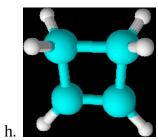
Nomenclature and Structural Formulas

- 1. For the following compounds write the structural formulas and IUPAC names for all possible isomers having the indicated number of multiple bonds:
 - a. C_5H_8 (one triple bond)


- b C₄H₈ (one double bond)
- 2. Name the following compounds by the IUPAC system:
 - a. $CH_3CH=C(CH_2CH_3)_2$
 - b. CH₃CH₂CH=CHCH₃

- d. CH₃C=CCH₂CH₂CH₃
- e. CH₂=CHCBr=CH₂

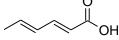
- 3. Write the structural formula for each of the following compounds:
 - a. 1-hexene

d. 4-methyl-2-hexyne

b. cyclopentene

e. 1.4-cyclohexadiene

- c. 1,3-dichloro-2-butene
- 4. Explain why the names given are incorrect, and give a correct name in each case.
 - a. 3-butyne


c. 1-methyl-2-butene

b. 3-pentene

- d. 2-methylcyclohexene
- 5. Which of the following compounds can exist as *cis-trans* isomers? If such isomerism is possible, draw the structures in a way that clearly illustrates the geometry, indicating which is *cis* and which is *trans*.
 - a. 3-hexene

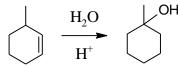
c. 1-bromopropene

- b. 1-pentene
- 6. Sorbic acid is an antimicrobial agent used as a preservative to prevent the growth of mold, yeast, and fungi on food. Its formula is:

Is the molecule cumulated, conjugated, or nonconjugated?

Electrophilic Additions to Alkenes

- 7. Write the structural formula and IUPAC name of the product when each of the following reacts with one mole of bromine:
 - a. CH₃CH=CHCH₃
 - b. CH₂=CHCl



- 8. What reagent will react by addition to what unsaturated hydrocarbon to form each of the following compounds?
 - a. CH₃CHBrCHCH₃
 - b. (CH₃)₂CHOSO₃H
 - c. (CH₃)₃COH

c. Cl1-

- 9. Classify each of the following reagents as an electrophile, nucleophile, or neither:
 - a. H_3O^{1+}
 - b. HBr
- 10. Explain why water can act as both an electrophile and a nucleophile.
- 11. The acid-catalyzed hydration of 1-methylcyclohexene give 1-methylcyclohexanol:

Write each step in the mechanism of this reaction.

- 12. When 2-mehtylpropene reacts with water and an acid catalyst, only one product is observed: 2-methyl-2-propanol (*tert*-butyl alcohol)
 - a. Draw the structures of the two intermediate carbocations that could form from protonation of 2-methyl-2-propanol. Which is more stable (with lower energy)?
 - b. Draw reaction energy diagram for the formation of these two intermediate carbocations. Use the diagram to explain why only one alcohol is formed.
- 13. Caryophyllene is an unsaturated hydrocarbon found in oil of cloves. I has the molecular structural formula C₁₅H₂₄. Hydrogenation of caryophyllene give a saturated hydrocarbon C₁₅H₂₈. Does carvophyllene have any rings? How many? What else can be learned about the structure of caryophyllene from its hydrogenation?

Reactions of Conjugated Dienes

- 14. Draw the resonance contributor to the carbocation (CH₃)₂CHCHCH=CHCH(CH₃)₂. Does the ion have a symmetric structure?
- 15. Adding one mole of hydrogen chloride to 1,3-hexadiene give two products. Give their structures, and write all of the steps in a reaction mechanism that explains how each product is formed.

16. Predict and name the product of the following Diels-Alder reaction for the diene (left) and the dienophile (right) as shown:

17. Give the structures of the diene and dienophile that made the following:

18. Write the reaction mechanism that clearly shows the structure of the alcohol obtained from the sequential hydroboration and H₂O₂/OH¹⁻ oxidation of

19. Write equations (no reaction mechanisms) to show how

- 20. Given the information that free-radical stability follows the same order as carbocation stability (3°> 2°> 1°), predict the structure of polypropylene produced by the free-radical polymerization of propene.
- 21. Show reactions and describe two simple chemical tests that could be used to distinguish cyclohexane from cyclohexene. (*Hint: Both tests produce color changes when* alkenes are present.)
- 22. Give the structural formulas and names of the alkenes that on ozonolysis give:
 - a. $(CH_3)_2C=0$ and $CH_2=0$
 - b. only $(CH_3)_2C=0$

Reactions of Alkynes

- 23. Write structural equations and names of products for the following reactions:
 - a. 2-pentyne + H₂ (1 mol, Lindlar's catalyst)
 - b. 3-hexyne + Cl_2 (2 mol)

24. Determine which alkyne and reagent will give: