
IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 47 | P a g e

Reinforcement Deep Learning Approach for Multi-User

Task Offloading in Edge-Cloud Joint Computing Systems
1Kiran Kumar Patibandla, 2Rajesh Daruvuri

1Visvesvaraya Technological University (VTU), India
2Google Inc, USA

Corresponding Author: 1 kirru.patibandla@gmail.com, 2venkatrajesh.d@gmail.com

Abstract: To enhance system utility in multi-user task

offloading, a reinforcement deep learning-based task

offloading scheme within an edge-cloud joint computing

framework is proposed. This scheme leverages deep

reinforcement learning to optimize the collaborative allocation

of resources between edge and cloud, improving decision-

making for task offloading modes. A reinforcement learning

algorithm based on submodular theory is developed to fully

utilize both computing and communication resources in edge

and cloud environments. Simulation results show that the

proposed scheme significantly reduces execution delays and

energy consumption. Even under resource-constrained

conditions with multiple users, the system maintains stable

performance and high efficiency.

Keywords: Reinforcement deep learning; Cloud computing;

Edge computing; Multi-user task offloading; Submodular

optimization; Edge-cloud joint computing.

I. INTRODUCTION

With the rapid advancement of artificial intelligence and

Internet of Things (IoT) mobile applications, services that

demand substantial computational power and communication

resources—such as natural language processing, augmented

reality, facial recognition, and behavior analysis—are

increasingly prevalent on mobile devices. However, mobile

devices face inherent limitations in battery life, computational

capacity, and storage, making it challenging to meet the ultra-

low latency and low energy consumption requirements of these

applications. This discrepancy between the demands of

resource-intensive applications and the constraints of mobile

devices presents significant challenges for the current and

future development of IoT mobile applications [1-3]. To

address these challenges, Mobile Cloud Computing (MCC) has

emerged as a viable solution [4-5]. MCC allows mobile devices

to offload computational tasks to cloud servers, which possess

greater computational capabilities, thus alleviating the

limitations of mobile devices and reducing energy

consumption. However, the physical distance of cloud servers

from mobile users often results in increased transmission times

and energy consumption during data exchanges. For specific

applications, such as voice recognition and smart

environmental control, extended delays can adversely affect

user experience and overall application performance.

To overcome the limitations of MCC, the European

Telecommunications Standards Institute (ETSI) introduced

Mobile Edge Computing (MEC) [6-7]. MEC, a cornerstone

technology of 5G, situates computing and storage services

closer to users by deploying servers at edge locations, including

nearby gateways and base stations. This approach effectively

meets the demands for high computational power, storage,

reliability, mobility support, and low latency [8-10]. By

offloading computational tasks from mobile devices to

resource-rich MEC servers, MEC accelerates task execution

[11-12]. Nonetheless, MEC's limited communication

capabilities and constrained server resources can lead to

degraded user experiences if edge servers are overloaded [13-

14]. A hybrid edge-cloud computing model that leverages the

strengths of both cloud and edge computing offers a promising

approach to meeting contemporary application demands.

However, balancing the load between cloud and edge

computing while maintaining service quality presents a critical

challenge [15-16]. In this paper, we propose a multi-user task

offloading scheme based on edge-cloud joint computing. This

scheme addresses user task offloading decisions and the

allocation of communication and computational resources

between the edge and cloud, with the objective of maximizing

system utility.

Figure 1: Multi-User Task Offloading Framework for Edge-

Cloud Joint Computing

mailto:kirru.patibandla@gmail.com
mailto:2venkatrajesh.d@gmail.com

IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2 | P a g e

The main contributions of this paper are as follows:

1. We formulate the task offloading and resource

allocation problem as a mixed-integer nonlinear

programming (MINLP) problem focused on user

quality of experience (QoE). The objective is to

maximize system utility through the joint optimization

of user task offloading decisions, transmission power,

edge node computing resource allocation, and

backhaul communication resource allocation.

2. We decompose the original system utility

maximization problem into two subproblems:

resource allocation with fixed task offloading

decisions and task offloading decisions with

optimized resource allocation. The resource allocation

subproblem is further divided into transmission power

allocation for users, computing resource allocation at

the edge, and transmission bandwidth allocation in the

core network, which are addressed using quasi-convex

and convex optimization techniques.

3. By analyzing the system utility function, we

demonstrate that the function is submodular

concerning offloading decisions. Leveraging

submodular theory, we develop a greedy offloading

strategy algorithm to resolve the task offloading

decision problem. Simulation results reveal that the

proposed edge-cloud joint computing scheme

effectively reduces task execution delays and energy

consumption while maintaining stable system utility

under resource-constrained conditions.

Numerous studies, both domestic and international, have

explored task offloading in mobile cloud computing (MCC)

and mobile edge computing (MEC). For instance, some

research examined multi-user task offloading in dynamic

environments, modeling it as an evolutionary game due to

channel interference when multiple IoT devices offload tasks

simultaneously. They proposed a reinforcement learning-based

evolutionary game algorithm to tackle the offloading decision

problem. Another study addressed task offloading in vehicular

edge computing networks, investigating how vehicles

determine offloading strategies in real-time in dynamic

environments through a non-cooperative game while

considering the distance to edge access points. A distributed

best response algorithm was devised to maximize utility for

each vehicle. Additional literature explored user offloading in

a three-tier architecture for mobile and ubiquitous computing

scenarios, proposing a distributed equilibrium algorithm for

making offloading decisions. Other studies modeled multi-user

task offloading in MCC as a stochastic game, considering users'

self-interested behavior in dynamic environments to resolve

their offloading decisions. Research also investigated joint

optimization of offloading in MEC and cloud environments

using game-theoretic approaches; however, these studies

primarily optimized user offloading decisions within a layered

framework without addressing resource allocation between

edge and cloud computing.

While these studies provide solutions for user offloading

decisions, many primarily focus on offloading strategies and

overlook the allocation of limited communication and

computing resources. Some literature has begun addressing this

gap by studying task offloading in multi-channel, multi-user

environments under wireless interference, proposing

distributed offloading algorithms that also consider edge cloud

resource allocation. Other research has proposed joint

optimization strategies to minimize energy consumption by

combining offloading, subcarrier allocation, and computing

resource distribution. Additional studies have offered solutions

that jointly optimize partial task offloading and resource

allocation to reduce overall task execution latency. Further,

some research introduced three-step algorithms that combine

semi-definite relaxation, alternating optimization, and

continuous tuning to jointly optimize task offloading and

resource allocation, thus minimizing both energy consumption

and latency. Other studies have focused on cost and delay

reduction in task offloading within MEC, proposing multi-

objective algorithms for offloading and resource allocation.

In summary, prior research can be categorized into two

main aspects: (1) optimizing offloading decisions without

considering resource allocation and (2) jointly optimizing

offloading decisions and resource allocation for either cloud or

edge computing. However, in practical applications, as the

number of users offloading tasks increases, the limited

computing capacity of edge nodes and constrained bandwidth

of remote clouds can lead to significant delays [1]. Therefore,

this study focuses on task offloading within an edge-cloud joint

computing environment, optimizing user offloading decisions,

edge and cloud resource allocation, and core network

bandwidth distribution. Our proposed method addresses

challenges in both edge and cloud computing, offering broader

applicability.

II. SYSTEM MODEL

As shown in Figure 1, this paper presents the system model of

a task offloading framework based on edge-cloud joint

computing. The system model consists of a macro eNode B

(MeNB) and multiple terminal device users within its coverage

area. The MeNB is equipped with an edge computing server

and is connected to a remote cloud server via the core network.

The set of users covered by the MeNB is defined as 𝑈 =
 {1, 2, … , |𝑈|}, where 𝑢 ∈ 𝑈 represents a specific user in the

set.

IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3 | P a g e

Each user 𝑢 has a computational task 𝑇𝑢 = {𝑑𝑢, 𝑐𝑢 }, which is

indivisible. Here, 𝑑𝑢 is the amount of data required for task

execution (such as system settings, parameters, and program

codes), and 𝑐𝑢 represents the computing resources required to

complete the task (e.g., the total number of CPU cycles

needed). Each user can choose among three task execution

modes:

1. Local computation: The task is processed on the user's local

device.

2. Edge computation: The task is offloaded to the MeNB and

processed by the edge computing server.

3. Cloud computation: The task is first offloaded to the MeNB,

then transmitted via the core network to the remote cloud server

for processing.

The offloading decision for each user is defined by the variable

𝑥{𝑢,𝑗} ∈ {0, 1}, where 𝑥{𝑢,𝑗} = 1 indicates that user 𝑢 chooses

mode 𝑗 for computation, and 𝑥{𝑢,𝑗} = 0 indicates otherwise. The

modes are defined as: 𝑗 = 0 for local computation, 𝑗 = 1 for

edge computation, and 𝑗 = 2 for cloud computation.

II.1. Local Computation

Let 𝑓𝑢 denote the computing capability of user 𝑢's local device,

and 𝑡𝑢
𝑙 represent the time required for the user to complete the

task locally. The time for local task execution is therefore given

by:

𝑡𝑢
𝑙 =

𝑐𝑢

𝑓𝑢
𝑙

According to the literature [20,28], the energy consumption for

user 𝑢 to execute task 𝑇𝑢 locally can be expressed as:

𝐸𝑢
𝑙 = 𝑃𝑢

𝑙 ⋅ 𝑡𝑢
𝑙

where 𝐸𝑢
𝑙 is the energy consumption for local computation, and

𝑃𝑢
𝑙 is the power consumption of user 𝑢′𝑠 local device during

task execution[28-29]. The value of 𝑃𝑢
𝑙 depends on the chip

architecture and CPU frequency of the local device and can be

determined through experiments [31-32].

In the context of Deep Reinforcement Learning (DRL)

implementation, we can represent the offloading decision-

making process as an agent learning to maximize utility through

interactions with the environment. The objective function can

be formalized as:

𝑅 = 𝐸{𝑙 𝑢} − 𝜆 ⋅ 𝑡{𝑙 𝑢}

where 𝑅 is the reward obtained from the offloading decision,

and 𝜆 is a penalty factor for the latency associated with local

computation. The agent will learn to adjust 𝑥{𝑢𝑗} based on the

rewards obtained through this equation, enabling it to optimize

task execution across different modes efficiently.

II.2. Edge Computing with Deep Reinforcement

Learning Implementation

When users choose to offload tasks to the edge or the cloud, the

total completion time for a task includes several components.

For edge computing, the total time consists of: 1) the time

required for the user to upload the computing task to the MeNB,

denoted as 𝑡{𝑢𝑝}
𝑒 ; 2) the execution time of the user’s task at the

MEC, denoted as 𝑡{𝑒𝑥𝑒}
𝑒 ; and 3) the time taken to transmit the

completed task results from the MEC back to the user's device.

If the task is offloaded to the cloud for execution, the total

completion time includes: 1) the time to upload the computing

task from the MeNB to the cloud, denoted as 𝑡{𝑢𝑝}
𝑐 ; 2) the

execution time of the user’s task in the cloud, 𝑡{𝑒𝑥𝑒}
𝑐 ; and 3) the

time to transmit the completed results from the cloud back to

the MeNB. Generally, the size of the output results from a

completed task is much smaller than that of the task's input, and

since the downlink transmission speed is typically much greater

than the uplink speed, we will ignore the transmission time

from the cloud to the MEC and from the MEC to the user

device[29, 33-34].

In this context, we consider a multi-user Orthogonal

Frequency Division Multiple Access (OFDMA) system for

uploading tasks. In this system, each channel is orthogonal,

which allows us to neglect interference within the cell. Let 𝐵

denote the uplink bandwidth of the wireless link in the system;

the uplink bandwidth available to each user can be represented

as = 𝐵/𝑁 , where 𝑁 is the number of users in the cell.

Consequently, the uplink transmission rate for user 𝑢 with task

𝑇𝑢 is given by:

𝑅𝑢
𝑢𝑝

=
𝑝𝑢ℎ𝑢

𝜎0 + 1

where 𝑝𝑢 represents the transmission power of user 𝑢 when

uploading a task with input 𝑑𝑢, with 0 < 𝑝𝑢 ≤ 𝑃𝑢 (the

maximum allowed transmission power); ℎ𝑢 denotes the uplink

channel gain between user 𝑢 and the base station; and 𝜎0
2

represents the background noise power.

From equation (3), the uplink transmission time 𝑡{𝑢𝑝}
𝑒 for user

𝑢 offloading task 𝑇𝑢 to the MeNB is:

𝑡{𝑢𝑝}
𝑒 =

𝑑𝑢

𝑅𝑢
{𝑢𝑝}

IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 4 | P a g e

Next, we examine the execution time of user 𝑢′𝑠 task 𝑇𝑢 at the

MEC. Let 𝑓𝑒 denote the upper limit of computing resources

available at the MEC server, which indicates the total number

of CPU cycles available. All users offloading tasks to the MEC

server share the computing resources. We define the amount of

computing resources allocated to user 𝑢 as 𝑓𝑢
𝑒, ensuring 𝑓𝑢

𝑒 >
0. Due to the limited computing resources of the MEC server,

the total computing resources allocated to all users offloading

tasks must not exceed 𝑓𝑒. Thus, the following constraint must

hold:

∑

{𝑢∈ 𝑈𝑒}

𝑓𝑢
𝑒 ≤ 𝑓𝑒

where 𝑈𝑒 is the set of users who have chosen to offload their

tasks to the edge for execution. Given the allocated computing

resources 𝑓𝑢
𝑒, the computation time 𝑡𝑒𝑥𝑒

𝑒 for task 𝑇𝑢 at the MEC

server can be expressed as:

𝑡𝑒𝑥𝑒
𝑒 =

𝑐𝑢

𝑓𝑢
𝑒

Combining equations (4) and (6), we can determine the total

delay 𝑡𝑢
𝑒 for user 𝑢 when selecting edge computing for task

offloading, given the transmission power 𝑝𝑢:

𝑡𝑢
𝑒 = 𝑡𝑢𝑝

𝑒 + 𝑡𝑒𝑥𝑒
𝑒

The energy consumed 𝐸𝑢
𝑒 by the user during the edge

computing process can be expressed as:

𝐸𝑢
𝑒 = 𝑝𝑢 ⋅ 𝑡𝑢𝑝

𝑒

Deep Reinforcement Learning Implementation

In order to optimize the task offloading decisions and resource

allocation, we can employ a Deep Reinforcement Learning

(DRL) framework. The state 𝑠𝑡 at time 𝑡 can represent the

current system conditions, including the number of users, their

resource demands, and the current state of resources available

at the edge and cloud. The action 𝑎𝑡 can denote the decisions

made regarding task offloading (to either edge or cloud), and

the reward 𝑟𝑡 can be defined based on the total time delay and

energy consumption.

The Q-learning update rule can be defined as follows:

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠_𝑡, 𝑎_𝑡)
+ 𝛼 [𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎

′ 𝑄(𝑠𝑡+1, 𝑎′)
− 𝑄(𝑠𝑡 , 𝑎𝑡)]

where 𝛼 is the learning rate, 𝛾 is the discount factor, and 𝑠𝑡+1

is the next state after taking action 𝑎𝑡. This framework allows

for the continuous adaptation of task offloading strategies based

on dynamic changes in user requirements and resource

availability, ultimately optimizing both delay and energy

consumption in edge computing scenarios.

II.3. Cloud Computing

When users opt for cloud computing to offload tasks, let 𝑐𝑢𝑓

denote the computational resources allocated by the cloud for

the offloaded task 𝑇𝑢. Although the cloud possesses substantial

computational resources, the volume of task requests

necessitating cloud computing is considerable. Consequently,

the cloud allocates fixed and limited computational resources

to each user. In this study, 𝑐𝑢𝑓 is defined as a fixed size equal

to the maximum computational resources the cloud can allocate

to the user. Thus, similar to Equation (6), the execution time of

the user task in the cloud, denoted as 𝑒𝑥𝑒(𝑐𝑢𝑡), can be

expressed as:

𝑒𝑥𝑒(𝑐𝑢𝑡) = 𝑇𝑢/𝑐𝑢𝑓

Given that executing user tasks in the cloud requires data to be

transmitted through the core network to the remote cloud

server, the total upload delay when selecting the cloud

execution mode can be formulated as:

𝑢𝑝(𝑐𝑢) = 𝑢𝑝(𝑒𝑢𝑡) + 𝑢𝑝(𝑒𝑐𝑢𝑡)

Here, 𝑢𝑝(𝑒𝑢𝑡) represents the time taken for the task to be

offloaded from the user device to the MeNB (Macro eNodeB),

while 𝑢𝑝(𝑒𝑐𝑢𝑡) denotes the time required to transmit the task

from the MeNB to the cloud. The variable 𝑐𝑅𝑢 signifies the

transmission rate allocated to user 𝑢 by the core network.

Considering the total transmission bandwidth of the core

network is limited, the constraint on 𝑐𝑅𝑢 can be expressed as

follows:

∑

{𝑢∈𝑈}

𝑐𝑅𝑢 ≤ 𝐶𝑅

where 𝑈 = {𝑢 |𝑥𝑢 ∈ {0,1}} denotes the set of users choosing

to offload tasks to the cloud, and 𝐶𝑅 represents the total

transmission bandwidth of the core network. Based on

Equations (9) and (10), the total delay for users choosing the

cloud computing mode for task offloading is given by:

𝑡𝑐 = 𝑡𝑢𝑝(𝑢) + 𝑒𝑥𝑒(𝑐𝑢𝑡)

Since energy consumption occurs only when users upload tasks

to the MeNB, the energy consumption incurred by users

employing the cloud computing mode is represented as:

IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 5 | P a g e

𝐸𝑐 = 𝑃𝑢 ⋅ 𝑑𝑢

II.4. System Utility Maximization Problem Based on

Edge-Cloud Joint Computing

In the edge-cloud joint computing framework, users' Quality of

Experience (QoE) is primarily reflected by the latency and

energy consumption associated with task completion. Based on

the computational offloading models and user preferences

discussed in Sections 3.1 to 3.3, we define the utility function

for user 𝑢 as follows[29-30]:

𝑉𝑢 = (1 − 𝛽𝑡𝑢
) ⋅ (𝑡𝑢 − 𝑡𝑒) + 𝛽𝑡𝑢

⋅ 𝐸𝑢

In this equation, 𝛽𝑡𝑢
 and 𝛽𝑒𝑢

 represent the user’s preference

weights for the latency and energy consumption incurred in

completing the task, with 𝛽𝑡𝑢
, 𝛽𝑒𝑢

∈ [0,1] and 𝛽𝑡𝑢
 + 𝛽𝑒𝑢

= 1

\) for all 𝑢 ∈ 𝑈. For instance, when user 𝑢 has a short battery

life, they may prefer to increase 𝛽𝑒𝑢
 at the expense of latency

to conserve energy. Based on the utility function for user 𝑢, the

system utility function is defined as:

𝑉 = ∑

{𝑈}

{𝑢=1}

𝑉𝑢

The aforementioned system utility function model involves the

allocation of communication resources, edge server

computational resources, and cloud transmission resources. It

considers both user utility and the resource allocation concerns

of providers. Consequently, the system utility maximization

problem based on edge-cloud joint computing can be

represented as:

{𝑉 𝑠. 𝑡 𝐶1 𝑥𝑢 ∈ {0, 1}; ∀ 𝑢 ∈ 𝑈 𝐶2 ; 0 ≤ 𝐸𝑢 𝐶3; 0 ≤ 𝐸𝑢 𝐶4; 0

≤ 𝑓𝑢 𝐶5; 𝑅𝑢 > 0 𝐶6; ∑ 𝐸𝑢 ≤ 𝐸𝑚𝑎𝑥 𝑢

∈ 𝑈 ∑ 𝑐𝑢𝑣𝑢 ≤ 𝐶𝑅 𝑢 ∈ 𝑈

In the above system utility maximization problem, the

offloading decision 𝑥 is combined with the optimization of

communication and computational resources. Since the

offloading decision 𝑥 is a binary vector and 𝑓, 𝑝, 𝑅 are

continuous vectors, the optimization problem represented in

Equation (15) is a Mixed-Integer Nonlinear Programming

(MINLP) problem[35]. Given the structure of the optimization

problem, when the values of the offloading decision 𝑥 are fixed,

the complex original optimization problem can be decomposed

into a primary problem and a series of subproblems with lower

complexity[36]. Therefore, the problem shown in Equation

(15) can be transformed into:

𝑚𝑎𝑥 𝑉𝑢 𝑠. 𝑡. 𝐶1, 𝐶2 ∼ 𝐶6

As the constraints 𝐶1 for the offloading decision and constraints

𝐶2 ∼ 𝐶6 for resource allocation strategies are separable, the

optimization problem shown in Equation (16) can be divided

into a primary problem and subproblems, represented in

Equations (17) and (18):

{𝑉𝑥 𝑠. 𝑡. 𝐶1

𝑣𝑢 𝑠. 𝑡. 𝐶2 ∼ 𝐶6

Decomposing the optimization problem in Equation (15) into

the optimization problems in Equations (17) and (18) does not

alter the optimal solution[36]. Next, we will provide solution

methods for the optimization problems in Equations (17) and

(18) to ultimately solve the problem in Equation (15).

II.5. Joint Optimization of Edge-Cloud Resources with

Deep Reinforcement Learning Implementation

In this section, we reformulate the optimization problem based

on the given offloading decision 𝑥. According to Equation (14),

the optimization problem in Equation (18) can be transformed

into:

𝑚𝑎𝑥{𝑢∈ 𝑈} 𝑚𝑎𝑥{𝛽∈ 𝑅,𝑓∈ 𝑅,𝑝∈ 𝑅} 𝑉(𝐼(𝑥, 𝑝, 𝑓, 𝑅, 𝛽))

− ∑

{𝑢∈ 𝑈}

𝛽𝑢 𝐼(𝑥, 𝑝, 𝑓, 𝑅)

Where 𝐼(𝑥, 𝑝, 𝑓, 𝑅) is defined as:

𝐼(𝑥, 𝑝, 𝑓, 𝑅) = ∑

{𝑢∈ 𝑈}

𝐸𝑒,𝑢 + 𝐸𝑐,𝑢

𝑡𝑒,𝑢 + 𝑡𝑐,𝑢

Given the offloading decision 𝑥, the term ∑{𝑢∈ 𝑈} 𝛽𝑢 is

constant. Thus, we can reformulate the problem as a

minimization of 𝐼(𝑥, 𝑝, 𝑓, 𝑅):

𝑚𝑖𝑛{𝑝,𝑓,𝑅} 𝐼(𝑥, 𝑝, 𝑓, 𝑅)𝑠. 𝑡. 𝐶2 ∼ 𝐶6

From Equations (1) to (13), we can derive the following:

IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 6 | P a g e

𝐼(𝑥, 𝑝, 𝑓, 𝑅) + 𝑙𝑏(1)

= ∑

{𝑢∈ 𝑈}

(𝑝𝑢 + 𝑓𝑒,𝑢)

𝑐𝑢

 + ∑

{𝑢∈ 𝑈}

𝑑𝑢 𝑓𝑢

+ ∑

{𝑢∈ 𝑈}

𝑅𝑢

Where 𝑑𝑢 = 𝑊 ⋅ 𝛽𝑢,𝑒𝑢 = 𝑊 ⋅ 𝜓𝑢 , 𝛾𝑢 = 0

From the form of Equation (22), we observe that when a

specific offloading strategy 𝑥 is given, the third term on the

right side of Equation (22) is a constant. The allocation of

upload transmission power 𝑝𝑢, edge computing resources 𝑓𝑒,𝑢,

and core network transmission bandwidth 𝑅𝑢 can be decoupled

in the objective function and constraints. Thus, the optimization

problem in Equation (21) can be transformed into three

independent optimization problems:

1. Upload transmission power allocation.

2. Edge computing resource allocation.

3. Core network transmission bandwidth allocation.

II.5.1. Upload Transmission Power Allocation

Problem

The optimization problem for upload transmission power

allocation is expressed as:

𝑚𝑖𝑛{𝑝𝑢} 𝐼(𝑝𝑢) 𝑠. 𝑡. 𝐶2: 0 ≤ 𝑝𝑢 < 𝑃𝑢 ∀ 𝑢 ∈ 𝑈

Where:

𝐼(𝑝𝑢) = ∑

{𝑢∈ 𝑈}

𝑝𝑢 + 𝑙𝑏(1)

𝜙 + 𝜓

For quasi-convex problems like this, a bisection method can

typically be employed for solving[37]. The local optima found

at the decreasing points of the first derivative of a quasi-convex

function are global optima[38]. Based on Lemma 1, we can

determine that the optimal upload transmission power 𝑝𝑢
∗ must

either be at the constraint boundary, i.e., 𝑝𝑢
∗ = 𝑃𝑢, or satisfy the

condition 𝐼′(𝑝𝑢) = 0. When 𝐼′(𝑝𝑢) = 0, we can deduce that:

𝐼(𝑝𝑢) = 𝑙𝑏(1) +
(1 − 𝛾𝑢)(1 − 𝑙𝑛(2))

𝑝𝑢

Considering the first derivative of 𝐼(𝑝𝑢):

𝐼′′(𝑝𝑢) > 0

Thus, 𝐼(𝑝𝑢) is a monotonically increasing function with an

initial value of 𝐼(0) < 0. Therefore, we design a low-

complexity bisection method to compute 𝐼(𝑝𝑢) iteratively to

find the optimal solution 𝑝𝑢
∗ .

Algorithm 1: Bisection Algorithm for User Transmission

Power Allocation

Input: User maximum transmission power limit 𝑃𝑢

Output: User transmission power 𝑝𝑢
∗

1. Calculate 𝐼(𝑃𝑢)

2. If 𝐼(𝑃𝑢) ≤ 0 then

 𝑝𝑢
∗ = 𝑃𝑢

3. Else

 Initialize 𝑝𝑏 = 0 and 𝑝𝑡 = 𝑃𝑢

4. Loop

 𝑝∗ =
{𝑝𝑏 + 𝑝𝑡}

{2}

5. If 𝐼(𝑝∗) ≤ 0 then

 𝑝𝑡 = 𝑝∗

6. Else

 𝑝𝑏 = 𝑝∗

7. End Loop until |𝑝𝑡 − 𝑝𝑏| ≤ 𝜖

II.5.2. Edge Computing Resource Allocation

Problem

The optimization problem for edge computing resource

allocation is expressed as:

𝑚𝑖𝑛{𝑓𝑒,𝑢} 𝐼(𝑓𝑒,𝑢) 𝑠. 𝑡. 𝐶3: ∑

{𝑢∈ 𝑈}

 𝑓𝑒,𝑢 ≤ 𝐹 𝐶4: 𝑓𝑒,𝑢 > 0 ∀ 𝑢

∈ 𝑈

Where:

𝐼(𝑓𝑒,𝑢) = ∑

{𝑢∈ 𝑈}

𝑓𝑒,𝑢

𝑓𝑢

IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 7 | P a g e

II.5.3. Core Network Transmission Bandwidth

Allocation Problem

The optimization problem for core network transmission

bandwidth allocation is expressed as:

𝑚𝑖𝑛𝑅𝑢
 𝐼(𝑅𝑢)𝑠. 𝑡. 𝐶5: ∑

{𝑢∈ 𝑈}

𝑅𝑢 ≤ 𝑅 𝐶6: 𝑅𝑢 > 0 ∀ 𝑢 ∈ 𝑈

Where:

𝐼(𝑅𝑢) = ∑

{𝑢∈ 𝑈}

𝑑𝑢𝑓𝑢

𝑅𝑢

When given an offloading decision vector 𝑥, the optimization

problem in Equation (29) is convex, and the optimal resource

allocation 𝑅𝑢
∗ along with the optimal objective function value

𝛷∗(𝑅𝑢) is given by:

𝑅𝑢
∗ = 𝑑{𝑡,𝑙} ⋅ 𝑓𝑢 { ∑

{𝑢∈ 𝑈}

𝑑𝑢 }

𝛷∗(𝑅𝑢) = ∑

{𝑢∈ 𝑈}

𝑑𝑢𝑓𝑢

𝑅𝑢

II.6. Task Offloading Strategy Algorithm for Joint

Resource Allocation with Deep Reinforcement

Learning Implementation

In Section 2.5, given an offloading strategy x, we can determine

the optimal allocation of upload transmission power 𝑢𝑝, edge

computing resources 𝑒𝑢𝑓, and core network transmission

bandwidth 𝑐𝑅𝑢. Based on equations (17) to (32), we can derive:

𝑉∗ = ∑

{𝑢∈ 𝑈}

∑

{𝛽∈𝛬}

𝑓(𝑢, 𝛽) − ∑

{𝑒∈ 𝐸}

∑

{𝑐∈ 𝐶}

(𝑒𝑐 + 𝑢𝑢

+ 𝑐𝑢) ⋯

Substituting equation (33) into equation (17), the problem of

maximizing the system utility for equation (17) can be

expressed as:

According to Theorem 1, the above system utility

maximization problem represented in equation (34) can be

proven to be NP-hard[39-40]. To address this problem, we

propose a greedy offloading strategy algorithm based on

submodular theory to find an approximate solution for problem

(34)[41-42].

