## APPENDIX F

## SILVAH - Management Unit \#2 Printout

```
Silvah-7 SILVICULTURE OF ALLEGHENY HARDWOODS AND OAK
Generated by: SILVAH-7 (version: 7.0.2.30)
SIL file: C:\Users\Barry Rose\Documents\2016 Gov Dick\2-SILVAH7-Gov Dick Files\Mgmt Unit #2 - North slope -
Mixed Oak.sil7 (version: 7.0.6)
DEF file: C:\Users\Barry Rose\Documents\2016 Gov Dick\2-SILVAH7-Gov Dick Files\2016 Gov Dick CAP 106.def7
(version: 7.0.2)
SCR file: current SCR file (modified) (version: 7.0.5)
Report date: Jan 26, 2017
Owner/Agency: Gov Dick
County/District: Lebanon
Compartment/Unit: AH21
Stand name: Mgmt Unit #2
Area: 225.0
Effective age: 114.7
Site index: 67 for BO
Forest type: mixed oak
Allegheny NF Forest type: Mixed oaks
Size class: large sawtimber
Relative density: 106.7
Remarks: North Slope - Mixed Oak Plots #10-15, #19-25, #28, #30-36, #50, b, c, d, e
Trees to include: live only
Contents:
    2016: Original Stand Conditions
        -Cruise Information (Type, Sampling Error, etc.)
        -Narrative Summary and Analysis
        -Overstory Summary- Quality, Diameters, Age, Structure, Density, volumes, Values
        -overstory Species x Diameter Table: Basal area (live trees only)
        -Overstory Species x Diameter Table: Relative density (live trees only)
        -Overstory Species x Diameter Table: Number of trees (live trees only)
        Initial treatment: SILVAH recommended prescription: Fence, Site Prep. Burn or Herbicide, Monitor Acorns,
Re-inventory
            -Treatment Description with Marking Instructions
```

Overstory Cruise Information
Overstory data is from a prism cruise, using a 20 factor prism, and with trees tallied by 1 inch dbh classes, Overstory data is based on 26 plots. Only live trees are included in calculations.

Mean basal area is 130.4 plus or minus 14.8 square feet per acre at $90 \%$ confidence ( $11.4 \%$ of mean).

- No additional plots needed to reach $15 \%$ of mean basal area.
- 7 additional plots needed to reach $10 \%$ of mean basal area.

Mean net bdft volume is 10107.1 plus or minus 1471.9 bdft per acre at $90 \%$ confidence ( $14.6 \%$ of mean) using the International 1/4 inch $10 g$ rule.

- No additional plots needed to reach $15 \%$ of mean net bdft volume.
- 29 additional plots needed to reach $10 \%$ of mean net bdft volume.

Mean net pulpwood is 17.2 plus or minus 2.3 cords per acre at $90 \%$ confidence ( $13.3 \%$ of mean)

- No additional plots needed to reach $15 \%$ of mean net pulpwood.
- 20 additional plots needed to reach $10 \%$ of mean net pulpwood.

Understory Cruise Information
Data on competitive regeneration, site limitations and understory is from an extended regeneration cruise using 6-ft radius plots. Understory data is based on 30 plots.
Warning: regeneration data is not based on an adequate number of plots. To give reliable results, at 1 east 76 additional plots are needed for this stand.

Narrative Summary and Analysis (2016 inventory data)
Nonnative invasive species have the potential to displace native vegetation, including desirable timber
species. There were no invasives in the overstory, three invasives in the overstory (Japanese stiltgrass
Japanese barberry and multiflora rose), and nine that were found outside the plots (Japanese stiltgrass, Japanese barberry, multiflora rose, ailanthus, garlic mustard, unspecified non-native shrub, Norway maple, Tatarian honeysuckle and elaeagnus)

This mixed oak stand is dominated by Chestnut Oak, Black Oak, Black Birch, Red Oak, Yellow-poplar and Red Maple which together comprise 88 percent of the basal area.

This is a large sawtimber stand, with average medial diameter of 16.6 inches.
If this stand is managed under an even-age silvicultural system, the several species groups will mature at markedly different times. The average time to maturity (MDM $=18$ inches) is 0 years. The manager wishes to regenerate the stand now. Effective stand age is about 115 years.

If this stand is managed under an all-age silvicultural system, the distribution of diameters, proportion of sawtimber, and density of shade-tolerant species would make it difficult to apply selection cutting.

Relative stand density is 107 percent of the average maximum stocking expected in undisturbed stands of similar size and species composition. This density is well above the optimum for best individual tree growth. At this relative density, growth rate of the biggest trees is probably moderate, while growth rate of the medium and smaller-sized trees is probably poor and mortality due to crowding high.
Total growing stock amounts to 130 sq . ft. of basal area per acre. Net total volume in all trees, to a 4 -inch top, is 31.1 cords per acre; if divided into pulpwood and sawtimber, the net merchantable volume is 17.2 cords of pulp wood and 10107.1 board feet of sawtimber (International $1 / 4$ inch 10 g rule). The total stand value is estimated to be about 3322 dollars per acre.

Trees of acceptable quality for future growing stock provide a fully stocked stand by themselves. Noncommercial saplings and poles represent 17 sq . ft. of basal area and may need to be treated prior to final harvest cutting.
Competitive regeneration of all types is insufficient; harvest cuttings at this time will not likely result in a satisfactory new stand.

Undesirable understory plants may interfere with development of regeneration. Undesirable plants in this stand include dense low woody cover, dense tall woody cover and dense fern cover.

Overstory Summary- Quality, Diameters, Age, Structure, Density, Volumes, Values: (2016 inventory data)
Composition - BA, percent BA, trees per acre

| \| | \|a11 species| | CO | \| BO | \| BB | \| NRO | \| TP | RM | BG | \| SAS | \| AB | SO | \| WO | HIC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Total BA | 130.4 | 38.81 | \|28.5| | 24.6 | 13.1 | 5.4 | 4.6 | 3.81 | 3.8 | 3.1 | 2.3 | \|1.5| | \|0.8| |
| Percent BA | 100 | 30 | 22 | 19 | 10 | 4 | 4 | 31 | 3\| | 2 | 2 | 1\| | 1 |
| \|Trees per acre | 348 | \| $26.8 \mid$ | 13.6\| | 146.1 | 5.9 | 1.1 | 27.71 | 68.31 | 49.7 | 5.3 | 1.0 | 1.6 | 0.6\| |

Quality - percent in AGS


Diameters and Ages - inches, years

|  | \|a11 species| | \| 00 | \| BO | \| BB | \| NRO | \|TP | \| RM | \| BG | \| SAS | \| $A B$ | \| 50 | \| wo | \| HIC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Medial diameter | 16.6 | 17.1 | \|20.6| | 11.4 | 21.2 | 29.9 | 7.8 | 4.21 | 5.6 | 15.5 | \|20.7| | 13.5 | 16.01 |
| \| Merchantable medial diameter | 18.2 | \|17.1 | 20.6 | 13.7 | \| 21.2 | 29.9 | 11.3 | 7.0 | 14.0 | 15.5 | \| $20.7 \mid$ | 13.5 | 16.01 |
| Quadratic mean diameter | 8.3 | 16.3 | 19.6 | 5.6 | 20.1 | 29.6 | 5.5 | 3.2 | 3.8 | 10.3 | 20.6\| | 13.3 | 16.0 |
| Years to maturity | 0 | 6 | 0 | 29 | 0 | 0 | 331 | 73 | 27 | 17 | 0 | 301 | 131 |
| \|Effective age | 115 | 114 | 137 | 91 | 106 | 149 | 57 | 471 | 93 | 103 | 138 | $90 \mid$ | 107 |

Structure


## Relative density - percent



Volumes and Values (per acre) - International $1 / 4$ inch $\log$ Rule

|  | \|al1 species | CO | \| BO | \| BB | \| NRO | \|TP | \| RM | \| BG | SAS | \| $A B$ | \| So | \| Wo | \| HIC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Gross Total Cords | 38.9 | 13.3 | 10.11 | 5.4 | 4.71 | 2.01 | 0.71 | 0.21 | 0.31 | 0.81 | 0.81 | 0.51 | 0.21 |
| Net Total Cords | 31.1 | 10.6 | 8.1 | 4.31 | 3.71 | 1.6 | 0.5 | 0.1 | 0.2 | 0.7 | 0.7 | 0.4 | 0.21 |
| Net Pulpwood Cords | 17.2 | 5.9 | 3.8 | 3.5 | 1.7 | 0.5 | 0.4 | 0.1 | 0.2 | 0.5 | 0.31 | 0.31 | 0.11 |
| \|Gross Board-foot | 11422.9 | 3830.1 | \| 3381.8 | 888.6 | 1578.4 | 1029.6 | 79.21 | 0.0 | 0.0 | 211.6 | 279.0 | 69.6 | 75.01 |
| Net Board-foot | 10107.1 | 3395.6 | \|3176.6| | 478.0 | 1486.1 | 997.9 | 61.1\| | 0.0 | 0.0 | 124.0 | 262.7 | 59.7 | 65.31 |
| \| Dollars | 3321.6 | 703.5 | \|1171.3| | 99.9 | 736.8 | 484.2 | \|12.9| | \|0.3| | \| $0.0 \mid$ | 16.8 | 67.2 | 17.0\| | 11.7 |

Overstory Species $x$ Diameter Table: Basal area (live trees only) (2016 inventory data)

|  | \|al1 species | \| CO | BO | \| BB | \| NRO | TP | RM | BG | SAS |  | SO | \| WO | HIC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 0.0 | 0.0 | 0.01 | 0.0 |  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 12 | 2.3 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.8 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
| 3 | 3.1 | 0.0 | 0.0 | 0.8 |  | \|0.0 | 0.0 | 0.8 |  |  | 0.0 |  | 0.0 |
| 4 | 6.2 | 0.0 | 0.0 | 2.3 | 0.0 | 10.0 | 1.5 | 0.8 | 1.5 | $0.0 \mid$ | 0.0 | 10.0 | 0.0 |
| 15 | 2.3 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 0.8 | 0.8 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
| 6 | 2.3 | 0.0 | 0.0 | 1.5 | 0.0 | \|0.0 | 0.0 | 0.0 | 0.01 | 0.8 | 0.0 | 0.0 | 0.0 |
| 7 | 1.5 | 0.0 | 0.0 | 0.8 | 0.0 | 10.0 | 0.0 | 0.8 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
| 8 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
| 9 | 1.5 | 0.0 | 0.0 | 0.8 | 0.0 | 10.0 | 0.8 | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
| 10 | 0.81 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
| 11 | 3.8 | 0.0 | 0.0 | 3.8 | 0.0 | 10.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 0.01 | 0.0 |
| 12 | 4.6 | 3.1 | 0.0 | 0.8 | 0.0 | 10.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 0.81 | 0.0 |
| 13 | 2.31 | 1.5 | 0.01 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
| 14 | 5.4 | 3.1 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.81 | 0.8 | 0.0 | 10.0 | 0.0 |
| 15 | 9.2 | 4.6 | 2.3 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 10.8 | 0.0 |
| 16 | 10.81 | 6.2 | 0.8 | 1.5 | 1.5 | 10.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 10.0 | 0.8 |
| 17 | 8.5 | 0.8 | 2.31 | 3.1 | 1.5 | 10.0 | 0.8 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 | 10.0 | 0.0 |
| 18 | 16.5 | 8.8 | 3.8 | 2.3 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 19 | 4.6 | 1.5 | 1.5 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.01 | 0.8 | 0.0 | 10.0 | 0.0 |
| 20 | 12.31 | 4.6 | 3.1 | 1.5 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 10.0 | 0.0 |
| 21 | 3.81 | 1.5 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 22 | 3.8 | 0.8 | 1.5 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.01 |
| 23 | 8.5 | 2.3 | 3.1 | 0.0 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 |
| 24 | 3.8 | 0.0 | 3.1 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
| 25 | 1.5 | 0.0 | 1.5 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 26 | 3.1 | 0.0 | 0.8 | 0.0 | 1.5 | \|0.8 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
| 27 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 |
| 28 | 2.31 | 0.0 | 1.5 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 |
| 29 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 |
| 30 | 2.31 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 31 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.01 |
| 32 | 1.5 | 0.0 | 0.0 | 0.0 | 0.8 | \|0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 |
| 33 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SAPS | 13.81 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 2.3 | 3.1 | 3.1 | 0.0 | 0.0 | 0.0 | 0.01 |
| POLE | 10.8 | 0.0 | 0.0 | 7.7 | 0.0 | 0.0 | 1.5 | 0.8 | 0.0 | 0.8 | 0.0 | 0.0 | 0.01 |
| SM SAW | 40.8 | 19.2 | 6.2 | 7.7 | 3.1 | 0.0 | 0.8 | 0.0 | 0.8 | 0.8 | 0.0 | 1.5 | 0.81 |
| MD SAW | 49.6 | 19.6 | 15.4 | 3.8 | 6.9 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 2.3 | 0.0 | 0.01 |
| LG SAW | 15.4 | 0.0 | 6.9 | 0.0 | 3.1 | 5.4 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | 0.01 |
| Total | 130.4 | 38.8 | \|28.5 | 24.6 | \|13.1| | 5.4 | 4.6 | 3.8 | 3.8 | 3.1 | 2.3 | 1.5 | 0.8 |
| \| Percent |  | 29.8 | 21.8 | 18.9 | 10.0 | \| 4.1 | \| 3.5 | 2.9 | 2.91 | 2.4 | 1.8 | $1.2 \mid$ | 0.6 |
| Basal area (live trees only) acceptable growing stock only |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | a11 species\|c | CO | BO \| | BB | NRO | TP | RM | BG \| | SAS ${ }^{\text {A }}$ | AB | SO 1 | WO \| H | HIC |
| SAPS | 6.2 | 0.0 | 0.0 | 2.3 | 0.0 | 0.0 | 0.8 | . 5 | 1.5 | 0 | 0.0 | . 010 | 0.01 |
| POLE | 3.1 | 0.0 | 0.0 | 2.3 | 0.010 | 0.010 | 0.0 | 0.810 | 0.010 | 0.010 | 0.010 | 0.010 | 0.01 |
| SM SAW | 30.011 | 13.1 | 3.1 | 7.7 | 3.10 | 0.010 | 0.8 | 0.010 | 0.810 | 0.8 | 0.010 | 0.010 | 0.8 |
| MD SAW | 48.111 | 18.1 | 15.4 | 3.8 | 6.9 | 0.010 | 0.0 | 0.010 | 0.011 | $1.5 \mid 2$ | 2.3 | 0.010 | 0.0 |
| LG SAW | 15.4 | 0.0 | 6.9 | 0.0 | 3.1 | 5.410 | 0.0 | 0.010 | 0.010 | $0.0 \mid 0$ | 0.0 | 0.010 | 0.0 |
| \| Total | 102.7\|3 | $31.2 \mid$ | $25.4 \mid 1$ | 16.2 | 13.1 | $5.4 \mid$ | 1.5 | $2.3 \mid 2$ | 2.312 | $2.3 \mid 2$ | 2.310 | 0.010 | 0.81 |



