

Towards manufacture of thick film thermoelectric devices

Professor Robert Dorey, Chair of Nanomaterials

Friday, 10 February 2017

Introduction

- Functional materials
- Towards sustainability through additive manufacturing for micro scale structures
- Impact on synthesis of functional materials
- Impact on processing functional additively manufactured structures

Innovate UK Technology Strategy Board

Environmentally safe and sustainable functional materials

PZT film before sintering

Temperature induced degradation:

- Interdiffusion
- Evaporation
- Degradation

Solutions:

• Low temperature

e.g. Compsite sol gel < 750°C for PZT/Si

• Diffusion barrier e.g. ZrO₂

R.A. Dorey, S.B. Stringfellow, R.W. Whatmore, Effect of sintering aid and repeated sol infiltrations on the dielectric and piezoelectric properties of a PZT composite thick film, J.Euro.Ceram.Soc., 22, 2921-2926, 2002.

Manufacture of film based devices

Micro coordinate measurement tool sensor/actuator

Fabrication stages

Additive manufacturing: knock-on effects

Additive manufacturing techniques for structured films

Structuring – micromoulding

PZT features created by micro moulding

D. Wang, S.A. Rocks, R.A. Dorey, Micromoulding of PZT film structures using electrohydrodynamic atomization mould filling, J.Euro.Ceram.Soc., 29, 1147–1155, 2009.

Structuring – micromoulding

Structuring – pad printing

Silver NPs deposited by pad printing

PZT features created by ink jet printing

Structuring – direct writing

Bi2Te3 features created by ink jet printing an aqueous ink

Deposition – screen printing

Bi₂Te₃ features created by screen printing

Structuring – direct writing

*Bi*₂*Te*₃ *powder prepared for ink jet printing*

Sb₂Te₃ powder prepared for screen printing

Structuring – direct writing

Ink jet printed Bi₂Te₃

screen printed Sb₂Te₃

Additive manufacturing techniques for structured films

Design criteria Building block size << feature size

Friday, 10 February 2017

18

Powder synthesis

Need small functional (multi-element) materials particles

Fusion based techniques #1: particle growth

Particle growth due to coalescence of multiple primary particles = Fundamental limit on particle size

Fusion based techniques #2: phase evolution

Fusion based techniques #2: phase evolution

Friday, 10 February 2017

Fusion based techniques #2: phase evolution (950°C hold)

11.5 11.6 11.7 11.8 11.8 11.9 11.	
11.5 Junt and a second seco	
11.5 Jack and the second se	4min
11 International and the second of the se	0min
9.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
901 9.5	0min
9.5 - Mary Mary Mary Mary Mary Mary Mary Mary	min
9.5 - Mary Mary Mary Mary Mary Mary Mary Mary	
	min
9 - The second and th	min
8.5 - Markey Mar	
7.5	
15 20 25 30 35 40 45 50 55 60 2 theta (°)	

Powder synthesis

Liquid phase/bottom up required

24

Molten salt synthesis

PbO soluble in NaCl/KCL – ZrO₂ slight solubility

F. Bortolani, R.A.Dorey, Molten salt synthesis of PZT powder for direct write inks, J. Euro.Ceram.Soc., 30, 2073-2079, 2010

Friday, 10 February 2017

Molten salt synthesis – NaCo₂O₄

NaCo_xO_y evolution (MSS@900°C)

NaCo_xO_y evolution (MSS@900°C)

Processing of films

How about films during manufacture?

Cross section of PZT following heat treatment at 800°C for 4 hours

10 min at 100°C in air

10 min at 350°C in air

Extensive reaction with atmosphere oxygen at low temperatures

KNN thick films - challenges

KNN thick films – loss of volatile elements

- Compositional fluctuations occur through-thickness of sample
- During early stages of sintering porous nature dominates for oxidation/evaporation effects
- Substrate interactions more important at longer times
- Substrate interactions lead to compositional gradient (inward & outward diffusion)
- Pattern has little effect provided aspect ratio > 1

Summary

- Film forming techniques are continually improving
- Cheaper & quicker to fabricate than bulk systems
- Thick films are reliant on consolidation of powders

 i.e. heat required
- Control of content of volatile elements difficult to manage at T > 900°C without containment & excess.

Robert A. Dorey,

Integrated Powder-based Thick Films for Thermoelectric, Pyroelectric and Piezoelectric Energy Harvesting Devices IEEE Sensors Journal, vol 14, no 7, pp 2177-2184, 2014

Centre for Engineering Materials Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey, UK GU2 7XH

r.dorey@surrey.ac.uk www.twitter.com/Robert_Dorey www.surrey.ac.uk

Ceramic Thick Films for MEMS and Microdevices ISBN: 978-1-4377-7817-5

