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This chapter presents a concise operating manual for DEEP 2.0.  The first

section lists every menu option along with a short description of its

purpose and the page number on which more details can be found if the

short description is not sufficient.

Menu Options

File Menu Options

Read a database - Page 177

A text file in standard database format (such as Excel™ CSV) is

read.  The first line names the variables, and subsequent lines are

the data, one case per line.  Space, tab, and comma may be used as

delimiters.  Subsequent training will produce a predictive model by

default, not a classifier.

Read a series (Simple) - Page 178

A univariate time series is read and a set of predictor and target

variables are computed based on the values of the series, optionally

differenced and/or log transformed.  Predictive and classification

targets are generated.

Read a series (Path) - Page 182

A univariate time series is read and a set of predictor and target

variables are computed based on the path through time of short-

term linear trends.  Predictive and classification targets are

generated.

Read a series (Fourier) - Page 187

A univariate time series is read and a set of predictor and target

variables are computed based on the Fourier coefficients of data in

a moving window.  Predictive and classification targets are

generated.
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Read a series (Morlet) - Page 191

A univariate time series is read and a set of predictor and target

variables are computed based on Morlet wavelets in a moving

window.  Predictive and classification targets are generated.

Read MNIST image - Page 196

A standard MNIST-format image file is read.  The corresponding

MNIST label file must be read after the image file is read. 

Subsequent training will produce a model that is a classifier by

default, not a predictive model.

Read MNIST image (Fourier) - Page 196

A standard MNIST-format image file is read and its two-

dimensional Fourier transform is computed to generate predictor

variables.  The corresponding MNIST label file must be read after

the image file is read.  Subsequent training will produce a model

that is a classifier by default, not a predictive model.

Read MNIST labels - Page 197

A standard MNIST-format label file is read.  The corresponding

MNIST image file must be read before the label file is read.

Write activation file - Page 198

A text file containing the activation of a specified neuron for all

training set cases is written.

Clear all data - Page 198

All training data is erased, but a trained model (if it exists) is

retained.  The purpose of this command is to allow reading a test

dataset and evaluating the performance of a trained model on this

new dataset.

Print

The currently selected display window (created under the Display

menu) is printed.  If no window is selected, Print is disabled.

Exit

The program is terminated.
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Test Menu Options

Use CUDA (Toggle Yes/No)

This option is enabled only if a CUDA-capable device is present on

the computer.  If a check mark appears next to this option, the

CUDA device will be used for compute-intensive operations.  Click

this option to toggle the check mark on and off.

Model Architecture - Page 199

The number of unsupervised and supervised layers is specified, as

well as the number of neurons in each layer.  If the data was read

with the Read a database command or any of the Series commands,

the model will be predictive by default, predicting numeric values

of the target variable(s).  If MNIST data was read, the model will be

a classifier by default, employing a SoftMax output layer to classify

according to the labels in the label file.

Database inputs and targets - Page 201

The user specifies one or more predictor variables and one or more

target variables.  If anything other than a database was read, the

predictors and targets are predefined and need not be specified by

the user.  However, the user can still change them through this

menu command if desired.  During model training, predictors

which are constant for all training cases are omitted from the

model.

Advanced options

Options of an advanced nature and which would not normally be

changed by the user can be set here.  In DEEP 2.0 the only such

option is the maximum number of threads allowed for non-CUDA

threaded computation.  The default should be excellent in all

practical applications.  It cannot be set to more than 64 due to

limitations imposed by the Windows operating system.

RBM training params - Page 202

Parameters relevant to unsupervised RBM training can be set.
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Supervised training params - Page 206

Parameters relevant to training the supervised layers can be set.

Autoencoding training params - Page 209

Parameters relevant to autoencoding training can be set.

Train - Page 211

The model is trained using the data currently present.

Test - Page 214

The trained model is tested with the data currently present.

Cross validate - Page 215

The model is evaluated by means of cross validation.

Analyze - Page 218

Two basic analyses of the trained model are performed.  These are

a comparison of the mean activation of inputs compared to those

for the reconstructed data, and the mean activation of the final

unsupervised layer.  This is valid only if an RBM layer is present.
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Display Menu Options

Receptive field - Page 219

A plot of the receptive fields (weights of the first/bottom layer) for

one or more hidden neurons is displayed.  This display may be

printed with the File / Print command.

Generative sample - Page 220

A plot of one or more generative samples is displayed.  This

display may be printed with the File / Print command.
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Read a Database

A text file in standard database format is read.  In particular, standard-

format Excel™ CSV files may be read, as well as databases produced by

many common statistical and data analysis programs.  The first line must

specify the names of the variables in the database.  The maximum length

of each variable name is 15 characters.  The name must start with a letter

and may contain only letters, numbers, and the underscore (_) character.

Subsequent lines contain the data, one case per line.  Missing data is not

allowed.

Spaces, tabs, and commas may be used as delimiters for the first (variable

name) and subsequent lines.

Here are the first few lines from a typical data file.  Six variables are

present, and three cases are shown.

RAND0 RAND1 RAND2 RAND3 RAND4 RAND5
-0.82449359    0.25341070    0.30325535   -0.40908301   -0.10667177    0.73517430
-0.47731471   -0.13823473   -0.03947150    0.34984449    0.31303233    0.66533709
 0.12963752   -0.42903802    0.71724504    0.97796118   -0.23133837    0.81885117
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Read a Series (Simple)

This is the most basic option for reading a time series and automatically

generating predictor and target variables.  The user specifies a window

size, and this window is marched across the time extent of the series.  With

each placement, as many predictor variables as the window size are

generated.  Exactly three target variables are generated.  The first (used for

predictive models) is simply the next value of the predictors, the value one

sample past the end of the window.  The other two are binary class

variables which reflect whether the first target is relatively large or small. 

The following parameters are specified by the user:

Window - The size of the window placed on the data series.  This many

predictor variables are generated.

Shift - The number of samples to move the window to generate each case. 

The default value of one maximizes the number of cases generated.  If the

value is two, the window will be shifted by two sample points for each

placement, thus cutting the number of cases generated roughly in half, et

cetera.

Nature of variables - raw data - No transformation of any sort is applied

to the time series.  The predictors and the predicted target are just the

values of the time series.  This is appropriate when the values of the series

itself are predictive and to be predicted, and the standard deviation of the

series is at least approximately constant.

Nature of variables - log of raw data - The natural logarithm of each point

in  the time series is taken.  The predictors and the predicted target are

these log values.  This is appropriate when the values of the series itself are

predictive and to be predicted, but the data is multiplicative (the average

standard deviation during a period in time is proportional to the average

value of the series in that period of time).  In this situation, taking logs

stabilizes the variation across time.
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Nature of variables - Difference - Each predictor and the predictive target

is computed by taking the difference between adjacent values of the time

series.  This is appropriate when the changes in the series are predictive

and to be predicted, and the variation of these differences is at least

roughly constant.

Nature of variables - Difference of log - Each predictor and the predictive

target is computed by taking the difference between adjacent values of the

natural logarithm of the time series.  This is appropriate when the changes

in the series are predictive and to be predicted, but the values are

multiplicative (the average standard deviation of the series during a period

in time is proportional to the average value of the series in that period of

time).  In this situation, taking logs stabilizes the variation across time.  The

classic use of this variable is for equity prices: the actual price of an equity

has no predictive power; rather, it is the changes that are predictive. 

Moreover, high-priced equities tend to have larger absolute variation than

low-priced equities.

Trim tails - Many series have heavy tails; their values are occasionally far

from their central tendency.  Outliers, whether in predictors or targets, will

usually cause severe problems in the training of models when the training

algorithm attempts to accommodate the outliers to the detriment of the

masses of central values.  Setting this to a value greater than zero will

cause the specified percent of the largest and the same percent of smallest

values to be removed from the database.  The input series itself is not

affected; trimming applies only to the generated predictors and the

predicted target.

Skip header record - If this box is checked, the first record in the series file

being read is skipped.

Nature of model - Predict - The model type is set to predictive (although this

can be overridden by the user in the Supervised training params menu).  The

target variable is set to the predictive target, which is just the next

‘predictor’ past the end of the window.  The two class variables are defined

by the sign of the predictive target, with Lead_Pos being the class if the

predictive target is positive, and Lead_Neg being the class if the predictive

target is zero or negative.
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Nature of model - Classify per sign - The model type is set to classifier

(although this can be overridden by the user in the Supervised training

params menu).  The target variables are set to Lead_Pos and Lead_Neg. 

These two class variables are defined by the sign of the predictive target,

with Lead_Pos being the class if the predictive target is positive, and

Lead_Neg being the class if the predictive target is zero or negative.

Nature of model - Classify per median - The model type is set to classifier

(although this can be overridden by the user in the Supervised training

params menu).  The target variables are set to Lead_Pos and Lead_Neg. 

These two class variables are defined by the predictive target relative to its

median, with Lead_Pos being the class if the predictive target exceeeds its

median, and Lead_Neg being the class if the predictive target is less than or

equal to its median.  If no trained model exists at the time the series is read,

this dataset will be used for training and hence the median of the

predictive target will be computed.  If a trained model exists at the time the

series is read, this new dataset will (presumably) be used for testing, and

the median already computed for the presumed training data will be used

for defining class membership.

Target multiplier - The target variable is multiplied by this quantity.

As noted, the model type (predictive or classifier) is set according to the

user-specified model type, although it can be reset using the Supervised

training params menu.  Similarly, the target variable is set to the predictive

value or the two class variables according to the user-specified model type. 

These, too, can be changed with the Database inputs and targets menu. 

However, it is strongly recommended that the user not tamper with either

of these settings.  There is rarely any good reason for doing so, and other

related default behaviors of the program may be impacted in ways that

produce confusing results.

Note that if the model is a classifier and the predictors have almost no

predictive power, the trained model will have a strong bias toward

classifying cases into whichever class is more prevalent in the training set.
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Also note that if the Nature of model - Classify per median option is

chosen, the median of the generated target variable will be computed for

defining the class membership of each case if and only if no trained model

currently exists.  If a trained model already exists, the median will not be

recomputed, as the assumption is that the new dataset will serve as an

independent test set.  In particular, bear in mind that even if a new model

is trained with newly read data, the median will not be recomputed,

because at the time the series was read the program would have been

unable to read your mind and know in advance that you will be using the

new data to train a new model!
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Read a Series (Path)

This is a more advanced option for reading a time series and automatically

generating predictor and target variables.  The philosophy is described on

Page 36.  The user specifies a window size, and this window is marched

across the time extent of the series.  With each placement, the linear trend

with a fixed lookback is computed for each observation in the window. 

Each of these generates a predictor variable.  Optionally, the difference

between these trend values is also computed to create predictor variables.

To be clear, suppose we specify a window size of 5 and a lookback of 20. 

Suppose we are at time 0.  At a minimum, five predictors will be

generated.  These are the linear trend over the 20-observation time span

ending at time 0, that ending at time -1, and those ending at times -2, -3,

and -4.  Optionally, five more predictors can be generated.  The first would

be the linear trend ending at time 0 minus that ending at time -1.  The

second would be that ending at time -1 minus that ending at -2, and so

forth.  One could consider these changes to be the instantaneous velocity of

trend change as time passes.

Exactly three target variables are generated.  The first (used for predictive

models) is based on the observation (the raw input series) one sample past

the end of the window.  It can be the actual value, or the log of the value,

or the change from the last observation in the window to the next

observation after, or the difference of the logs of these quantities.  The

other two targets are binary class variables which reflect whether the first

target is relatively large or small.  In other words, these targets are exactly

the same as the targets in the Simple Series described in the prior section.

The following parameters are specified by the user:

Window - The size of the window placed on the data series.  This many

predictor variables are generated if the user chooses to compute values

only.  Twice this many predictors are generated if the user optionally

chooses to include velocity as well.
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Shift - The number of samples to move the window to generate each case. 

The default value of one maximizes the number of cases generated.  If the

value is two, the window will be shifted by two sample points for each

placement, thus cutting the number of cases generated roughly in half, et

cetera.

Nature of target - raw data - The predicted target is just the next value of

the time series.  This is appropriate when the values of the series itself are

to be predicted, and the standard deviation of the series is at least

approximately constant.  The trends for predictors are based on the raw

input series.

Nature of target - log of raw data - The predicted target is the log of the

next value of the series.  This is appropriate when the values of the series

itself are to be predicted, but the data is multiplicative (the average

standard deviation during a period in time is proportional to the average

value of the series in that period of time).  In this situation, taking logs

stabilizes the variation across time.  The trends for predictors are based on

the log of the raw input series.

Nature of target - Difference - Each predictive target is computed by taking

the difference between the next value of the time series just past the

window, and the last value in the window.  This is appropriate when the

changes in the series are to be predicted, and the variation of these

differences is at least roughly constant.  The trends for predictors are based

on the raw input series.
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Nature of variables - Difference of log - Each predictive target is computed

by taking the difference between the log of the next value of the time series

just past the window, and the log of the last value in the window.  This is

appropriate when the changes in the series are to be predicted, but the

values are multiplicative (the average standard deviation of the series

during a period in time is proportional to the average value of the series in

that period of time).  In this situation, taking logs stabilizes the variation

across time.  The classic use of this variable is for equity prices: what we

really want to predict is the change in price from today to tomorrow. 

Moreover, high-priced equities tend to have larger variation than low-

priced equities.  The trends for predictors are based on the log of the raw

input series.

Trim tails - Many series have heavy tails; their values are occasionally far

from their central tendency.  Outliers, whether in predictors or targets, will

usually cause severe problems in the training of models when the training

algorithm attempts to accommodate the outliers to the detriment of the

masses of central values.  Setting this to a value greater than zero will

cause the specified percent of the largest and the same percent of smallest

values of the target only to be removed from the database.  The input series

itself is not affected, nor are the predictors; trimming applies only to the

target.

Skip header record - If this box is checked, the first record in the series file

being read is skipped.

Nature of model - Predict - The model type is set to predictive (although this

can be overridden by the user in the Supervised training params menu).  The

target variable is set to the predictive target.  The two class variables are

defined by the sign of the predictive target, with Lead_Pos being the class

if the predictive target is positive, and Lead_Neg being the class if the

predictive target is zero or negative.
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Nature of model - Classify per sign - The model type is set to classifier

(although this can be overridden by the user in the Supervised training

params menu).  The target variables are set to Lead_Pos and Lead_Neg. 

These two class variables are defined by the sign of the predictive target,

with Lead_Pos being the class if the predictive target is positive, and

Lead_Neg being the class if the predictive target is zero or negative.

Nature of model - Classify per median - The model type is set to classifier

(although this can be overridden by the user in the Supervised training

params menu).  The target variables are set to Lead_Pos and Lead_Neg. 

These two class variables are defined by the predictive target relative to its

median, with Lead_Pos being the class if the predictive target exceeeds its

median, and Lead_Neg being the class if the predictive target is less than or

equal to its median.  If no trained model exists at the time the series is read,

this dataset will be used for training and hence the median of the

predictive target will be computed.  If a trained model exists at the time the

series is read, this new dataset will (presumably) be used for testing, and

the median already computed for the presumed training data will be used

for defining class membership.

Lookback - The is the number of observations in the source series that will

be used for computing linear trend.

Velocity - If this box is checked, then in addition to the Window predictors

defined as the linear trends, the changes in the trends (the instantaneous

velocity) will also be computed as predictors.  Thus, there will be twice as

many predictors as the window size.  It is usually legitimate to treat

trend/velocity pairs as real/imaginary pairs as inputs to a complex-domain

model.  Think of a sine wave and its derivative.

Target multiplier - The target variable is multiplied by this quantity.
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As noted, the model type (predictive or classifier) is set according to the

user-specified model type, although it can be reset using the Supervised

training params menu.  Similarly, the target variable is set to the predictive

value or the two class variables according to the user-specified model type. 

These, too, can be changed with the Database inputs and targets menu. 

However, it is strongly recommended that the user not tamper with either

of these settings.  There is rarely any good reason for doing so, and other

related default behaviors of the program may be impacted in ways that

produce confusing results.

Note that if the model is a classifier and the predictors have almost no

predictive power, the trained model will have a strong bias toward

classifying cases into whichever class is more prevalent in the training set.

Also note that if the Nature of model - Classify per median option is

chosen, the median of the generated target variable will be computed for

defining the class membership of each case if and only if no trained model

currently exists.  If a trained model already exists, the median will not be

recomputed, as the assumption is that the new dataset will serve as an

independent test set.  In particular, bear in mind that even if a new model

is trained will newly read data, the median will not be recomputed,

because at the time the series was read the program would have been

unable to read your mind and know in advance that you will be using the

new data to train a new model!
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Read a Series (Fourier)

This is a very advanced option for reading a time series and automatically

generating predictor and target variables.  The philosophy is described on

Page 37.  The user specifies a window size, and this window is marched

across the time extent of the series.  With each placement, the Fourier

coefficients are computed for the data that is in the window.  These define

a set of predictor variables.

Exactly three target variables are generated.  The first (used for predictive

models) is based on the observation (the raw input series) one sample past

the end of the window.  It can be the actual value, or the log of the value,

or the change from the last observation in the window to the next

observation after, or the difference of the logs of these quantities.  The

other two targets are binary class variables which reflect whether the first

target is relatively large or small.  In other words, these targets are exactly

the same as the targets in the Simple Series described in an earlier section.

The following parameters are specified by the user:

Window - The size of the window placed on the data series. 

Approximately this many predictor variables are generated.

Shift - The number of samples to move the window to generate each case. 

The default value of one maximizes the number of cases generated.  If the

value is two, the window will be shifted by two sample points for each

placement, thus cutting the number of cases generated roughly in half, et

cetera.

Nature of target - raw data - The predicted target is just the next value of

the time series.  This is appropriate when the values of the series itself are

to be predicted, and the standard deviation of the series is at least

approximately constant.  The predictors are based on the raw input series.
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Nature of target - log of raw data - The predicted target is the log of the

next value of the series.  This is appropriate when the values of the series

itself are to be predicted, but the data is multiplicative (the average

standard deviation during a period in time is proportional to the average

value of the series in that period of time).  In this situation, taking logs

stabilizes the variation across time.  The predictors are based on the log of

the raw input series.

Nature of target - Difference - Each predictive target is computed by taking

the difference between the next value of the time series just past the

window, and the last value in the window.  This is appropriate when the

changes in the series are to be predicted, and the variation of these

differences is at least roughly constant.  The predictors are based on the

raw input series.

Nature of target - Difference of log - Each predictive target is computed by

taking the difference between the log of the next value of the time series

just past the window, and the log of the last value in the window.  This is

appropriate when the changes in the series are to be predicted, but the

values are multiplicative (the average standard deviation of the series

during a period in time is proportional to the average value of the series in

that period of time).  In this situation, taking logs stabilizes the variation

across time.  The classic use of this variable is for equity prices: what we

really want to predict is the change in price from today to tomorrow. 

Moreover, high-priced equities tend to have larger variation than low-

priced equities.  The predictors are based on the log of the raw input series.

Trim tails - Many series have heavy tails; their values are occasionally far

from their central tendency.  Outliers, whether in predictors or targets, will

usually cause severe problems in the training of models when the training

algorithm attempts to accommodate the outliers to the detriment of the

masses of central values.  Setting this to a value greater than zero will

cause the specified percent of the largest and the same percent of smallest

values of the target only to be removed from the database.  The input series

itself is not affected, nor are the predictors; trimming applies only to the

target.
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Skip header record - If this box is checked, the first record in the series file

being read is skipped.

Nature of model - Predict - The model type is set to predictive (although this

can be overridden by the user in the Supervised training params menu).  The

target variable is set to the predictive target.  The two class variables are

defined by the sign of the predictive target, with Lead_Pos being the class

if the predictive target is positive, and Lead_Neg being the class if the

predictive target is zero or negative.