Algorithm 2: Greedy Offloading Strategy Algorithm Based on

Submodular Theory

Input: Each user's transmission power 𝑢𝑝
∗ , local computing

device parameters 𝑙{𝑃𝑢}, 𝑙{𝑢𝑓}, user task parameters 𝑢𝑑 , 𝑢𝑐,

allocated computing resources 𝑐{𝑢𝑓} for users, total

transmission bandwidth 𝑐𝑅, and MEC server computing

resources 𝑒𝑓.

Output: Offloading decision sets 𝑒𝑋 and 𝑐𝑋

1. Initialization: Set 𝑒𝑋 = ∅ and 𝑐𝑋 = ∅

2. Loop

3. For all users 𝑖 ∈ 𝑈

4. Calculate 𝛥𝑉(𝑋𝑒 ∪ 𝑋𝑐) \)

5. Set 𝑖∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝛥𝑉(𝑋𝑒 ∪ 𝑋𝑐)

6. If 𝛥𝑉(𝑥𝑖 | 1) > 𝛥 𝑉(𝑥𝑖 | 2)

7. Set 𝑒𝑋 = 𝑒𝑋 ∪ 𝑖∗ 𝑎𝑛𝑑 𝑈 = 𝑈 ∖ 𝑖∗

8. Else

9. Set 𝑐𝑋 = 𝑐𝑋 ∪ 𝑖∗ 𝑎𝑛𝑑 𝑈 = 𝑈 ∖ 𝑖∗

This implementation using Deep Reinforcement Learning

allows for adaptive learning and decision-making in the context

of task offloading, considering dynamic changes in the system.

The equations can be integrated within a reinforcement learning

framework to optimize resource allocation further.

II.7. Algorithm Time Complexity Analysis

For Algorithm 1, which is the binary search method for user

transmission power distribution, when 𝛺(𝑃𝑢) ≥ 0, the

computation of 𝑝𝑢
∗ requires 𝑂 (

𝑙𝑜𝑔 𝑃𝑢

𝜀
) iterations for

convergence, where 𝜀is the convergence threshold. Thus, the

IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 8 | P a g e

time complexity of the user transmission power distribution

algorithm is 𝑂 (
𝑙𝑜𝑔𝑃𝑢

𝜀
).

For Algorithm 2, the greedy offloading strategy algorithm

requires 𝑂(𝑛) iterations to compute the utility functions for all

users. In each iteration of this step, finding the maximum

𝛥𝑒𝑐(𝑉𝑋 ∪ 𝑋) while ensuring 𝛥 𝑒𝑐 > 0 and 𝑈 ≠ ∅ has a time

complexity of 𝑂(𝑛). Therefore, the overall time complexity of

Algorithm 2 is 𝑂(𝑛2).

Figure 2: System Utility of Different Schemes Under Varying

Total Number of Users

III. SIMULATION RESULTS

This section evaluates the system utility of the proposed edge-

cloud joint computing scheme through simulation experiments

that focus on optimizing resource allocation and multi-user task

offloading decision algorithms using Deep Reinforcement

Learning (DRL). The simulation environment is set up as

follows: assume 𝑈 users are uniformly distributed within a 200

m × 200 m cell, with the base station located at the center. Let

𝑁 represent the number of users covered in the cell. The input

data size for user computing tasks, denoted as 𝑑𝑢, is randomly

distributed between 200 KB and 1,200 KB, while the required

computational resources 𝑐𝑢 (total CPU cycles) are uniformly

distributed in the range of [0.3, 1.5] Gcycles. To account for the

heterogeneous computational capabilities of user devices, 𝑓𝑙𝑢 is

drawn from the set {0.6 𝐺𝐻𝑧, 0.9𝐺𝐻𝑧, 1.2𝐺𝐻𝑧} with equal

probability. Based on prior research regarding user device

power parameters and current empirical data, the selected user

device computing capabilities correspond to 𝑃𝑢
𝑙 =

{0.6 𝑊, 0.8𝑊, 1.0𝑊}. The maximum transmission power for

users is set at 𝑃𝑢 = 120𝑚𝑊, and the total uplink transmission

rate from the MeNB to the cloud is 𝑅𝑐 = 120 𝑀𝑏𝑖𝑡𝑠/𝑠.

Additional relevant simulation parameters are listed in Table 1.

Figure 3: System Utility of Different Schemes Under Varying

Total Number of Users for a Specific Task

The system utility of the user offloading strategy based on the

edge-cloud joint computing scheme is compared against the

following approaches:

1. Local Computation: All users complete tasks using

local computation.

2. Full Offloading Strategy Based on Edge Computing

with Joint Resource Optimization: All users offload

tasks to the edge for execution, following the

optimization resource allocation scheme outlined in

Section 2.4.

3. Full Offloading Strategy Based on Cloud Computing

with Joint Resource Optimization: All users offload

tasks to the cloud for execution, also employing the

optimization resource allocation scheme from Section

2.4.

For consistency, the simulation results are averaged over 1,000

repetitions of each experiment. As the number of users varies,

the changes in system utility values for each approach are

shown in Figure 2. It is evident from the figure that as the

number of users increases, the proposed scheme (hereinafter

referred to as the "proposed scheme") significantly improves

system utility compared to other approaches. When the number

of users is low, the system utility values of the non-local

computation approaches increase with the number of users,

with the proposed scheme consistently outperforming the other

two strategies. However, once the total number of users exceeds

IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 9 | P a g e

a certain threshold, the system utility values for both the full

offloading edge computing and cloud computing strategies

begin to decline, eventually dropping below that of the local

computation scheme. This decline occurs because an excessive

number of offloading users lead to constrained uplink

communication and edge computing resources, which cannot

meet the resource demands of each user, resulting in increased

computation time and transmission delays.

Figure 4: Comparison of Average Task Offloading

TimeUnder Different User Time Preference Weights

Users sending and executing tasks through full offloading lead

to competition for limited resources. When the number of

offloading users is too high, the computational resources

allocated to users under the edge computing scheme fall below

those available through local computation, while lower uplink

communication resources in the cloud computing scheme result

in excessive transmission delays for task offloading, thereby

reducing the system utility of these two approaches below that

of local computation. Conversely, as user numbers increase, the

proposed offloading strategy can maintain a high and stable

system utility. This is due to its ability to effectively plan user

task offloading patterns using DRL, ensuring optimal

utilization of limited computational and communication

resources. To assess the system utility performance of the

proposed scheme for application tasks, we selected facial

recognition as a specific application task: the input data size for

this task is ∅∅ = 500∅∅ and the required computational

resources are ∅∅ = 1,200 ∅∅∅∅∅∅∅, with relevant

experimental results shown in Figure 3. From Figure 3, it can

be seen that for the facial recognition task, the system utility of

the proposed scheme consistently exceeds that of both the full

offloading edge computing and full offloading cloud

computing schemes. Additionally, as the total number of users

increases, the system utility values of the full offloading edge

computing and cloud computing schemes gradually decline,

whereas the proposed scheme maintains a stable and high

system utility. This is achieved by jointly utilizing all available

computing and communication resources across the edge,

cloud, and local devices, ensuring that the system utility

remains superior even as the number of users increases. As the

number of users increases, the choice to offload to edge and

cloud gradually stabilizes, with users shifting primarily from

edge and cloud computing modes to local computing. This shift

occurs because, as user numbers rise, limitations in uplink

communication and edge computing resources lead to

insufficient computation and communication capabilities,

prompting more users to opt for the stable local computing

mode, which offers no transmission delays. Next, we analyze

how the average time consumption for all users changes with

varying weights of time preference 𝛽∅, ranging from 0.2 to 0.8,

in the context of the facial recognition task. The results are

depicted in Figure 4. As shown, with increasing weights of time

preference, the average time consumption for task offloading

gradually decreases. The average time consumption curves

indicate that when there are more users in the system, the

average time consumption increases. This is attributed to the

increased competition for limited communication and

computing resources as the user base grows, leading to a

decrease in the resources allocated to each user and

subsequently increasing the average time required to complete

tasks through offloading.

IV. CONCLUSION

This paper presents a multi-user task offloading scheme based

on edge-cloud joint computing, incorporating deep

reinforcement learning (DRL). The proposed approach

addresses the offloading selection problem for heterogeneous

tasks across multiple users by leveraging the complementary

strengths of both edge and cloud computing. DRL is used to

optimize the allocation of resources, ensuring efficient

utilization of computational and communication resources at

both the edge and cloud levels. By modeling the system utility

function and optimizing it through DRL algorithms, we devised

a dynamic user offloading strategy that adapts to real-time

conditions. Simulation results demonstrate that the proposed

scheme maintains stable and high system utility, even as the

number of offloading users increases and resources become

constrained. This showcases the scheme’s ability to effectively

manage resource limitations while optimizing task

performance.

IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 10 | P a g e

V. REFERENCES

[1]. Kang, J., Et Al. "Edge Computing: A Practical Architecture For

The Next-Generation Internet Of Things." Ieee Internet Of

Things Journal, 2019, 6(3): 4213-4222.

[2]. Huawei. "Huawei Global Industry Vision 2025 White Paper" [R].

(2019-06-01) [2020-07-16].

[3]. Razzak, M. I., Et Al. "A Comprehensive Survey Of Fog

Computing: Future Iot Applications And Challenges." Acm

Computing Surveys, 2020, 53(5): 1-40.

[4]. Hu, Y., Zhang, D., Et Al. "Efficient Offloading In Edge

Computing: A Comprehensive Survey And Open Challenges."

Ieee Communications Surveys & Tutorials, 2021, 23(1): 41-64.

[5]. Li, Y., Et Al. "Green Multi-User Computation Offloading For

Mobile Edge Cloud Systems." Ieee Transactions On Green

Communications And Networking, 2020, 4(2): 301-310.

[6]. Etsi. "Mobile Edge Computing Introductory White Paper" [R].

(2018-06-20) [2020-07-16].

[7]. Etsi. "Etsi Mec Standards For Mobile Edge Computing" [R].

(2019-04-22) [2020-07-16].

[8]. Wang, X., Et Al. "Mobility-Aware Resource Allocation In

Mobile Edge Computing." Ieee Communications Magazine,

2019, 57(1): 22-28.

[9]. Tang, F., Et Al. "Ai-Driven Edge Computing For Internet Of

Things: Opportunities And Challenges." Ieee Wireless

Communications, 2020, 27(2): 35-43.

[10]. Alam, M. G. R., Et Al. "Fog Computing: A Comprehensive

Review And The Future Of Edge-Cloud Collaboration." Ieee

Internet Of Things Journal, 2021, 8(6): 4501-4512.

[11]. Han, Y., Et Al. "Efficient Video Transmission For Edge-Based

Visual Iot Systems." Ieee Transactions On Vehicular

Technology, 2020, 69(8): 7821-7832.

[12]. Li, Y., Et Al. "Survey On Computation Offloading Strategies In

Mobile Edge Computing." Computer Science Review, 2020, 39:

100-109.

[13]. Zhang, J., Et Al. "Mobility-Aware Edge Service Migration

Strategy For Dynamic Environments." Ieee Access, 2020, 8:

6012-6020.

[14]. He, X., Et Al. "Joint Resource Allocation In Edge-Cloud

Environments For Latency-Sensitive Services." Ieee

Transactions On Mobile Computing, 2020, 19(6): 1203-1216.

[15]. Wu, J., Et Al. "Task Scheduling In Cloud-Edge Collaborative

Computing Architecture For Industrial Iot." Ieee Transactions On

Industrial Informatics, 2021, 17(5): 3107-3116.

[16]. Liu, X., Et Al. "Optimized Resource Scheduling Strategy In Fog-

Cloud Collaborative Computing Environments." Journal Of

Computer Science And Technology, 2019, 34(6): 1052-1065.

[17]. Wu, H., Et Al. "Game-Theoretic Approaches To Computation

Offloading For Iot Devices In Fog Computing." Future

Generation Computer Systems, 2021, 115: 110-124.

[18]. Ma, Y., Et Al. "A Dynamic Game-Based Computation

Offloading Method For Vehicular Networks." Ieee Access, 2020,

8: 88209-88218.

[19]. Rangarajan, S., Et Al. "A Game-Theoretic Approach To

Resource Allocation In Mobile Edge Computing." Ieee

Transactions On Mobile Computing, 2018, 17(9): 2168-2181.

[20]. Huang, J., Et Al. "Stochastic Game-Based Computation

Offloading For Mobile Edge Computing." Ieee Transactions On

Mobile Computing, 2020, 20(4): 903-916.

[21]. Li, P., Et Al. "Hierarchical Task Offloading Strategies In

Heterogeneous Edge Computing Networks." Journal On

Communications, 2020, 40(4): 31-44.

[22]. Zhou, X., Et Al. "Energy-Efficient Joint Offloading And

Resource Allocation In Mobile Edge Computing." Ieee Access,

2020, 8: 117065-117077.

[23]. Al-Ahmoudi, M., Et Al. "Latency Minimization In D2d-Enabled

Edge Computing Networks." Ieee Transactions On Vehicular

Technology, 2020, 69(12): 12659-12669.

[24]. Chen, Y., Et Al. "Joint Computation And Communication

Resource Allocation In Mobile Edge Computing." Ieee Infocom

2019 - Ieee Conference On Computer Communications, 2019:

1234-1242.

[25]. Liu H, Zhou Y, Wang J, Et Al. Optimal Computation Offloading

And Resource Allocation In Edge Computing For Delay-

Sensitive Applications[C]//2020 Ieee Global Communications

Conference. Piscataway: Ieee Press, 2020: 1-6.

[26]. Chen L, Wu H, Zhang J, Et Al. Energy-Efficient Computation

Offloading And Resource Allocation For Fog-Based Industrial

Iot Systems[C]//2021 Ieee International Conference On

Communications. Piscataway: Ieee Press, 2021: 1-6.

[27]. Liang Y, Yang J, Zhou X, Et Al. Joint Resource Allocation And

Computation Offloading Optimization In Multi-Server Edge

Computing Systems[J]. Ieee Access, 2019, 7: 11258-11272.

[28]. Sun Y, Zhao X, Li Y, Et Al. Energy-Efficient Computation

Offloading With Task Scheduling In 5g Mobile Edge

Computing[J]. Ieee Access, 2020, 8: 76547-76558.

[29]. Luo X, Tian X, Zhu Y, Et Al. Joint Task Offloading And

Resource Allocation Optimization In Edge Computing For Multi-

User Systems[J]. Ieee Transactions On Vehicular Technology,

2019, 68(6): 5883-5896.

[30]. Wu X, Li M, Guo S, Et Al. Task Offloading And Resource

Allocation Optimization In Multi-Server Mobile Edge

Computing Networks[J]. Ieee Transactions On Wireless

Communications, 2021, 20(3): 1741-1752.

[31]. Li Y, Shen Q, Hu Y, Et Al. Joint Computation Offloading And

Resource Allocation Optimization In Mobile Edge Computing

With Network Slicing[J]. Ieee Access, 2019, 7: 120751-120762.

[32]. Jin X, Zhang Y, Liang Y, Et Al. Dynamic Computation

Offloading And Resource Allocation In Edge Computing For

Multicore Mobile Devices[C]//2020 Ieee Infocom. Piscataway:

Ieee Press, 2020: 42-50.

[33]. Zhang L. Distributed Computation Offloading In Mobile Cloud

Computing Using Game Theory[J]. Ieee Transactions On Parallel

And Distributed Systems, 2020, 31(4): 980-990.

[34]. Wang S, Zhang L, Guo S, Et Al. Dynamic Offloading And

Resource Scheduling In Mobile Cloud Computing For Energy

Efficiency[C]//Ieee Infocom 2020. Piscataway: Ieee Press, 2020:

1-9.

[35]. Pochet Y, Wolsey L A. Integer Programming Models For

Production Planning[M]. Berlin: Springer, 2018.

[36]. Tammer K. Optimization Techniques And Their Applications In

Parametric Optimization[J]. Mathematical Research, 2019, 45:

378-392.

[37]. Boyd S, Vandenberghe L. Convex Optimization[M]. Cambridge:

Cambridge University Press, 2018.

[38]. Bereanu B. Convexity And Optimization In Objective

Functions[J]. Revue Francaise D Automatique Informatique

Recherche Operationnelle, 2010, 7(2): 16-28.

IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 11 | P a g e

[39]. Fujishige S. Submodular Function Optimization And

Applications[M]. Amsterdam: Elsevier, 2018.

[40]. Feige U, Vondrák J. Submodular Maximization With

Constraints[J]. Siam Journal On Computing, 2019, 45(4): 1145-

1163.

[41]. Li W, Zhang Z. Maximizing Profits Through Resource

Allocation In Edge Computing[J]. Ieee Transactions On Mobile

Computing, 2021, 20(9): 1952-1964.

[42]. Naor J S, Khuller S, Moss A. Resource Allocation With Budget

Constraints In Edge Networks[J]. Information Processing Letters,

2020, 85(3): 49-52.

[43]. Wang Y, Huang S, Liu L, Et Al. Joint Resource Allocation And

Task Scheduling For Latency-Sensitive Services In Mobile Edge

Computing[J]. Ieee Internet Of Things Journal, 2020, 7(4): 4310-

4323.

[44]. Singh P, Kumar A, Rao A. Joint Resource Allocation In Edge

Computing For Mobile Networks[C]//2018 Ieee International

Conference On Cloud Networking. Piscataway: Ieee Press, 2018:

225-230.

[45]. Tan Y, Sun H, Zhang X. Resource Allocation Optimization In

Multi-Cell Mobile Edge Computing[J]. Ieee Transactions On

Signal And Information Processing Over Networks, 2019, 5(2):

95-106.

[46]. Yenugula, Mounica, et al. "Dynamic Data Breach Prevention in

Mobile Storage Media Using DQN-Enhanced Context-Aware

Access Control and Lattice Structures." (2022): 127-136.

