Defense, US Government, 1999.

[10]. Whittaker, James, How to Break Software, Addison Wesley,
Reading MA, 2002.

[11]. Whittaker, James, “Software’s Invisible Users,” IEEE
Software, Vol 18, No 3, pp. 84-88, 2001.

[12]. Whittaker, James, “Software Testing as an Art, a Craft, and a
Discipline”, Software Technical News, Vol 7, No 2,
Department of Defense, US Government, 2004.