Nature of model - Classify per sign - The model type is set to classifier

(although this can be overridden by the user in the Supervised training

params menu).  The target variables are set to Lead_Pos and Lead_Neg. 

These two class variables are defined by the sign of the predictive target,

with Lead_Pos being the class if the predictive target is positive, and

Lead_Neg being the class if the predictive target is zero or negative.

Nature of model - Classify per median - The model type is set to classifier

(although this can be overridden by the user in the Supervised training

params menu).  The target variables are set to Lead_Pos and Lead_Neg. 

These two class variables are defined by the predictive target relative to its

median, with Lead_Pos being the class if the predictive target exceeeds its

median, and Lead_Neg being the class if the predictive target is less than or

equal to its median.  If no trained model exists at the time the series is read,

this dataset will be used for training and hence the median of the

predictive target will be computed.  If a trained model exists at the time the

series is read, this new dataset will (presumably) be used for testing, and

the median already computed for the presumed training data will be used

for defining class membership.

Center - If this box is checked, the data will be centered to have zero mean. 

This is almost always the best choice.  If this is not checked and the data in

a window happens to be significantly offset from zero, application of the

mandatory Welch data window will introduce spurious low-frequency

components.  This is discussed in more detail on Page 37 and the following

pages.

Target multiplier - The target variable is multiplied by this quantity.
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As noted, the model type (predictive or classifier) is set according to the

user-specified model type, although it can be reset using the Supervised

training params menu.  Similarly, the target variable is set to the predictive

value or the two class variables according to the user-specified model type. 

These, too, can be changed with the Database inputs and targets menu. 

However, it is strongly recommended that the user not tamper with either

of these settings.  There is rarely any good reason for doing so, and other

related default behaviors of the program may be impacted in ways that

produce confusing results.

Note that if the model is a classifier and the predictors have almost no

predictive power, the trained model will have a strong bias toward

classifying cases into whichever class is more prevalent in the training set.

Also note that if the Nature of model - Classify per median option is

chosen, the median of the generated target variable will be computed for

defining the class membership of each case if and only if no trained model

currently exists.  If a trained model already exists, the median will not be

recomputed, as the assumption is that the new dataset will serve as an

independent test set.  In particular, bear in mind that even if a new model

is trained will newly read data, the median will not be recomputed,

because at the time the series was read the program would have been

unable to read your mind and know in advance that you will be using the

new data to train a new model!

The generated predictors will have names of the form Real_k and Imag_k,

where k is the index of the Fourier coefficient and k ranges from 1 through

n/2.  (If n is odd, n/2 means half of n, with the fraction discarded.  So, for

example, 15/2=7 in this context.)  If the data is not centered, one more

predictor called Offset will be generated.  This is Re(0), the post-windowing

data mean.  Note that Im(0) is always zero and so no predictor of this name

will be generated.  Also note that if n is even, Im(n/2) is always zero, so no

imaginary predictor will be generated for this quantity.

The model inputs are preset so that they occur in real/imaginary pairs. 

Thus, Offset will not be a preset indicator.  Also, the Nyquist pair will be

preset only if the window is an odd length.  Naturally, the user can

manually change these presets if desired.
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Read a Series (Morlet)

This is a very advanced option for reading a time series and automatically

generating predictor and target variables.  The philosophy is described on

Page 41.  The user specifies a window size, and this window is marched

across the time extent of the series.  With each placement, the real and

imaginary Morlet wavelet coefficients are computed for the data that is in

the window.  These define a set of predictor variables.

Exactly three target variables are generated.  The first (used for predictive

models) is based on the observation (the input series) one sample past the

end of the window.  It can be the actual value, or the log of the value, or

the change from the last observation in the window to the next observation

after, or the difference of the logs of these quantities.  The other two targets

are binary class variables which reflect whether the first target is relatively

large or small.  In other words, these targets are exactly the same as the

targets in the Simple Series described in an earlier section.

The following parameters are specified by the user:

Window - The size of the window placed on the data series.  Twice this

many predictor variables are generated (real and imaginary for each

position in the window).

Shift - The number of samples to move the window to generate each case. 

The default value of one maximizes the number of cases generated.  If the

value is two, the window will be shifted by two sample points for each

placement, thus cutting the number of cases roughly in half, et cetera.

Period - This is the period over which the wave phenomenon repeats.  It

must be at least two.
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Width - This is the time-domain width of the filter, the number of points

on each side of the center point.  In some contexts, this quantity is called the

half-width.  The total number of points examined to compute a single

Morlet wavelet transform value is 2 * width + 1.  Larger values create a

more frequency-selective filter.  For the user’s protection,  DEEP imposes

the (not theoretically required) limit that the width must be at least the

period.  Setting it to twice the period is a good starting point for

experimentation.

Lag - This is the number of samples prior to the current sample at which

the filter is centered.  This ideally equals the width and it must not exceed

the width.  If you are willing to live dangerously, it can be as small as half

of the width.  Smaller values, even down to zero, are legal but strongly

discouraged due to the huge distortion to the filter’s frequency response.

Nature of target - raw data - The predicted target is just the next value of

the time series.  This is appropriate when the values of the series itself are

to be predicted, and the standard deviation of the series is at least

approximately constant.  The predictors are based on the raw input series.

Nature of target - log of raw data - The predicted target is the log of the

next value of the series.  This is appropriate when the values of the series

itself are to be predicted, but the data is multiplicative (the average

standard deviation during a period in time is proportional to the average

value of the series in that period of time).  In this situation, taking logs

stabilizes the variation across time.  The predictors are based on the log of

the raw input series.

Nature of target - Difference - Each predictive target is computed by taking

the difference between the next value of the time series just past the

window, and the last value in the window.  This is appropriate when the

changes in the series are to be predicted, and the variation of these

differences is at least roughly constant.  The predictors are based on the

raw input series.
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Nature of target - Difference of log - Each predictive target is computed by

taking the difference between the log of the next value of the time series

just past the window, and the log of the last value in the window.  This is

appropriate when the changes in the series are to be predicted, but the

values are multiplicative (the average standard deviation of the series

during a period in time is proportional to the average value of the series in

that period of time).  In this situation, taking logs stabilizes the variation

across time.  The classic use of this variable is for equity prices: what we

really want to predict is the change in price from today to tomorrow. 

Moreover, high-priced equities tend to have larger variation than low-

priced equities.  The predictors are based on the log of the raw input series.

Trim tails - Many series have heavy tails; their values are occasionally far

from their central tendency.  Outliers, whether in predictors or targets, will

usually cause severe problems in the training of models when the training

algorithm attempts to accommodate the outliers to the detriment of the

masses of central values.  Setting this to a value greater than zero will

cause the specified percent of the largest and the same percent of smallest

values of the target only to be removed from the database.  The input series

itself is not affected, nor are the predictors; trimming applies only to the

target.

Skip header record - If this box is checked, the first record in the series file

being read is skipped.

Nature of model - Predict - The model type is set to predictive (although this

can be overridden by the user in the Supervised training params menu).  The

target variable is set to the predictive target.  The two class variables are

defined by the sign of the predictive target, with Lead_Pos being the class

if the predictive target is positive, and Lead_Neg being the class if the

predictive target is zero or negative.

Nature of model - Classify per sign - The model type is set to classifier

(although this can be overridden by the user in the Supervised training

params menu).  The target variables are set to Lead_Pos and Lead_Neg. 

These two class variables are defined by the sign of the predictive target,

with Lead_Pos being the class if the predictive target is positive, and

Lead_Neg being the class if the predictive target is zero or negative.
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Nature of model - Classify per median - The model type is set to classifier

(although this can be overridden by the user in the Supervised training

params menu).  The target variables are set to Lead_Pos and Lead_Neg. 

These two class variables are defined by the predictive target relative to its

median, with Lead_Pos being the class if the predictive target exceeeds its

median, and Lead_Neg being the class if the predictive target is less than or

equal to its median.  If no trained model exists at the time the series is read,

this dataset will be used for training and hence the median of the

predictive target will be computed.  If a trained model exists at the time the

series is read, this new dataset will (presumably) be used for testing, and

the median already computed for the presumed training data will be used

for defining class membership.

Target multiplier - The target variable is multiplied by this quantity

As noted, the model type (predictive or classifier) is set according to the

user-specified model type, although it can be reset using the Supervised

training params menu.  Similarly, the target variable is set to the predictive

value or the two class variables according to the user-specified model type. 

These, too, can be changed with the Database inputs and targets menu. 

However, it is strongly recommended that the user not tamper with either

of these settings.  There is rarely any good reason for doing so, and other

related default behaviors of the program may be impacted in ways that

produce confusing results.

Note that if the model is a classifier and the predictors have almost no

predictive power, the trained model will have a strong bias toward

classifying cases into whichever class is more prevalent in the training set.
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Also note that if the Nature of model - Classify per median option is

chosen, the median of the generated target variable will be computed for

defining the class membership of each case if and only if no trained model

currently exists.  If a trained model already exists, the median will not be

recomputed, as the assumption is that the new dataset will serve as an

independent test set.  In particular, bear in mind that even if a new model

is trained will newly read data, the median will not be recomputed,

because at the time the series was read the program would have been

unable to read your mind and know in advance that you will be using the

new data to train a new model!

The generated predictors will have names of the form Real_k and Imag_k,

where k is the lag within the window and k ranges from 0 (the current

point) through one less than the window length.
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Read MNIST Image

A standard MNIST image file is read.  It is assumed that there will be ten

labels.  The number of rows and columns is read from the file and not

assumed by DEEP, although the common file is 28 rows and columns.  In

DEEP 1.0 the product of the number of rows and columns must not exceed

4096-10=4086.  There is no hard-coded limit on the number of images; it is

limited only by available memory.

Models in DEEP 2.0 can be either classifiers, in which case the output layer

is SoftMax, or predictive, in which case the output layer is linear with no

range limiting, and it makes numeric predictions.  When MNIST data is

read, the classifier form of model is used by default.  For all other data, the

default is numeric prediction.  In both cases, the user can override the

default and force the model to be a classifier or predictive.

The MNIST image file must be read before a label file can be read.

Read MNIST Image (Fourier)

A standard MNIST image file is read and its two-dimensional Fourier

transform computed to generate predictor variables.  It is assumed that

there will be ten labels.  The number of rows and columns is read from the

file and not assumed by DEEP, although the common file is 28 rows and

columns.  In DEEP 2.0 the product of the number of rows and columns

must not exceed 4096-10=4086.  Also in DEEP 2.0 the number of rows and

columns must be even. There is no hard-coded limit on the number of

images; it is limited only by available memory.

Models in DEEP 2.0 can be either classifiers, in which case the output layer

is SoftMax, or predictive, in which case the output layer is linear with no

range limiting, and it makes numeric predictions.  When MNIST data is

read, the classifier form of model is used by default.  For all other data, the

default is numeric prediction.  In both cases, the user can override the

default and force the model to be a classifier or predictive.

The MNIST image file must be read before a label file can be read.
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The names of the transform variables begin with either the letter R for a

real part or I for an imaginary part, followed by the horizontal frequency

(never negative) and finally followed by the vertical frequency (also never

negative).  For example, the variable R_3_7 is the real part of the coefficient 

for a horizontal frequency of 3 and a vertical frequency of 7.  Note the

following properties, which are discussed in more detail on Page 54:

! The horizontal frequency ranges from zero through the number of

columns minus one.

! The vertical frequency ranges from zero through half of the

number of rows (the Nyquist frequency).  This is in deference to

the symmetry depicted in Figure 4.1 on Page 59.

! At a vertical frequency of zero, as well as at the vertical Nyquist

frequency, the coefficients at a horizontal frequency of zero and at

the horizontal Nyquist frequency are strictly real.  Therefore, no

actual imaginary parts will be produced as variables for these four

coefficients.  However, so that ‘complex’ pairs are produced to

facilitate complex-domain processing, for these four variables

DEEP will generate names starting with Z and whose values

duplicate the real parts of these four numbers.

! At a vertical frequency of zero, as well as at the vertical Nyquist

frequency, the coefficients in the horizontal direction are symmetric

(complex conjugates) around the horizontal Nyquist frequency. 

Therefore, for these two rows, only coefficients through half of the

number of columns are generated.

Read MNIST Labels

A standard MNIST label file is read.  It is assumed that there are ten

possible labels.  The label file cannot be read until the image file has been

read.
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Write Activation File

This option writes a text file containing the activation of a single neuron for

all cases, one line per case.  The user specifies whether the neuron to be

written is in the unsupervised or supervised section, which layer within

that section it is in (with 1 being the first layer), and the neuron number

within that layer (also with 1 being the first neuron).

An activation file is mainly for diagnostic use, although some users may

find it convenient to pass an activation file to other programs.

Clear All Data

Sometimes the user will want to test a trained model on data that the

model has not yet seen, often called a test set or out-of-sample (OOS) data. 

This can be done by reading the training data, training the model, clicking

Clear all data, reading the test set, and clicking Test.

When a trained model exists and data is cleared, subsequently read data

must have the same variables in the same order as the data that was used

to train the model.
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Model Architecture

Several model architectures are available in DEEP 2.0:

! An RBM / Supervised model  consists of zero or more unsupervised

layers created by greedy RBM training, followed by one or more

supervised layers trained by using the outputs of the final

unsupervised layer (or the raw data if there are no unsupervised

layers) as inputs and targets as outputs.

! An Embedded model consists of a stack of one or more layers (not

counting the input or visible layer).  These are greedily trained, as

usual for RBMs.  The layer just prior to the final (top) layer has

class identifier neurons appended, as discussed in Chapter 2.

! An Autoencoder - Real model  consists of zero or more unsupervised

layers created by greedy autoencoder training, followed by one or

more supervised layers trained by using the outputs of the final

unsupervised layer (or the raw data if there are no unsupervised

layers) as inputs and targets as outputs.  The entire model operates

in the real domain.  This family is discussed in depth starting on

Page 74.

! An Autoencoder - Complex model is identical to the above except that

the entire model operates in the complex domain.  For the final

layer outputs, the imaginary part is ignored; only the real part is

used for prediction and classification.

The user defines the architecture by specifying the following quantities:

Number of unsupervised layers - For Unsupervised / Supervised  and

Autoencoder architectures, this may be zero to create a model that is entirely

supervised.  For Embedded architecture this must be at least one.

Hidden neurons in first unsupervised layer - This refers to the bottom layer,

the one closest to the input data.
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Hidden neurons in last unsupervised layer - This refers to the topmost

unsupervised layer, the one that feeds the supervised section.  If there is

only one unsupervised layer, this must equal Hidden neurons in first

unsupervised layer.  If there are multiple layers, interior sizes are linearly

interpolated.

Number of supervised layers - This is valid only for Unsupervised /

Supervised and Autoencoding architectures.  It must be at least one (the

output layer), which is the usual case when there are one or more

unsupervised layers.  But it is legal for an unsupervised section to feed a

‘traditional’ supervised model, one having one or more hidden layers prior

to the output layer.  It is also possible to use DEEP 2.0 for strictly

supervised models.

Hidden neurons in first supervised layer - This is valid only for

Unsupervised / Supervised and Autoencoding architectures.  It is relevant only

if Number of supervised layers is greater than one, in which case it is the

number of hidden neurons in the first layer encountered by the

unsupervised layer outputs or the raw data if there are no unsupervised

layers.

Hidden neurons in last supervised layer - This is valid only for

Unsupervised / Supervised and Autoencoding architectures.  It refers to the

last hidden layer before the output layer.  If Number of supervised layers is

two (one hidden, plus output), this must equal Hidden neurons in first

supervised layer.  If there are multiple hidden layers (Number of supervised

layers exceeds two), interior sizes are linearly interpolated.
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Database Inputs and Targets

This option is used to specify the variable(s) that will be used as inputs to

the model (the predictors) and the variable(s) that will be predicted (the

targets).  One or more of each can be selected using standard Windows

methods: dragging across a range, holding down Shift while clicking the

first and last in a range, or holding down Control to select individual

variables.

If Read a database was used to read the training data, then the user must

specify the input(s) and target(s).  But if the data is anything else then the

inputs and targets are automatically preset.  Nonetheless, the user is free

to use this menu option to change the preset selection.

All MNIST input variables will follow the naming convention of

P_row_column to identify the location of each pixel in the input grid, with

the naming origin (first row/column) being zero.  Thus, the upper-left pixel

will be P_0_0.

The MNIST target variables will be named Label_digit to identify the digit

with which each class is associated.  Thus, the targets will be named

Label_0 through Label_9.

For MNIST data, the model will be a classifier with SoftMax outputs by

default.  For training data read any other ways, the model will by default

be predictive, attempting to predict numeric values for each target.  But a

supervised training option (described later)  allows the user to force the

model to be a classifier or predictor.  For a forced classifier, the user must

specify at least two targets using the Data inputs and target menu option,

and for each case, the target having maximum value will be assumed to

identify the class of the case.

All input selections which compute Fourier transform variables or effective

real/imaginary pairs (such as series trend path which includes velocity)

will preselect inputs in such a way that complex-number pairing is

obtained.  This facilitates immediate use of complex-domain models. 

Naturally, the user can employ this option to change these presets if

desired.
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RBM Training Params

This menu option sets the parameters that are relevant to RBM training. 

All parameters are preset to defaults that should be reasonable for many

or most applications.  The following parameters may be set:

Random initialization iterations - The number of trial weight sets that are

tested to find a good starting point for stochastic gradient descent training. 

It is definitely worthwhile doing at least a few dozen trials so that

subsequent training begins with reconstruction error that is not

outrageous.  More than several hundred trials is probably overkill.

Number of batches - The training set is divided into this many batches

(though the exact number may be adjusted by the program when

necessary) for stochastic gradient descent.  Concepts vital to this choice are

discussed in Volume I.  Here are the basic principles:

! Recall from the cited discussion that the tradeoff between time-per-

batch and batches-for-convergence is unbalanced in the direction

of favoring many small batches.  But...

! Although Windows threads have fairly small overhead, the

overhead of launching a CUDA kernel can be considerable.  Thus,

one should be inclined to use fewer batches if using CUDA

processing.

! The automatic learning rate and momentum adjustment algorithms

described in Volume I perform best with relatively large batches. 

This inspires us to use few batches.

! This is the most important issue in practice.  Most Windows

installations impose an upper limit of two seconds for a CUDA

kernel, after which it is given the boot.  Kernel time is almost

linearly related to batch size, so if your screen blacks out and

recovers with a message that the driver was reset, increase the

number of batches.  CUDA.LOG lists kernel times and hence can

be used to see how close to criticality you are.
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Markov chain length (CD-k) start - When stochastic gradient descent

begins, this is the number of iterations taken by executing the Markov

chain in the contrastive divergence algorithm.  The gradient estimate’s

accuracy is improved by taking more iterations, with the result that

convergence requires fewer epochs.  But these samples are very expensive

to obtain.  Early in training we do not need accurate gradient estimates; a

rough approximation is sufficient.  This parameter should almost always

be left at its default value of one.

Markov chain length (CD-k) end - The number of iterations taken as

learning progresses.  As convergence nears, it is worthwhile expending

computation time to obtain more accurate gradient estimates.  The default

value of four is good in nearly all applications.  In case the user wants to

obtain true maximum likelihood parameter estimates (usually pointless in

practice), this parameter can be set to a very large value.

Markov chain length (CD-k) rate - The rate at which the chain length

increases from the starting value to the end value.  Standard exponential

smoothing is employed, with the ending chain length being the ‘new

value’ of the series.

Learning rate - The initial learning rate.  This should be small, probably

smaller than the value the user is accustomed to for other programs.  This

is because the automatic adjustment algorithm described in Volume I will

rapidly move it to an optimal value.

Momentum start - The initial momentum.  This should be small, probably

smaller than the value the user is accustomed to for other programs.  As

with the learning rate, the automatic adjustment algorithm described in

Volume I will rapidly move it to an optimal value.

Momentum end - As training progresses, the momentum will progress

toward this value unless the adjustment algorithm swats it down due to

instability in the gradient descent algorithm.  Values greater than the

default are dangerous, and even the default is pretty high.
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Weight penalty - The degree to which large weights are penalized.  This

must be small in order to allow weights to approach their optimal values. 

But it should not be zero.  If no weight penalty is applied, in unusual but

annoying pathological situations one or more weights can blow up to

enormous values.

Sparsity penalty - The degree to which hidden neuron activation rates are

encouraged to approach the sparsity target specified as the next parameter. 

This is not a critical parameter, and it can safely be set to zero if desired. 

However, in most cases it is good to gently nudge weights toward values

that result in smallish hidden neuron activation rates, such as 0.1 or so. 

Among other things, this makes the weights more interpretable, as one can

then study which patterns are associated with activation of certain hidden

neurons.  If all hidden neurons are activated about half the time, such

interpretation is more difficult than if activation is more rare.

Sparsity target - The value toward which hidden neuron activation rates

are nudged by the sparsity penalty.  This is typically around 0.1 or so.  This

parameter is ignored if the sparsity penalty is zero.

Increment convergence criterion - This is the secondary convergence

criterion, as described in Volume I.  If the ratio of the magnitude of the

largest weight adjustment in an epoch to the magnitude of the largest

weight drops below this threshold, convergence is decreed to be complete. 

This should be very small to avoid early exits from the training algorithm.

Max epochs with no improvement - This is the primary convergence

criterion.  The ratio of the magnitude of the largest weight adjustment in

an epoch to the magnitude of the largest weight is a good (though not

perfect) measure of how close we are to a local minimum of the negative

log likelihood criterion being minimized.  If the specified number of

epochs pass without this ratio beating its minimum so far, convergence is

said to have been achieved.
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Max epochs - This is a backstop, insurance against endless iteration.  It

should never be used as an actual convergence criterion, as it is a brute

force rule, with no intelligence about actual convergence.  Make it large,

and trust that except in very rare pathological situations, one of the main

convergence criteria will handle the situation well.

Visible mean field (vs stochastic) - If this box is checked, the reconstruction

of the visible layer will use the mean field approximation.  If not checked,

the reconstruction will sample.  It is likely that using the mean field

approximation is best, although this is not universally agreed upon.  In

practice, the difference seems slight.

Greedy mean field - If this box is checked, propagation of input data

through early layers for greedy training strictly uses mean field

approximations.  If not checked, sampling is done for the inputs to the

layer being trained (except the first layer, which is never sampled).  This

topic is discussed in detail in Volume I.

Binary splits - If this box is checked, the raw input data will be quantized

to strictly binary data by setting variables above their mean to one and

those equal or below the mean to zero.  If not checked, the raw input data

will be linearly scaled to a range of 0-1.

Fine tune complete model - If this box is checked, after the entire deep

belief net is constructed (all RBMs greedily trained, then all subsequent

layers trained with supervision), supervised training will be used to tweak

the entire model, including the RBM layers.  This will always improve in-

sample performance and often improve out-of-sample performance.  But

display of reconstruction samples becomes pointless garbage.
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Supervised Training Params

This menu option sets the parameters that are relevant to supervised

training of the layer(s) following the RBM layer(s), as well as the optional

fine tuning of the complete deep belief net.  All parameters are preset to

defaults that should be reasonable for many or most applications.  The

following parameters may be set:

Subsets to prevent CUDA timeout - This has no effect whatsoever on the

model produced.  It affects only the degree to which computations are split

up; the results of the computations remain the same.  This is different from

batches in RBM training.  RBM batch division does impact the model and

the nature of convergence because the weights are updated for each batch. 

In supervised training, all batches are pooled, with one weight update per

epoch (pass through the entire training set).  To reduce kernel-launch

overhead, the number of subsets should be set as low as possible.  But keep

an eye on the CUDA time summary in CUDA.LOG and be prepared to use

more subsets if any time-per-kernel approaches the two-second Windows

limit.

Annealing iterations for supervised - The number of simulated annealing

passes used to find a good weight set from which to begin training.  This

topic is discussed in detail in Volume I.  This is usually a fairly cheap

operation with good returns for the first few hundred passes.  More than

a few thousand iterations is probably overkill due to rapidly diminishing

returns.

Initial random range - The average range of weight perturbation for

simulated annealing.  The program will periodically raise and lower the

user-specified figure to make this parameter less critical.  For this reason,

the progress plot of error will have clearly visible periodic variation.  This

is normal operation.  The exact algorithms that govern simulated annealing

perturbation are shown in Volume I.
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Supervised max iterations - After RBM training is complete, the supervised

layer(s) following the RBM layer(s) are trained.  This parameter limits the

number of epochs in order to prevent wildly excessive run times.  It should

be set to a very large value and used as insurance only, not as the usual

convergence determiner.

Supervised convergence tolerance - This is the primary method for

determining convergence of training the supervised layer(s).  Training is

stopped when the relative change in the error from one epoch to the next

falls below this level.  Because the supervised training algorithm used in

DEEP is deterministic, this can safely be set to a very small value, although

doing so is usually without merit because most improvement happens

early in training.

Complete max iterations - This is identical to Supervised max iterations

except that it applies to the optional fine tuning of the complete

(unsupervised RBMs plus subsequent supervised layers) deep belief net.

Complete convergence tolerance - This is identical to Supervised convergence

tolerance except that it applies to the optional fine tuning of the complete

(unsupervised RBMs plus subsequent supervised layers) deep belief net.

Weight penalty - This penalty discourages large weights during supervised

training.  It should nearly always be set to a very small value, small enough

that it does not have an overly strong impact on learning ‘best’ weights, yet

large enough that it prevents the large weights that can happen in some

unusual pathological situations which are especially likely when the inputs

to the supervised section are strongly correlated.  This topic is discussed

in detail in Volume I.

Is model a classifier - By default, MNIST data produces a classifier model,

and all other data produces a predictive model.  This option allows the

user to override the default.  If database data is read and the user forces the

model to be a classifier, at least two targets must be selected, and for each

case the target having greatest value is assumed to be the correct case.
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Prohibit singular value decomposition - The section beginning on Page 87

discusses how the extremely efficient singular value decomposition (SVD)

algorithm can be used to explicitly compute optimal output weights for a

predictive model and discover excellent starting weights for iterative

training of classifiers.  But for gigantic problems, and in some very rare

pathological situations, SVD can fail, even (very rarely) producing not-a-

number results.  For this reason, SVD is disabled if there are more than 400

inputs to the output layer.  Moreover, the user may choose to disable SVD. 

Because SVD is such an enormous help in achieving rapid and high-quality

convergence, it should always be allowed if at all possible.
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Autoencoding Training Params

Continually fine tune - If this box is not checked, each unsupervised

autoencoding layer will be trained individually and independently.  If this

box is checked, after two layers are trained (each separately), these two

layers will be pooled and the two-layer network trained to autoencode the

inputs.  If a third layer is then added (by independent training), it will then

be added to the pool and this three-layer network trained as an input

autoencoder.  Et cetera.  This algorithm is described in detail on Page 79.

Fine tune complete model - If this box is checked, after the entire deep

belief net is constructed (all autoencoding layers greedily trained, then all

subsequent layers trained with supervision), supervised training will be

used to tweak the entire model, including the unsupervised layers.  This

will always improve in-sample performance and often improve out-of-

sample performance.

Annealing iterations - The number of simulated annealing passes used to

find a good weight set from which to begin greedy training of an

autoencoding layer.  This is usually a fairly cheap operation with good

returns for the first few hundred passes.  More than a few thousand

iterations is probably overkill due to rapidly diminishing returns.

Annealing range - The average range of weight perturbation for the

simulated annealing described in the prior option.  The program will

periodically raise and lower the user-specified figure to make this

parameter less critical.  For this reason, the progress plot of error will have

clearly visible periodic variation.  This is normal operation.  The exact

algorithms that govern simulated annealing perturbation are shown in

Volume I.

Gradient iterations - This parameter applies to gradient-descent

optimization of individual autoencoding layers as well as continuous fine

tuning of autoencoding layers.  It  limits the number of epochs in order to

prevent wildly excessive run times.  It should be set to a very large value

and used as insurance only, not as the usual convergence determiner.
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Gradient convergence - This parameter applies to gradient-descent

optimization of individual autoencoding layers as well as continuous fine

tuning of autoencoding layers.  This is the primary method for determining

convergence of training the autoencoding layer(s).  Training is stopped

when the relative change in the error from one epoch to the next falls

below this level.  Because the training algorithm used in DEEP is

deterministic, this can safely be set to a very small value, although doing

so is usually without merit because most improvement happens early in

training.
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Figure 6.1: Finding initial weights for RBM training

Train

The Train selection trains the entire deep belief net.  If this is an RBM /

Supervised model or an autoencoding model, then first, all RBM or

autoencoding layers are trained with unsupervised greedy training.  Then,

all subsequent layers (typically just one, the output) are trained using

supervision.  Finally and optionally, the entire deep belief net is fine tuned

with supervision.  The steps for complete training are shown at the left side

of the screen.  Those that will not be used in the current configuration are

grayed out.  A marker arrow identifies the step currently executing, and

particularly slow operations indicate the percent completion.

The first step in RBM training is finding initial weights by randomly

generating weight sets and finding the one with minimum reconstruction

error.  In Figure 6.1 below we see this operation in progress.  The top line

on the left side says that we are training RBM layer 1.  The initial weight

operation is 55 percent complete.  The graph is the RMS reconstruction

error, with the light blue line showing the individual tries, and the heavy

black line showing the best so far.
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Figure 6.2: RBM training

After initial weight selection is complete, the program trains the RBM

using stochastic gradient descent.  The screen will resemble Figure 6.2

below.

At the left side we see that we are in the Training operation and we are 1

percent done.  This percentage is relative to the Max epochs parameter

which, as stated earlier, should always be set overly large and used only

as a backstop.  Hence, this percentage will nearly always be very

pessimistic relative to actual training progress.

The largest window plots three values, whose current, minimum, and

maximum values are written in the top-center of the plot.  The

reconstruction error is in red and it typically drops off fast and then levels

out.  The increment ratio (maximum increment divided by maximum

weight) typically decreases fairly linearly before hitting a sharp knee and

flattening, with a few subsequent small bounces.  The RMS gradient often

displays peculiar behavior, with very gradual decrease punctuated by

sharp jumps up as blocks of weights suddenly go from near zero to larger,

more useful values.
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Be aware that these plots are the logs of the values, not the actual values. 

Also, each plot is scaled so that the entire historical range of the parameter

exactly covers the vertical extent of the plot.  The net effect is that as

training progresses and values become small, tiny changes in the actual

values are magnified to large changes in the plot.  This magnification is

useful in that it shows in great detail exactly what is happening. 

Unfortunately, it can be deceptive, making the user think that violent

gyrations are occurring when, in fact, the changes in the actual values are

miniscule.

The lower-left graph shows the dynamically adjusted learning rate and

momentum, also scaled so that the historical values exactly fill the vertical

extent of the plot.  Typically, the learning rate will show a net decrease,

dropping to a very small value after several dozen iterations during which

it bounces.  The momentum only rarely stabilizes, climbing steadily until

it becomes excessive and causes an overshoot which results in

backtracking, at which point the adjustment algorithm slaps it back down

for a while.

The bottom-center graph shows the cosine of the angle between successive

gradients, scaled to a fixed range of minus one to one.  It should always be

near the center, indicating that the weight increments are neither

undershooting nor overshooting.

The lower-right bar graph shows the number of contiguous failures of the

increment ratio to decrease, relative to the user-specified limit.  When the

red interior reaches the right side of the bar’s outline, training will

terminate.  This is the primary convergence criterion.

Supervised training of the post-RBM layers, as well as the optional fine

tuning, also cause graphs of the error to be displayed as training

progresses.  There is nothing fancy or confusing about them, so we’ll

dispense with a detailed discussion.

If this is an autoencoding model, the display is a lot simpler.  Only single-

layer greedy training and the optional greedy fine tuning are displayed,

and in a manner which should be self explanatory.
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Test

The Test selection tests the trained model on the current dataset.  There is

little point in training and then immediately testing a model, as the test

would just reproduce the same results given when training is complete. 

However, this selection facilitates testing the model on new data.

The usual procedure for training and testing a model is as follows:

! Read the training data

! Define the architecture

! Select the predictor and target variables if they are not preset. 

(Only ‘Read a Database’ does not preset them.)

! Set training parameters if something other than the default is

desired

! Train

! Clear all data

! Read the test data

! Test

The test dataset must contain the same variables in the same order as the

training dataset.  The user must not change the architecture or the

predictor/target variables.

NOTE... The Test option does not use CUDA processing.  If the model was

trained with CUDA enhancement, it is possible that the slightly different

floating point computations with and without CUDA may result in slightly

different test results.  Any differences should be small.
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Cross Validate

The model’s capability is evaluated by cross validation.  In this process, the

dataset is divided into a user-specified number of subsets, as equal in size

as possible.  One at a time, each of these subsets is used as a test set after

the model is trained by combining the remaining subsets into a single

training set.  After each subset has been processed this way, which is called

a fold, the test set results for all folds are pooled into a single grand

performance measure.  The beauty of this technique is that we do not have

to sacrifice data by designating part of the dataset as a one-time-only

training set and the other part as a one-time-only test set.  Each case in the

dataset serves as a test case exactly once, which is an extremely efficient

use of the data!  Moreover, each time we train the model we are using the

large majority of the training cases, which encourages stability.  The fact

that the pooled test results are nearly unbiased is almost miraculous.  Of

course, the price paid is that we must retrain the model for each fold,

which can be very expensive in some applications.  There’s no free lunch.

The user must specify several options.  These are:

Number of folds - The dataset will be divided into this many subsets, as

equal in size as possible.  Each subset will be used as the independent test

set exactly once, with the other subsets used as the training set.

Printing to DEEP.LOG - This choice controls how much information is

printed to the DEEP.LOG log file.  The choices are:

Print all information - All training and test information, including

trained weights, is printed for each fold.  This might be

voluminous.

Print IS and OOS performance - In-sample (training set) and out-

of-sample (test set) performance figures are printed for each fold. 

Weights are not printed.

Print OOS performance - For each fold, only out-of-sample (test)

performance is printed.
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Figure 6.3: Cross validation with guard buffers

Print nothing for folds - No information is printed for individual

folds.  Only the pooled summary performance report appears.

Shuffle - If this box is checked, the dataset is shuffled before folds are

assigned.  This is mandatory if the data is ‘grouped’ in any way, perhaps

by inherent serial correlation or perhaps by experimental design.  Suppose,

for example, the design incorporates three experimental conditions, each

grouped together and we employ three folds of cross validation.  If the

data is not shuffled, then for each fold we will be testing data from a

condition that did not appear in the training set for that fold!

Buffer zone - This is required if one or more predictors have serial

correlation and one or more targets have serial correlation.  In this

situation, the specified number of cases are temporarily removed from the

training set on the upper and lower fold boundaries.  The test set is left

unaltered.  This is illustrated in Figure 6.3 below.  In this figure, there are

five folds, delineated with tick marks, and the fold depicted happens to be

the one with the test set in the center.  Note how part of the training set on

each side of the boundary is removed.  To determine the correct buffer

zone size, find the maximum distance of serial correlation among the

predictors and the maximum among the targets.  Take the minimum of

these two numbers to get the optimal buffer zone.

For example, let the predictors have a maximum correlation distance of 5

cases, and the target 3.  The optimal buffer would be Min(5,3)=3.  Consider

the left boundary.  Define time 0 as the first case in the test set.  Then

consider the following discussion:

Suppose we did not use a guard buffer zone.  The last training case at the

left boundary would be at time -1.  Its targets could be correlated up to the
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case at time 2.  The first test case could have predictors correlated back to

time -5, meaning that its predictors could be similar to several cases in the

training set.  This alone is of no consequence.  But recall that the last

training case’s targets could be similar to those up though the case at time

2.  So this first test case can also have targets similar to those in the training

set.  Having an ‘independent’ test case substantially artificially represented

in the training set introduces bias.

It’s important to understand the problem here.  There is nothing wrong

with having serial correlation in either the predictors alone (a very common

situation) or the targets alone (not so common).  The problem happens

when both have serial correlation.  In this situation, the training cases near

the boundary can be substantially similar to the test cases near the same

boundary.  The test set, which is supposed to be independent of the

training set, is actually not totally independent, because serial correlation

has destroyed independence near the boundaries.

Now suppose we remove the three guard zone training cases.  The last

training set case at this boundary is at time -4.  Its targets could be

correlated with those of cases through time -1.  But the target correlation

has vanished by the time we get to the first test case.  We’re safe.

A similar effect happens at the right boundary.  Let the first training case

in the upper section be at time 0.  Then the last test case below it is at time

-1, and its targets could be correlated with the targets through the case at

time 2.  But after removal of the guard zone, the first used training case

will be at time 3.

We can reverse the correlation pattern, with the correlation distance for

predictors 3 cases and that for targets 5.  The guard zone is still 3 cases.  At

the left boundary, let the first test case be at time 0.  Its predictors can be

correlated with those of the cases back to time -3.  The last ‘original’

training case is at time -1, but after removing the guard zone the last

actually used training case is at time -4.  I leave it as an exercise for the

reader to check the right boundary.
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Analyze

This selection computes and prints to the DEEP.LOG file two tables of

information for RBM models (only!).  The first is a comparison, for each

input variable, of the probability of its being activated in the training set

versus the probability of its being activated in the reconstructed input

layer.  Here is a short segment illustrating this table:

        Variable     Visible  Reconstructed

         P_8_10      0.616        0.617
         P_8_11      0.551        0.547
         P_8_12      0.522        0.519
         P_8_13      0.516        0.513
         P_8_14      0.517        0.511
         P_8_15      0.520        0.514
         P_8_16      0.517        0.513
         P_8_17      0.514        0.510
         P_8_18      0.539        0.536
         P_8_19      0.606        0.603
         P_8_20      0.706        0.706
         P_8_21      0.806        0.810
         P_8_22      0.887        0.891
         P_8_23      0.942        0.943

The other analysis output is the probability (across the training set) of each

final (topmost) layer hidden neuron being activated.  Here is an example

of this table:

 Hidden   Activation

     1          0.837
     2          0.449
     3          0.723
     4          0.596
     5          0.578
     6          0.501
     7          0.501
     8          0.418
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Figure 6.4: Receptive fields for some neurons trained on MNIST data

Receptive Field

The receptive field of a hidden neuron in an RBM is (loosely) defined as the

pattern of weights connecting the input layer to the hidden neuron.  If the

input happens to be an image, such as is the case with MNIST data, then

it is possible to display these weights in the same dimensions as the input

image.  Figure 6.4 below shows the receptive fields of a dozen neurons

trained with MNIST data.  Large positive weights are white, large negative

weights are black, and intermediate values are shades of gray.  A color

display is also an option, with positive weights colored cyan and negative

weights colored red, and brightness corresponding to magnitude.  The

gray areas around the perimeter are pixels that are constant for all cases

and hence omitted from the model.
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Generative Sample

We saw in Volume I and on Page 68 of this book that a trained RBM or set

of greedily trained layers can be made to spit out random samples from the

distribution that it has learned.  Examination of such random samples can

be interesting because they show examples of the primitive patterns that

the model has learned.

This option is valid only for MNIST images and simple series data.  The user

must specify the number of rows and columns of samples to display.  Each

of the nrows*ncolumns images is a separate sample.

As discussed in Volume I, there are two ways to begin the Markov chain

whose final value will be the computed sample.  One can begin with a

member of the training set.  To do this, set the First case field to a positive

number, the sequential number of the training case that will be used for

the first sample.  Subsequent samples will start from subsequent training

cases.  The degree to which the final reconstruction resembles the starting

pattern is an indication of the quality of training and the degree to which

efficient mixing is taking place in the Markov chain.

Figure 6.5 on the next page shows the first 12 cases from the MNIST test set

of ten thousand cases.  Figure 6.6 shows generative samples obtained from

these cases using ten thousand iterations.  What makes this interesting is

that this was derived from a single RBM layer having just 15 hidden

neurons!  The degree to which this tiny model has encapsulated training

set patterns is astounding.

Alternatively, one can set the topmost hidden neuron layer to random

values, thus divorcing the computed samples from training data.  This lets

us see the actual primitive patterns which the model is recognizing.  Figure

6.7 shows 108 random samples obtained from an RBM having 100 hidden

neurons, using 50,000 iterations.  This is not an embedded model, which

allow class-conditional sample generation.  So rather than often seeing

digits we are more likely to see the components of the digit images which the

model has learned.
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Figure 6.5: First 12 cases of MNIST test set

Figure 6.6: Generative samples after 10,000 iterations
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Figure 6.7: Samples using 100 hidden neurons randomly set
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Samples from an Embedded Model

We saw on Page 10 that by embedding class labels in the visible layer

corresponding to the top-level RBM, we can perform generative sampling

from each class separately.  When an embedded model has been trained,

two additional selections may be made by the user.

The first choice is the check box Clamp class label.  This would almost

always be left at its default of checked, as clamping a class label to force

class-conditional sampling is usually the point of using an embedded

model (at least for me!).  Unchecking this box lets generation run free,

without regard to class labels, and thus provides samples from the entire

population.

The other choice is Class for Clamped Random.  This is relevant only if the

user specified zero for the First class label.  With zero, the Markov chain is

initialized to random values, so the Class for Clamped Random specification

is needed to tell the program which class to sample.  If the First class label

is positive then the class of each training case used for initialization will be

clamped.

Figure 6.8 on the next page shows some generated samples from the

MNIST ‘0' class, and Figure 6.9 shows samples from the ‘1' class.

If the user specified that binary thresholding be performed for RBM

training (Binary splits on Page 205) then generated samples will also be

quantized to binary.  Figures 6.10 and 6.11 show binary generated samples

from the MNIST ‘0' and ‘1' classes, respectively.  Note the significant

amount of exact or near duplication, indicating that the RBM has learned

some ‘favorite’ patterns and converges strongly to them.

If the data input is a simple series (Page 31) then the user must specify the

Row resolution.  This is the vertical resolution for the display, the number

of rows over which the signal is quantified.  The default of 20 is reasonable

for most situations, although it can be argued that setting the row

resolution approximately equal to the window length is also a good choice. 

An example of generative samples of a simple series can be seen in Figure

3.1 on Page 35.
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Figure 6.8: Generative samples from MNIST ‘0' class

Figure 6.9: Generative samples from MNIST ‘1' class
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Figure 6.10: Binary generative samples from MNIST ‘0' class

Figure 6.11: Binary generative samples from MNIST ‘1' class



226 DEEP Operating Manual

Figure 6.12: Generative samples from a Path series

Samples from a Path Series

We saw a discussion of the ‘path’ series type on Page 36, and specific

instructions for generating a path series on Page 182.  Figure 6.12 below

shows a few generative samples from a path series modeling the OEX

market index.  The values of the trends are blue, and the velocities are red. 

Observe that, as expected, when the velocity is high the values are

increasing, and when the velocity is low the values are decreasing.
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The DEEP.LOG File

When a database or other file is read, the program creates a new file called

DEEP.LOG in the same directory as the data file being read.  If a file of that

name already exists, it is erased.  This log file begins by showing the

directory in which it is created, along with the date and time.  It then lists

the mean and standard deviation of every variable read.  Here is a typical

example:

Deep (D:\DEEP\TEST\DEEP.LOG)  1/26/15  15:42:16

Found 23 variables in input file D:\DEEP\TEST\SYNTH.TXT

6304 cases read

Means and standard deviations...

         Variable       Mean         StdDev

          RAND0      0.00711      0.57541
          RAND1      0.01422      0.58043
          RAND2      0.01027      0.57694
          RAND3     -0.00765      0.58143
          RAND4      0.00713      0.57911
          RAND5     -0.01166      0.57263
          RAND6     -0.00648      0.57742
          RAND7     -0.01424      0.58015
          RAND8      0.00659      0.57533
          RAND9     -0.00366      0.57733

It then shows the architecture of the model, including the unsupervised

and supervised sections:

Beginning training a model with the following architecture:

   There are 1 unsupervised layers, not including input
      Hidden layer has 5 neurons

   There are 1 supervised layers, including output
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Since there is at least one RBM layer, the training parameters for this layer

are listed:

Restricted Boltzmann Machine training parameters...
  Initial random iterations for starting weights = 50
  Number of batches = 24
  Markov chain length start = 1
  Markov chain length end = 4
  Markov chain length rate = 0.0050
  Learning rate = 0.05000
  Starting momentum = 0.10000
  Ending momentum = 0.90000
  Weight penalty = 0.00010
  Sparsity penalty = 0.00100
  Sparsity target = 0.10000
  Increment convergence criterion = 0.00001
  Max epochs with no improvement = 500
  Max epochs = 10000
  Visible layer using mean field, not stochastic
  Inputs will be rescaled to cover a range of 0-1
  Unsupervised section weights will be fine tuned by supervised training

The training parameters for the supervised section are also listed:

Supervised layer(s) training parameters...
  Initial annealing iterations for starting weights = 100
  Initial random range for starting weights = 1.00000
  Supervised optimization max iterations = 1000
  Supervised optimization convergence tolerance = 0.0000500
  Complete model optimization max iterations = 2000
  Complete model optimization convergence tolerance = 0.0000100
  Weight penalty = 0.00100

The results of training the unsupervised layer are printed first:

Training unsupervised layer 1
  Initial weight search RMS reconstruction error = 0.27098
  Unsupervised training complete; RMS reconstruction error = 0.31654
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There is one curious issue in that result.  The initial weight search gave a

reproduction error of 0.27098, but after real training was done we see that

the reproduction error has increased to 0.31654.  How did this happen?

Actually, this is unusual, happening only when the input variables have

little or no patterns that the RBM can learn.  In this example, the inputs are

all random numbers, so there are obviously no patterns.  We must

remember that the reconstruction error is measured slightly differently

during weight initialization and training.  In Volume I we see that the

initial search reconstruction error is computed in a deterministic manner

using mean field approximation in both directions.  But during learning we

use random sampling of the hidden neuron activations for the

reconstruction error.  This tends to increase the error somewhat.  If the

RBM is able to learn real patterns, the difference due to randomization

during reconstruction error computation is swamped out by the model’s

ability to reconstruct authentic patterns.  But if there are no patterns to

reconstruct, we just get the effect of randomization.

After greedy training of the unsupervised section is complete, the

supervised section which follows the unsupervised section is trained.  Fine

tuning was selected, so the last step is to tweak the entire model,

unsupervised plus supervised sections.  Here we see that fine tuning

produces a huge improvement in the criterion, which is negative log

likelihood in this example because a classification model was forced.

Optimization of supervised section is complete with negative log likelihood = 0.12270
Fine tuning of the entire model is complete with negative log likelihood = 0.02327

The targets are listed, and it is noted that the inputs are rescaled 0-1, so the

weights which will be printed soon refer to these rescaled values.

Trained weights for this model, predicting the following target(s)...
   RAND1
   RAND2
   RAND3

Each raw input has been rescaled 0-1 to cover the min/max range.
Thus, all weights refer to the rescaled value, not the raw value.
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The weights for the single unsupervised layer are now printed.  If there

were multiple layers, each set of weights would appear.  These weights are

after fine tuning.

Weights for unsupervised hidden layer 1

                               1              2              3              4              5  

         Q mean     0.4522     0.4796     0.4556     0.4138     0.4717
     skewness      0.1310     0.0700     0.1271     0.2440     0.0618

          RAND1    -7.0347    -4.5028     0.9392    -2.5469     1.4879
          RAND2     4.7047    -1.7225    -0.5104     7.0462     2.0824
          RAND3     2.8726     6.0903     1.6480    -4.7952    -2.6467
          RAND4    -0.0131     0.1551    -1.6304    -0.2535     0.3858
          RAND5    -0.0032    -0.3523    -0.0453     0.1271    -0.8947
          RAND6    -0.0619    -0.1453    -1.8291    -0.1889    -0.2881
              BIAS     0.7231    -0.5790     0.8983    -0.6242     0.4237

The model was specified to have five hidden neurons, so we have five

columns, one for each.  At most ten columns are printed.  After each

unsupervised layer is trained, the hidden neuron weights are sorted so that

the hidden neuron having maximum sum of absolute values becomes the

first hidden neuron, and so forth.  This way, if we examine the weights to

obtain hints about interpretation of features detected, we can focus our

efforts on the early columns.  However, if fine tuning is done, as is the case

in this example, this sorting can be subverted.  This is not a practical

problem, as fine tuning almost always largely or entirely destroys the

interpretability of weight patterns that were discovered by the RBM.

The Q mean row is the mean activation of each hidden neuron, and the

skewness row is the statistical skewness of the activations.  In general, a

positive skewness means that the neuron is usually off, and vice versa. 

These two values are computed before fine tuning; they refer to the actions

of the trained RBM before its weights are adjusted by supervised fine

tuning.
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We then see the weights which connect the (last and only) unsupervised

layer to the (first and only) supervised layer.  Also, the final value of the

optimization criterion, which we saw earlier, is repeated.

Weights for final (output) layer

Target 1 of 3: RAND1

         -9.158017  Unsupervised output 1
         -6.844571  Unsupervised output 2
          0.781757  Unsupervised output 3
         -2.436789  Unsupervised output 4
          2.660202  Unsupervised output 5
          6.449515  CONSTANT

Target 2 of 3: RAND2

          5.160418  Unsupervised output 1
         -1.469535  Unsupervised output 2
         -0.629605  Unsupervised output 3
          9.063721  Unsupervised output 4
          2.708100  Unsupervised output 5
         -8.018184  CONSTANT

Target 3 of 3: RAND3

          3.467198  Unsupervised output 1
          8.798016  Unsupervised output 2
          1.170767  Unsupervised output 3
         -8.699801  Unsupervised output 4
         -3.433103  Unsupervised output 5
         -2.159271  CONSTANT

Negative log likelihood = 0.02327
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Last of all the confusion matrix is shown.  Usually, when one is training a

classifier, the target vector for each case has 1.0 in the position

corresponding to the correct class, and 0.0 in all other positions.  But this

is just a common convention and is not required in DEEP.  Instead,

whichever target has the maximum value is defined to be the correct class. 

So when a model having continuous targets is forced to be a classifier, as

is the situation in this example, results are reasonable.  In particular, we

would expect good classification in this example, since all three targets are

also present as inputs!  Indeed, we see this to be the case.

Confusion matrix... Row is true class, column is predicted class
   In each set of three rows for a true class, the first row is the count,
   the second row is the percent for that row (true class)
   and the third row is the percent of the entire dataset.

          1        2         3

  1    2128        3         8
       99.49    0.14    0.37
       33.76    0.05    0.13

  2         9    2088      15
        0.43   98.86    0.71
        0.14   33.12    0.24

  3         8         7    2038
        0.39    0.34   99.27
        0.13    0.11   32.33

Total misclassification = 0.7931 percent

In DEEP 2.0, additional confusion matrices will be printed, showing the

effect of using thresholds to classify only cases for which the model has

varying degrees of certainty.  A table of the thresholds for keeping assorted

fractions of the training set is also printed.
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Predictive Performance Measures

The example output just shown is for a classification model.  We now

discuss the performance measures that may be seen with a predictive

model.  The first and most basic statistics are the mean squared error, root-

mean-squared error, and R-squared.  This output will resemble the

following:

Mean squared error and R-squared of target(s)...
   MSE of Lead_1 = 0.00007   RMS = 0.00860   RSQ = 0.00396

If there are multiple targets, these quantities will be printed separately for

each, followed by a pooled value (all targets).  It’s important to note that

these values are computed very differently in DEEP 2.x versus DEEP 1.x. 

In version 1, all targets were scaled according to their standard deviations

in the training set so that MSE referred to standardized quantities, and

these same scale factors were used for any test set(s).  There are many

advantages to doing it this way, but it led to massive confusion among

users, especially when values of R-squared greater than one appeared!  For

this reason, version 2 now employs the ‘traditional’ approach of avoiding

any scaling of the targets, and R-squared for a test set is now based on the

variance in that test set, irrespective of the variance in the training set.  Of

course, negative R-squared values are still possible when a model is anti-

predictive (it behaves worse than just guessing the mean.)  This is

fundamental to this test statistic.

The next test statistics are based on a performance figure commonly used

in evaluating market trading systems.  However, it is broadly applicable

(and indeed very useful) in any application in which the goal is not so

much to predict an exact value of the target as to predict whether the target

will be positive or negative.  Moreover, this application must not require

that a decision be made; the user has the choice of examining a prediction

and then choosing whether to act on this prediction.  There is little or no

penalty for deliberately ignoring a prediction.

For example, suppose our model predicts the price change of a market in

the upcoming day.  Based on the prediction we may or may not submit an

order to trade.  Perhaps the prediction is that the market will rise 1 percent
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and we take a long position (we buy).  Now suppose that we are off by 4

percent in the prediction.  Maybe the market actually rises by 5 percent. 

Or maybe it falls by 3 percent.  These two possibilities are equal errors, yet

the first error is not a problem at all (!) while the second error is a disaster. 

So our ‘performance penalty’ must be similarly asymmetric.  Moreover, if

the prediction is that the market will rise by 0.0001 percent we would

probably pass on a trade, while a predictied rise of 8 percent will definitely

get our attention.  Our performance criterion must take this into account.

Suppose we define a threshold for predictions.  Given this threshold, we

define a win as the true value of a target being positive when the prediction

equals or exceed the threshold, or the true value being negative when the

prediction is less than the threshold.  Similarly, we experience a loss when

the true value is negative when the prediction equals or exceeds the

threshold, or when the true value is positive while the prediction is less

than the threshold.

The condition of the prediction equaling or exceeding the threshold is

called long, and the condition of the prediction being less than the

threshold is called short, again in deference to related issues in market

trading; an automated trading system would take a long position when the

prediction is large, and a short position when the prediction is small (very

negative).

A table similar to the one shown on the next page is printed.  It is preceded

by the long ratio, the sum of all positive targets divided by the (absolute)

sum of all negative targets.  The net is the sum of all targets, which of

course equals the sum of all positive targets minus the (absolute) sum of all

negative targets.  The corresponding short values are the reciprocal and

negative, respectively, of the long values.  These serve as baselines for

comparison.
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Total Win vs. Total Loss above and below various fractions
  (For all tested cases, long ratio = 1.1218 (net=3195.592) and short ratio = 0.8914
(net=-3195.592)

Threshold  Frac Gtr/Eq   Ratio        Net         Frac Less       Ratio            Net

  -0.901 0.990      1.1261    3265.0136        0.010      1.2484        69.4217
  -0.481 0.950      1.1376    3387.0308        0.050      1.1331      191.4389
  -0.279 0.900      1.1489    3455.2076        0.100      1.0937      259.6157
  -0.042 0.800      1.1687    3495.6538        0.200      1.0574      300.0619
   0.120 0.700      1.1829    3371.6175        0.300      1.0231      176.0256
   0.253 0.600      1.1971    3160.0880        0.400      0.9965       -35.5039
   0.374 0.500      1.2478    3340.0525        0.500      1.0114      144.4606
   0.500 0.400      1.2727    3008.0249        0.600      0.9878     -187.5670
   0.642 0.300      1.3077    2608.6799        0.700      0.9680     -586.9120
   0.819 0.200      1.3017    1828.5688        0.800      0.9366   -1367.0231
   1.072 0.100      1.3382    1106.7696        0.900      0.9166   -2088.8223
   1.307 0.050      1.4954      831.8562        0.950      0.9122   -2363.7357
   1.789 0.010      1.7472      273.0242        0.990      0.8985   -2922.5677

The rows of this table are computed so as to at least approximately cover

preset fractiles of the data distribution, although this may be subverted if

there are numerous tied predictions.  The leftmost column shows the

numerical values of the thresholds corresponding to the preset fractiles. 

The second column shows the fraction of cases whose prediction equals or

exceeds the corresponding threshold.  The fifth column is the complement,

the fraction of cases whose prediction is less than the threshold.

The third and fourth columns are relevant to the situation of the prediction

equaling or exceeding the threshold.  The Ratio is the sum of wins (positive

targets) divided by the (absolute) sum of losses (negative targets).  The Net

is the sum of all targets for theses cases whose predictions equal or exceed

the threshold.

Columns six and seven are for cases whose predictions are less than the

threshold.  For this ratio, wins (the numerator) are negative targets and

losses are positive targets.
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We see in the line above the table that the long ratio (sum of all positive

targets divided by absolute sum of all negative targets) is 1.1218.  So it’s no

surprise that the ratio in the top row of the third column, 1.1261, is very

close to this value, as this subset consists of 99 percent of all cases.  As we

drop to lower rows, corresponding to increasing thresholds, we see the

win/loss ratio steadily increasing, until when we reach the point of

examining only the highest 1 percent of predictions, the ratio peaks at

1.7472.  The net decreases because we have fewer and fewer cases going

into the sum.

The reverse happens in the ratio column for cases below the threshold.  In

the bottom row (99 percent of cases) we have a ratio of 0.8985, close to the

entire-set ratio of 0.8914.  But by the time we get to the top line, with just

1 percent of the cases having a prediction this small, the win/loss ratio is

up to 1.2484.

Not shown here is the fact that this model happens to have a negative R-

squared!  This phenomenon is common in ultra-high-noise situations. 

Predictive power may be totally nonexistent throughout the majority of the

data distribution, but be respectable in the extreme tails.  For this reason,

charts like the one shown here can be invaluable.

The chart just shown is always computed based on the distribution in the

dataset being tested.  This generally reveals the most information. 

However, for out-of-sample testing, this method does have the

disadvantage that in real-time applications, such as financial market

trading, these thresholds cannot be known in advance.  The chart

produced by pooling all OOS cases relies on thresholds that would not be

known until the entire OOS set has been processed, an obvious

impossibility in real time.  This does not necessarily introduce any bias,

optimistic or pessimistic.  However, it is an annoyance.

In order to handle this complaint, the Test and Cross validate functions print

one small additional set of statistics.  The three tail thresholds, 0.01, 0.05,

and 0.10, both long and short, are preserved for the training set.  These

same thresholds are then used to compute the win/loss ratios and net sums

in any subsequent test set.  A typical set of statistics is shown on the next

page.  For this example, I deliberately used the training data as a test set so
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that the reader can compare the results here with those in the prior table. 

(Please do so.)  When different datasets are used, the usual situation, the

percent of cases above/below the threshold generally varies from the

presets.  Here, because the same datasets are used for training and testing,

they are virtually identical.

Out-of-sample performance at tails, based on training-set thresholds

Target variable Lead_1
0.01 Long n=83 (1.01 Pct) Ratio=1.747  Net=273.024

Short n=81 (0.99 Pct) Ratio=1.248  Net=69.422

0.05 Long n=411 (5.01 Pct) Ratio=1.495  Net=831.856
Short n=409 (4.99 Pct) Ratio=1.133  Net=191.439

0.10 Long n=821 (10.01 Pct) Ratio=1.338  Net=1106.770
Short n=819 (9.99 Pct) Ratio=1.094  Net=259.616