| 22 | 3.2 | 0.7 | 1.4 | 0.0 | 0.4 | \|0.0| | $0.0 \mid$ | $0.0 \mid$ | \|0.0| | $0.0 \mid$ | 0.7 | $0.0 \mid$ | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | 6.7 | 2.1 | 2.8 | 0.0 | 1.1 | \| $0.0 \mid$ | $0.0 \mid$ | 0.0 | $0.0 \mid$ | 0.7 | 0.0 | $0.0 \mid$ | \|0.0| |
| 24 | 3.2 | 0.0 | 2.81 | 0.0 | 0.4 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | \|0.0| |
| 25 | 1.4 | 0.0 | 1.4 | 0.0 | 0.0 | \| $0.0 \mid$ | $10.0 \mid$ | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 | \| $0.0 \mid$ | \| $0.0 \mid$ |
| 26 | 1.6 | 0.0 | 0.7 | 0.0 | 0.7 | $0.2 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 0.0 |
| 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ |
| 28 | 1.6 | 0.0 | 1.4 | 0.0 | 0.0 | $0.2 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 0.0 |
| 29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | \| $0.0 \mid$ |
| 30 | 0.6 | 0.0 | 0.01 | 0.0 | 0.0 | \|0.6| | $0.0 \mid$ | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | \| $0.0 \mid$ |
| 31 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | \| $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | \| $0.0 \mid$ |
| 32 | 0.5 | 0.0 | 0.0 | 0.0 | 0.3 | $0.2 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | \| $0.0 \mid$ |
| 33 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | $0.2 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ |
| SAPS | 15.5 | 0.0 | 0.01 | 6.1 | 0.0 | $0.0 \mid$ | 2.4 | 3.5 | 3.5 | 0.0 | 0.0 | $0.0 \mid$ | 0.0 |
| POLE | 8.1 | 0.0 | 0.0 | 5.5 | 0.0 | $0.0 \mid$ | 1.1 | 0.6 | $0.0 \mid$ | 0.8 | 0.0 | 0.0 | \| $0.0 \mid$ |
| SM SAW | 33.1 | 18.1 | 5.7 | 4.2 | 1.6 | $0.0 \mid$ | 0.4 | 0.0 | $0.4 \mid$ | 0.7 | 0.0 | 1.5 | \| $0.4 \mid$ |
| MD SAW | 41.0 | 18.1 | 14.1 | 1.9 | 3.4 | $0.0 \mid$ | 0.0 | 0.0 | $0.0 \mid$ | 1.4 | 2.1 | 0.0\| | \|0.0| |
| LG SAW | 9.0 | 0.0 | 6.3 | 0.0 | 1.3 | 1.4 | $0.0 \mid$ | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 | $0.0 \mid$ | 0.0 |
| Total | 106.7 | 36.1 | 26.2 | 17.8 | 6.3 | 1.4 | 3.9 | 4.1 | $4.0 \mid$ | 2.9 | 2.1 | 1.5 | \|0.4| |
| Percent |  | 33.9 | 24.5 | 16.7 | 5.9 | \|1.3| | 3.7 | 3.8 | 3.71 | \| 2.71 | 2.0 | 1.4 | \|0.4| |

Relative density (live trees only) acceptable growing stock only

|  | \|al1 species| | CO | \| BO | BB | \| NRO | | \| TP | \| RM | \| BG | \| SAS |  | \| SO | I WO | HIC \| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SAPS | 6.81 | 0.0 | 0.0 | 2.71 | 0.0 | \|0.0| | \|0.8| | 1.6 | 1.7 | \|0.0| | 0.0 | 0.0 | 0.0\| |
| POLE | 2.1 | 0.01 | 0.0 | 1.5 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.6 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 | 0.0 |
| SM SAW | 23.0 | 12.3 | 2.9 | 4.2 | 1.6 | $0.0 \mid$ | \| 0.4 | $0.0 \mid$ | 0.4 | $0.7 \mid$ | $0.0 \mid$ | $0.0 \mid$ | 0.4 |
| MD SAW | 39.6 | 16.7 | \|14.1| | 1.9 | 3.4 | $0.0 \mid$ | \| $0.0 \mid$ | $0.0 \mid$ | 0.0 | \| 1.4 | 2.1 | $0.0 \mid$ | 0.0 |
| LG SAW | 9.0 | 0.0 | 6.3 | 0.0 | 1.3 | 1.4 | $0.0 \mid$ | 0.0 | 0.0 | \|0.0| | \| $0.0 \mid$ | 0.0 | 0.0 |
| Total \| | 80.5 | 28.9\| | \| $23.3 \mid$ | 10.4 | 6.3 | \| $1.4 \mid$ | $1.2 \mid$ | 2.2 | 2.1 | \| $2.1 \mid$ | 2.1\| | 0.0 | 0.4 |

Overstory Species $x$ Diameter Table: Number of trees (live trees only) (2016 inventory data)

|  | a11 species\| | \| CO | \| BO | \| BB | NRO\| | \| TP | \| RM | BG | SAS | \| AB | \| SO | \| WO | \| HIC ${ }^{\text {\| }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.01 | 0.0 | 0.0 | 0.0 | $10.0 \mid$ | \|0.0| | 0.0 | 0.01 | 0.01 | 10.0 | 0.0 | 0.0 | 0.0\| |
| 2 | 105.8 | 0.0 | 0.0 | 70.5 | \| $0.0 \mid$ | \| $0.0 \mid$ | 0.0 | 35.31 | 0.0 | 10.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 3 | 62.71 | 0.0 | 0.0 | 15.7 | $0.0 \mid$ | \| $0.0 \mid$ | 0.01 | 15.7 | 31.3 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 4 | 70.5 | 0.0 | 0.0 | 26.4 | $0.0 \mid$ | $0.0 \mid$ | 17.6 | 8.8 | 17.6 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 |
| 5 | 16.9 | 0.0 | 0.0 | 5.6 | \| $0.0 \mid$ | \| $0.0 \mid$ | 5.6 | 5.6 | 0.0 | 0.0 | \| $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 6 | 11.8 | 0.0 | 0.0 | 7.8 | $0.0 \mid$ | $0.0 \mid$ | 0.0 | 0.01 | 0.0 | 3.9 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 7 | 5.8 | 0.0 | 0.0 | 2.9 | $0.0 \mid$ | \| $0.0 \mid$ | 0.0 | 2.91 | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 |
| 8 | 2.2 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 2.2 | 0.01 | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 9 | 3.5 | 0.0 | 0.0 | 1.7 | $0.0 \mid$ | \| $0.0 \mid$ | 1.7 | 0.01 | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 10 | 1.4 | 0.0 | 0.0 | 1.4 | $0.0 \mid$ | $0.0 \mid$ | 0.0 | 0.01 | 0.01 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 11 | 5.8 | 0.0 | 0.0 | 5.8 | $0.0 \mid$ | \| $0.0 \mid$ | 0.0 | 0.01 | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | \| $0.0 \mid$ |
| 12 | 5.91 | 3.9 | 0.0 | 1.0 | $0.0 \mid$ | \| $0.0 \mid$ | 0.0 | 0.01 | 0.0 | 0.0 | $0.0 \mid$ | $1.0 \mid$ | $0.0 \mid$ |
| 13 | 2.5 | 1.7 | 0.0 | 0.8 | $0.0 \mid$ | $0.0 \mid$ | 0.0 | 0.01 | 0.01 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 14 | 5.0 | 2.9 | 0.7 | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.01 | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 |
| 15 | 7.5 | 3.8 | 1.9 | 1.3 | $0.0 \mid$ | $0.0 \mid$ | 0.0 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | $0.6 \mid$ | 0.0 |
| 16 | 7.7 | 4.4 | 0.6 | 1.1 | 1.1 | \| $0.0 \mid$ | 0.0 | 0.01 | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.6 |
| 17 | 5.4 | 0.5 | 1.5 | 2.0 | $1.0 \mid$ | $0.0 \mid$ | 0.5 | 0.01 | 0.01 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 |
| 18 | 9.4 | 5.0 | 2.2 | 1.3 | 10.9 | $0.0 \mid$ | 0.0 | 0.01 | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | $0.0 \mid$ |
| 19 | 2.31 | 0.8 | 0.8 | 0.0 | 0.4 | \| $0.0 \mid$ | 0.0 | 0.01 | 0.0 | 10.4 | \| $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 20 | 5.6 | 2.1 | 1.4 | 0.7 | $0.7 \mid$ | $0.0 \mid$ | 0.0 | 0.01 | 0.01 | 0.0 | $0.7 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 21 | 1.6 | 0.6 | 1.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 | 0.01 | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | \| $0.0 \mid$ |
| 22 | 1.5 | 0.3 | 0.6 | 0.0 | $0.3 \mid$ | $0.0 \mid$ | 0.0 | 0.01 | 0.0 | 0.0 | $0.3 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 23 | 2.9 | 0.8 | 1.1 | 0.0 | 0.8 | \| $0.0 \mid$ | 0.01 | 0.01 | 0.0 | 0.3 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 24 | 1.2 | 0.0 | 1.0 | 0.0 | $0.2 \mid$ | $0.0 \mid$ | 0.0 | 0.01 | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 |
| 25 | 0.5 | 0.0 | 0.5 | 0.0 | $0.0 \mid$ | \| $0.0 \mid$ | 0.01 | 0.01 | 0.0 | 0.0 | \| $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 26 | 0.8 | 0.0 | 0.21 | 0.0 | 0.4 | \| 0.2 | | 0.0 | 0.01 | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 27 | 0.0 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 28 | 0.5 | 0.0 | 0.4 | 0.0 | 0.0 | \| $0.2 \mid$ | 0.0 | 0.01 | 0.01 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 29 | 0.0 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | \| $0.0 \mid$ | 0.0 | 0.01 | 0.01 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 30 | 0.5 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | $0.5 \mid$ | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 31 | 0.0 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | \| $0.0 \mid$ | 0.0 | 0.01 | 0.01 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 32 | 0.3 | 0.0 | 0.0 | 0.0 | $0.1 \mid$ | \| 0.1 | 0.0 | 0.01 | 0.01 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| 33 | 0.1 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | 0.0 | 0.0 |
| SAPS | 255.91 | 0.0 | 0.0 | 118.3 | $0.0 \mid$ | $0.0 \mid$ | 23.31 | 65.4 | 49.0 | 0.0 | $0.0 \mid$ | $0.0 \mid$ | 0.0 |
| POLE | 30.4 | 0.0 | 0.0 | 19.7 | $0.0 \mid$ | \| $0.0 \mid$ | 3.9 | 2.91 | 0.0 | 3.9 | $0.0 \mid$ | $0.0 \mid$ | 0.0 |
| SM SAW | 34.0 | 17.1 | 4.6 | 6.1 | \| 2.11 | \| $0.0 \mid$ | 0.5 | 0.01 | 0.71 | 0.7 | $0.0 \mid$ | $1.6 \mid$ | $0.6 \mid$ |
| MD SAW | 23.3 | 9.6 | 7.0 | 2.0 | 3.1 | \| $0.0 \mid$ | 0.0 | 0.01 | 0.01 | 0.7 | $1.0 \mid$ | $0.0 \mid$ | $0.0 \mid$ |
| LG SAW | 3.9 | 0.0 | 2.0 | 0.0 | 0.8 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $0.0 \mid$ | 0.0 |
| Total | 347.6 | 26.8 | 13.6 | 146.1 | \| $5.9 \mid$ | 1.1 | 27.71 | 68.3 | 49.7 | 5.3 | 1.0 | 1.6 | 0.6 |
| Percent\| |  | 7.71 | 3.91 | 42.0 | \|1.7| | \|0.3| | 8.0 | 19.6 | 14.3 | 1.5 | \| $0.3 \mid$ | \| $0.5 \mid$ | \| $0.2 \mid$ |


| \| | \|al1 species| | \| 00 | \| BO | \| BB | \| NRO| | \|TP | \| RM | \| BG | \| SAS | \| $A B$ | \| so | \| Wo | \| HIC | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \| SAPS | 100.6 | 0.01 | 0.0 | 59.7 | 0.0 | 0.0 | \|8.8| | 14.5 | 17.6 | $0.0 \mid$ | $0.0 \mid$ | \|0.0| | \|0.0| |
| \| POLE | 6.4 | 0.01 | 0.0 | 3.5 | 0.0 | 0.0 | $0.0 \mid$ | 2.9 | 0.01 | 0.0 | 0.01 | 0.0 | \|0.0| |
| \|SM SAW| | 24.0 | 11.0 | 2.3 | 6.1 | 2.1 | 0.01 | 10.5 | 0.0 | 0.7 | 0.71 | 0.0 | 0.01 | 0.6 |
| \|MD SAW| | 22.5 | 8.8 | 7.0 | 2.0 | 3.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 1.0 | 0.0 | 0.0 |
| \|LG SAW| | 3.9 | 0.01 | 2.0 | 0.0 | 0.8 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \|Total | 157.4\| | \|19.8| | \|11.3 | \|71.4| | \| 5.9 | | 1.1 | \|9.3| | \| 17.3 | 18.3 | \|1.4| | $1.0 \mid$ | $0.0 \mid$ | 0.6 |

Treatment Description with Marking Instructions (2016)

## SILVAH - Management Unit \#3 Printout

Silvah-7 SILVICULTURE OF ALLEGHENY HARDWOODS AND OAK

```
Generated by: SILVAH-7 (version: 7.0.2.30)
SIL file: C:\Users\Barry Rose\Documents\2016 Gov Dick\2-SILVAH7-Gov Dick Files\Mgmt Unit #3 - Black Birch
Saplings no residuals.sil7 (version: 7.0.6)
DEF file: C:\Users\Barry Rose\Documents\2016 Gov Dick\2-SILVAH7-Gov Dick Files\2016 Gov Dick CAP 106.def7
(version: 7.0.2)
SCR file: current SCR file (modified) (version: 7.0.5)
Report date: Jan 26, 2017
Owner/Agency: Gov Dick
County/District: Lebanon
Compartment/Unit: AH21 changed to BB23
Stand name: Mgmt Unit #3
Area: 28.0
Effective age: 50.8
Site index: 67 for во
Site index: 67 for BO
Forest type: Allegheny hardwood
Allegheny NF Forest type: unknown type
Size class: smal1 poletimber
Relative density: 76.8
Remarks: Black Birch Saplings/Without residuals included - Plots 16, 17, 26, 27, 29
Trees to include: live only
Contents:
    2016: Original Stand Conditions
        -Cruise Information (Type, Sampling Error, etc.)
        -Narrative Summary and Analysis
        -Overstory Summary- Quality, Diameters, Age, Structure, Density, Volumes, Values
        Initial treatment: SILVAH recommended prescription: Defer Cutting (low relative density)
        -Treatment Description with Marking Instructions
```

Overstory Cruise Information
Overstory data is from a prism cruise, using a 20 factor prism, and with trees tallied by 1 inch dbh classes,
Overstory data is based on 5 plots. Only live trees are included in calculations.
Mean basal area is 96.0 plus or minus 32.0 square feet per acre at $90 \%$ confidence ( $33.3 \%$ of mean).
- 20 additional plots needed to reach $15 \%$ of mean basal area.
- 51 additional plots needed to reach $10 \%$ of mean basal area.
There is no net bdft volume.
Mean net pulpwood is 11.7 plus or minus 6.0 cords per acre at $90 \%$ confidence ( $50.8 \%$ of mean).
- 52 additional plots needed to reach $15 \%$ of mean net pulpwood.
- 124 additional plots needed to reach $10 \%$ of mean net pulpwood.
Understory Cruise Information
Data on competitive regeneration, site limits, and understory was not collected.
Narrative Summary and Analysis (2016 inventory data)
Nonnative invasive species have the potential to displace native vegetation, including desirable timber
species. None were recorded in or near this stand during the 2016 inventory data.

This Allegheny hardwood stand is dominated by Black Birch, Black Cherry and Misc Comm. Species which together comprise 88 percent of the basal area.

This is a small poletimber stand, with average medial diameter of 7.2 inches. Sapling trees too small to be merchantable represent a significant proportion of stand stocking and should be included in any thinnings.

If this stand is managed under an even-age silvicultural system, the several species groups will mature at markedly different times. The average time to maturity (MDM $=18$ inches) is 53 years. Effective stand age is about 51 years.
If this stand is managed under an all-age silvicultural system, the distribution of diameters, proportion of sawtimber, and density of shade-tolerant species would make it difficult to apply selection cutting.

Relative stand density is 77 percent of the average maximum stocking expected in undisturbed stands of similar size and species composition. This density is in the optimum range for best individual tree growth. At this relative density, growth rate of the biggest trees is probably excellent, while growth rate of the medium and smaller-sized trees is probably good and mortality due to crowding low.

Thinning to provide more growing space for the better stems is not necessary at this time.
Total growing stock amounts to 96 sq . ft. of basal area per acre. Net total volume in all trees, to a 4-inch top, is 11.7 cords per acre; if divided into pulpwood and sawtimber, the net merchantable volume is 11.7 cords of pulp wood and 0.0 board feet of sawtimber (International $1 / 4$ inch log rule). The total stand value is estimated to be about 23 dollars per acre.

Trees of acceptable quality for future growing stock provide a fully stocked stand by themselves. Noncommercial saplings and poles represent 40 sq . ft. of basal area and may need to be treated prior to final harvest cutting.

Data on site, understory, and competitive regeneration was not collected.

Overstory Summary- Quality, Diameters, Age, Structure, Density, Volumes, Values: (2016 inventory data)
Composition - BA, percent BA, trees per acre


Quality - percent in AGS


| $\mid$ \| | \|a11 species| | \| BB | \| BC | \| BG | \|TP | \|SAS| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Medial diameter | 7.2 | \| 5.7 | | \|7.6| | $11.3 \mid$ | \|8.5| | \| $5.0 \mid$ |
| \| Merchantable medial diameter | 8.6 | \| 8.61 | \|7.6| | 11.3 | 8.5 | 0.0 |
| \|Quadratic mean diameter | 4.7 | 3.6 | 7.3\| | 11.3 | $8.1 \mid$ | 5.0 |
| Years to maturity | 53 | 63 | 52 | 44 | 47 | 0 |
| \|Effective age | 51\| | 571 | 381 | 76 | 431 | $0 \mid$ |

Structure



Volumes and Values (per acre) - International 1/4 inch Log Rule


SILVAH has recommended a Defer Cutting (low relative density).
The stand is not yet mature (53 years to maturity) and the user does not wish to begin regeneration now. The relative density is $76.8 \%$ which is below the $80 \%$ threshold considered necessary for a partial cut. Immature or all-aged stands that are within or below the optimum range of stand density do not need any sort of partial cutting. In such a stand, the best prescription is to leave the stand alone for 10 or 15 years, and then reexamine it to see what treatment is appropriate at that time.

Warnings:
The relative density (76.8) is just below the $80 \%$ decision point in Chart C; A Thinning Prescription may be appropriate.

## SILVAH - Management Unit \#4 Printout

Silvah-7 SILVICULTURE OF ALLEGHENY HARDWOODS AND OAK

```
Generated by: SILVAH-7 (version: 7.0.2.30)
SIL file: C:\Users\Barry Rose\Documents\2016 Gov Dick\2-SILVAH7-Gov Dick Files\Mgmt Unit #4 - Northern
Hardwoods.si17 (version: 7.0.6)
DEF file: C:\Users\Barry Rose\Documents\2016 Gov Dick\2-SILVAH7-Gov Dick Files\2016 Gov Dick CAP 106.def7
(version: 7.0.2)
SCR file: current SCR file (modified) (version: 7.0.5)
Report date: Jan 26, 2017
Owner/Agency: Gov Dick
County/District: Lebanon
Compartment/Unit: TM12
Stand name: Mgmt Unit #4
Area: 39.0
Effective age: 101.2
Site index: }82\mathrm{ for BO
Forest type: Allegheny hardwood
Allegheny NF Forest type: Mixed upland hardwoods
Size class: large sawtimber
Relative density: 64.0
Remarks: Allegheny Hardwoods ( 8,9,13,37,38,.51(007))
Trees to include: live only
Contents:
    2016: Original Stand Conditions
        -Cruise Information (Type, Sampling Error, etc.)
        -Narrative Summary and Analysis
        -Overstory Summary- Quality, Diameters, Age, Structure, Density, volumes, values
        Initial treatment: SILVAH recommended prescription: Fence, Liberation Cut, Site Prep Burn or Herbicide,
Art. Regen. Follow-up
    -Treatment Description with Marking Instructions
    -Wildlife Habitat Considerations for Prescriptions
```

Overstory Cruise Information

Overstory data is from a prism cruise, using a 20 factor prism, and with trees tallied by 1 inch dbh classes, Overstory data is based on 8 plots. Only live trees are included in calculations.

Mean basal area is 120.0 plus or minus 17.6 square feet per acre at $90 \%$ confidence ( $14.7 \%$ of mean)

- No additional plots needed to reach $15 \%$ of mean basal area
- 9 additional plots needed to reach $10 \%$ of mean basal area.

Mean net bdft volume is 10240.1 plus or minus 2972.1 bdft per acre at $90 \%$ confidence ( $29.0 \%$ of mean) using the International 1/4 inch log rule.

- 22 additional plots needed to reach $15 \%$ of mean net bdft volume.
- 59 additional plots needed to reach $10 \%$ of mean net bdft volume.

Mean net pulpwood is 17.4 plus or minus 4.1 cords per acre at $90 \%$ confidence ( $23.8 \%$ of mean)

- 12 additional plots needed to reach $15 \%$ of mean net pulpwood.
- 37 additional plots needed to reach $10 \%$ of mean net pulpwood.

Understory Cruise Information
Data on competitive regeneration, site limitations and understory is from an extended regeneration cruise
using 6-ft radius plots. Understory data is based on 12 plots.
warning: regeneration data is not based on an adequate number of plots. To give reliable results, at least 18 additional plots are needed for this stand.

Narrative Summary and Analysis (2016 inventory data)
Nonnative invasive species have the potential to displace native vegetation, including desirable timber species. There were no invasives in the overstory, no invasives in the overstory, and seven that were found outside the plots (Japanese barberry, Japanese stiltgrass, ailanthus, garlic mustard, multiflora rose, Tatarian honeysuckle and Norway maple)
This Allegheny hardwood stand is dominated by Yellow-poplar, Black Birch, white Ash, Chestnut Oak, Hickory and Beech which together comprise 88 percent of the basal area.

This is a large sawtimber stand, with average medial diameter of 17.7 inches.
If this stand is managed under an even-age silvicultural system, the several species groups will mature at markedly different times. The average time to maturity (MDM $=18$ inches) is 2 years. The manager wishes to regenerate the stand now. Effective stand age is about 101 years.

If this stand is managed under an all-age silvicultural system, the distribution of diameters, proportion of sawtimber, and density of shade-tolerant species would make it difficult to apply selection cutting.

Relative stand density is 64 percent of the average maximum stocking expected in undisturbed stands of similar size and species composition. This density is in the optimum range for best individual tree growth. At this relative density, growth rate of the biggest trees is probably excellent, while growth rate of the medium and smaller-sized trees is probably good and mortality due to crowding low.

Thinning to provide more growing space for the better stems is not necessary at this time.
Total growing stock amounts to 120 sq . ft. of basal area per acre. Net total volume in all trees, to a $4-i n c h$ top, is 30.7 cords per acre; if divided into pulpwood and sawtimber, the net merchantable volume is 17.4 cords of pulp wood and 10240.1 board feet of sawtimber (International 1/4 inch 10 g rule). The total stand value is estimated to be about 3877 dollars per acre.

Trees of acceptable quality for future growing stock provide enough stocking by themselves to warrant stand management. Non-commercial saplings and poles represent 13 sq . ft. of basal area and may need to be treated prior to final harvest cutting.

Competitive regeneration of all types is insufficient; harvest cuttings at this time will not likely result in a satisfactory new stand.

Undesirable understory plants may interfere with development of regeneration. Undesirable plants in this stand include dense low woody cover, dense tall woody cover and dense fern cover.

Overstory Summary- Quality, Diameters, Age, Structure, Density, Volumes, values: (2016 inventory data)
Composition - BA, percent BA, trees per acre


Quality - percent in AGS


Diameters and Ages - inches, years


Structure


Relative density - percent

|  | +----------+--+--+--+--+---+--+--+--+--+---+--+ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Re1. Density | 64 | 11 | \|20| | 5 | 71 | 4 | 5 | 5 | 1 | 2 | 1 | 2 |
| \|AGS only | 38 | 10 | \| 12 | | 2 | 5 | 31 | 2 | 21 | 0 | 0 | 1 | 2 |

Volumes and values (per acre) - International 1/4 inch Log Rule

| \| | species |  | \| BB | IWA | CO | HIC | \| AB | \| BO | \| BC | \| BG | \| NRO | I wo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Gross Total Cords | 38.4 | 13.6 | 10.31 | 4.0 | 2.51 | 2.31 | 1.1\| | 1.6 | 0.71 | \|0.4| | 0.91 | 0.81 |
| Net Total Cords | 30.7 | 10.9 | 8.3 | 3.2 | 2.01 | 1.8 | 0.9 | 1.2 | 0.6 | 0.31 | 0.71 | 0.71 |
| Net Pulpwood Cords | 17.4 | 3.5 | 6.6 | 1.8 | 1.1 | 1.2 | 0.7 | 0.9 | 0.6 | 0.3 | 0.3 | 0.4 |
| Gross Board-foot | 11964.6 | 6543.7 | 1999.7 | 1092.1 | 744.2 | 491.5 | 249.4 | 276.5 | 0.0 | 0.0 | 328.5 | 239.1 |
| Net Board-foot | 10240.1 | 6184.8 | \|1031.7 | 1006.8 | 645.3\| | 430.31 | 162.7 | 255.4 | 0.01 | 0.01 | $314.9 \mid$ | 208.3 |
| \| Dollars | 3877.0 | 2689.6 | 213.9 | 428.3 | 120.4\| | 80.4 | 24.31 | 86.7 | $1.2 \mid$ | 0.7\| | \|167.8| | 63.61 |

Treatment Description with Marking Instructions (2016)
SILVAH has recommended a Fence, Liberation Cut, Site Prep Burn or Herbicide, Art. Regen. Follow-up.
A Liberation cut is useful in rehabilitating a degraded stand. It entails removing older, less desirable trees that are over-topping desirable young trees to ensure adequate sunlight for planted seedlings.
Implement this practice by cutting or killing undesirable and poor-quality trees from all canopy positions until the relative density of the stand is less than 20 percent. The harvest may or may not be commercial depending on the condition of the cut trees. Concentrate the liberation cut on portions of the stand where there already is vigorous desirable regeneration so that it can take advantage of the release. Five years after the cut, do a follow-up examination of the stand to check on the growth and survival of planted seedlings.

Warnings:
The merchantable medial diameter (17.7) is just below the 18 inch decision point in Chart A; the stand may be mature.

- The relative density of AGS (38.4) is just above the $35 \%$ decision point in Chart A; the stand may not be mature.


## Additional treatments

- Apply a site-prep burn when conditions are appropriate, or treat the undesirable understory plants with an application of herbicide during the appropriate part of the growing season. This type of prescribed fire prepares an oak stand for eventual oak seedling establishment after a future acorn crop. The objective is to reduce dense understory shade and litter loadings so that a larger proportion of an acorn crop successfully germinates and becomes seedlings. Burning can be done in the dormant season (fall or early spring) or growing season (late spring) and at any intensity. However, high-intensity fires (flame lengths greater than 2 feet) in the late spring decrease dense understory shade more quickly than low intensity fires in the fall or early spring. Generally, multiple fires spread over several years are necessary to reduce dense understory shade to a level that improves the survival and growth of new oak seedlings. Do not burn if an acorn crop has just fallen or if new oak seedlings from a recent acorn crop are needed to help regenerate the stand as fire kills acorns and small oak seedlings (Auchmoody and Smith 1993). Please refer to the silvicultural guide for details about implementing this prescription.
- Competitive regeneration is lacking, probably due to inadequate seed supply. Artificial regeneration (tree planting) is suggested. Johnson and others (2002) and Dey and others (2008) provide thorough discussions on the intricacies associated with planting oaks. Please refer to the silvicultural guide for details about implementing this prescription.
- Current deer levels will likely prevent regeneration developing into a new stand. Fencing is recommended to protect seedlings from deer. A fence can be constructed either before or after treatment. If fencing is constructed after treatment, fencing should be done as soon as possible.
These prescriptions generally produce the desired results, requires an investment, and usually will yield an economic return at the same time. If such investment meets your organization's economic criteria, we recommend it. If not, we recommend no treatment. In the case of regeneration prescriptions, stands generally wil1 not reproduce without the recommended treatment.

Yields

- A combined sawlog/pulpwood sale will yield 8620 bd.ft./ac. (International $1 / 4$ inch) and 16 cords./ac.
- A sawlog-only sale will yield 8620 bd.ft./ac. (International $1 / 4$ inch)
- A pulpwood-only sale will yield 27 cords./ac.

About $37 \%$ of the basal area harvested (108 sq.ft.) will be UGS. This will result in removal of about $100 \%$ of the UGS in this stand, and $100 \%$ of the merchantable-size UGS.

Cut Guides
Reduce relative stand density to $5 \%$. Within the size and quality constraints below, favor the best trees wherever possible. Try to preserve seed sources of scarce species if they are desired in the regeneration, and strive for uniform spacing among residuals whenever possible.

Cut all of the trees in the pole size class.
Cut all of the trees in the small sawtimber size class.
cut 3 out of 4 trees in the medium sawtimber size class.
Cut 4 out of 5 trees in the large sawtimber size class.

Leave Guides
Leave 12 sq.ft. of basal area per acre using the basal area distribution below.
Basal area distribution

| \| Size class | \|Basal Area| |
| :---: | :---: |
| Saplings | 0 |
| Pole | 0 |
| Sma11 sawtimber | 0 |
| \| Medium sawtimber | 6 |
| \| Large sawtimber | 6 |

Wildlife Habitat Considerations for Prescriptions: (2016)
The tables below have a common format. For each wildlife habitat attribute, the table shows the basal area by broad size classes, indicating roughly how much basal area is occupied by species whose value for that attribute is HIGH. As marking plans are developed, the prescriber/marker can make an effort to conserve trees with high wildlife value while achieving other objectives of the prescription.

In some cases, removing species with high wildlife value may be an essential element of a prescription, such as a prescription removing mid- and understory shade to create a positive environment for establishment and growth of seedlings. In these cases, we recommend selecting islands across the stand where the wildife value will be retained through the regeneration period.

Valuable Hard Mast Resources


Valuable Soft Mast Resources

|  | Total Basal Area\|BA High value|BC |  |  | \| BG |
| :---: | :---: | :---: | :---: | :---: |
| Saplings | 0.00 | 0.00 | 0.00 | 0.00 |
| Poles | 27.50 | 5.00 | 2.50 | 12.50 |
| Smal1 Saw | 37.50 | 0.00 | 0.00 | 10.00 |
| Medium Saw | 27.50 | 0.00 | 0.00 | 10.00 |
| Large Saw | 27.50 | 0.00 | 0.00 | 10.00 |
| Tota 1 | 120.00 | 5.00 | 2.50 | \| 2.50 |

Valuable Structural Contribution

|  | \|Total Basal Area|BA High value|TP |  |  | AB | \| BG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Saplings | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Poles | 27.50 | 5.00 | 0.00 | 2.50 | 2.50 |
| Smal1 Saw | 37.50 | 7.50 | 7.50 | 0.00 | 0.00 |
| Medium Saw | 27.50 | 7.50 | 5.00 | 2.50 | 0.00 |
| Large Saw | 27.50 | 25.00 | 25.00 | 0.00 | 10.00 |
| Total | 120.00 | 45.00 | 37.50 | 5.00 | \| 2.50 |

## SILVAH - Management Unit \#5 Printout

Silvah-7 SILviCulture of allegheny hardwoods and oak
Generated by: SILVAH-7 (version: 7.0.2.30)

Tulip Poplar.sil7 (version: 7.0.6)
DEF file: C: \Users \Barry Rose\Documents $\backslash 2016$ Gov Dick ${ }^{2}$-SILVAH7-Gov Dick Files $\backslash 2016$ Gov Dick CAP $106 . d e f 7$
(version: 7.0.2)
SCR file: current SCR file (modified) (version: 7.0.5)
Report date: Jan 26, 2017
Owner/Agency: Gov Dick
County/District: Lebanon
Compartment/Unit: TM11
Stand name: Mgmt Unit \#5
Area: 527.0
Effective age: 118.1
Site index: 90 for TP
Equivalent black oak site index: 85
Forest type: Allegheny hardwood
Allegheny NF Forest type: Mixed upland hardwoods

Size class: large sawtimber
Relative density: 61.3
Remarks: South Slope - Tulip poplar Plots 1-5 from 2015 inventory + Plot 42-47 current SILVAH set
Trees to include: live only

## Contents:

2016: Original Stand Conditions
-Cruise Information (Type, Sampling Error, etc.)
-Narrative Summary and Analysis
-Overstory Summary- Quality, Diameters, Age, Structure, Density, Volumes, Values
Initial treatment: SILVAH recommended prescription: Fence and Artificial Regeneration
-Treatment Description with Marking Instructions

Overstory Cruise Information
Overstory data is from a prism cruise, using a 20 factor prism, and with trees tallied by 1 inch dbh classes, Overstory data is based on 11 plots. Only live trees are included in calculations.

```
Mean basal area is 125.5 plus or minus 11.0 square feet per acre at 90% confidence (8.8% of mean).
    - No additional plots needed to reach 15% of mean basal area.
    - No additional plots needed to reach 10% of mean basal area.
```

Mean net bdft volume is 13919.0 plus or minus 2218.9 bdft per acre at $90 \%$ confidence ( $15.9 \%$ of mean) using the International $1 / 4$ inch log rule.

- 1 additional plots needed to reach $15 \%$ of mean net bdft volume.
- 17 additional plots needed to reach $10 \%$ of mean net bdft volume.

Mean net pulpwood is 16.7 plus or minus 1.3 cords per acre at $90 \%$ confidence ( $8.0 \%$ of mean).

- No additional plots needed to reach $15 \%$ of mean net pulpwood.
- No additional plots needed to reach $10 \%$ of mean net pulpwood.

Understory Cruise Information
Data on competitive regeneration, site limitations and understory is from an extended regeneration cruise using 6-ft radius plots. Understory data is based on 23 plots.
Warning: regeneration data is not based on an adequate number of plots. To give reliable results, at least 203 additional plots are needed for this stand.

Narrative Summary and Analysis (2016 inventory data)
Nonnative invasive species have the potential to displace native vegetation, including desirable timber species. There were no invasives in the overstory, three invasives in the overstory (Japanese stiltgrass, multiflora rose and Japanese barberry), and six that were found outside the plots (Japanese stiltgrass, multiflora rose, Japanese barberry, Norway maple, ailanthus and garlic mustard)

This Allegheny hardwood stand is dominated by Yellow-poplar, Black Birch, white Oak and Hickory which together comprise 88 percent of the basal area.

This is a large sawtimber stand, with average medial diameter of 21.1 inches.
If this stand is managed under an even-age silvicultural system, the several species groups will mature at markedly different times. The average time to maturity (MDM = 18 inches) is 0 years. The manager wishes to regenerate the stand now. Effective stand age is about 118 years.
If this stand is managed under an all-age silvicultural system, the distribution of diameters, proportion of sawtimber, and density of shade-tolerant species would make it difficult to apply selection cutting.

Relative stand density is 61 percent of the average maximum stocking expected in undisturbed stands of similar size and species composition. This density is in the optimum range for best individual tree growth. At this relative density, growth rate of the biggest trees is probably excellent, while growth rate of the medium and smaller-sized trees is probably good and mortality due to crowding low.

Total growing stock amounts to 125 sq . ft. of basal area per acre. Net total volume in all trees, to a 4 -inch top, is 34.2 cords per acre; if divided into pulpwood and sawtimber, the net merchantable volume is 16.7 cords of pulp wood and 13919.0 board feet of sawtimber (International 1/4 inch log rule). The total stand value is estimated to be about 5925 dollars per acre.

Trees of acceptable quality for future growing stock provide enough stocking by themselves to warrant stand management. Non-commercial saplings and poles represent 9 sq . ft. of basal area and may need to be treated prior to final harvest cutting.

Competitive regeneration of all types is insufficient; harvest cuttings at this time will not likely result in a satisfactory new stand.

A combination of undesirable understory plants and site limitations are likely to interfere with development of regeneration. Undesirable plants in this stand include dense low woody cover, dense tall woody cover, dense fern cover and dense grass cover. The limitations on this stand include rocky surfaces.

Composition - BA, percent BA, trees per acre


Quality - percent in AGS

|  | \|all species | TP\|BB| | Wo\| | HIC | во | \| NRO| | \|WA | CO | \| RM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \| Saplings | 0 | \|97|18| | 751 | 75 | 100\| | 100 | 50 | 100\| | 100 |
| Poles | 14 | 97\|18| | 75 | 75 | $100 \mid$ | 100 | 50 | $100 \mid$ | 100 |
| Smal1 sawtimber | 29 | 97\|18| | 75 | 75 | 100\| | 100 | 50 | 100 | 100 |
| Medium sawtimber | 90 | 97\|18| | 75 | 75 | 100 | 100 | 50 | 100 | 100 |
| Large sawtimber | 96 | 97\|18| | 75 | 75 | 100 | 100 | 50 | 100 | 100 |
| All sizes | 72 | \|97|18| | 75 | 75 | 100\| | $100 \mid$ | 50 | $100 \mid$ | $100 \mid$ |


| \| | \|a11 species| | \|TP | \| BB | I wo | \| HIC | \| Bo | \| NRO | \| WA | \|co | \| RM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Medial diameter | 21.1 | \|25.3| | \|13.4| | \|21.6| | \|12.5| | $26.0 \mid$ | \|29.0| | 19.5 | \|22.0| | \|22.0| |
| \| Merchantable medial diameter | 21.1 | \|25.3| | \|13.4| | \|21.6| | 12.5 | 26.0 | 29.0 | 19.5 | \| $22.0 \mid$ | 122.0 |
| Quadratic mean diameter | 17.0 | 22.6 | 12.4 | \|21.0| | 11.4 | 25.8 | 28.9 | 18.0 | $22.0 \mid$ | 22.0 |
| Years to maturity Effective age | 118\| | 1271 | \| 31 89 | 144 | 37 83 | 173\| | 1451 | ${ }^{0} 9$ | 147 | 110\| |

## Structure



## Relative density - percent

| $\mid$ \| | \|al1 species|TP| |  | \| BB | \|WO| | IIC | BO\| | NRO\| | WA | CO\| | \|RM| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Re]. Density| | 61 | 17\| | \|18| | \|13| | 4 | 31 | 21 | 1 | 21 | $1 \mid$ |
| \|AGS only | | 40 | 16\| | $3 \mid$ | \| 10 | 3 | 31 | 21 | $1 \mid$ | 21 | 1\| |

Volumes and Values (per acre) - International 1/4 inch Log Rule

|  | species\| |  | \| BB | I Wo | \| HIC | \| BO | \| NRO | \| WA | CO | RM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Gross Total Cords | 42.81 | 21.3 | 8.91 | 5.2 | 2.11 | 1.31 | 1.4 | 1.31 | 0.71 | 0.71 |
| Net Total Cords | 34.2 | 17.0 | 7.1 | 4.2 | 1.7 | 1.1 | 1.1 | 1.0 | 0.5 | 0.5 |
| Net Pulpwood Cords | 16.7 | 5.8 | 6.2 | 2.0 | 1.1 | 0.5 | 0.4 | 0.4 | 0.21 | 0.31 |
| \|Gross Board-foot | 15237.1 | 9910.5 | 1165.4 | 1694.5 | 480.3 | 495.6 | 520.9 | 521.1 | 228.1 | 220.6\| |
| Net Board-foot | 13919.0 | 9497.8 | 598.0 | 1557.3 | 405.4 | 477.31 | 503.6 | 477.9 | 210.4 | $191.3 \mid$ |
| \| Dollars | 5924.9\| | 4300.9\| | 124.2 | \| 634.6 | 67.0\| | \|204.2| | \| $297.2 \mid$ | 198.1\| | 50.5\| | 48.31 |

Treatment Description with Marking Instructions (2016)
SILVAH has recommended a Fence and Artificial Regeneration.
A Shelterwood sequence, which would normally be recommended here, may not work because relative density is already low and competitive regeneration is lacking; further reductions in density probably won't help. A Shelterwood sequence, which would normally be recommended here, may not work because relative density is already low and competitive regeneration is lacking; further reductions in density probably won't help. Identify long-term residuals and islands with complex vertical structure. Retain these through the final overstory removal. Favor species (yellow poplar, white oak, black oak, northern red oak and chestnut oak) with high wildlife value for retention and planting.

Warnings:
The relative density of AGS (39.8) is just above the $35 \%$ decision point in Chart A; the stand may not be mature

Additional treatments

> - Competitive regeneration is lacking, probably due to inadequate seed supply. Artificial regeneration (tree planting) is suggested. Johnson and others (2002) and Dey and others (2008) provide thorough discussions on the intricacies associated with planting oaks. please refer to the silvicultural guide for details about implementing this prescription.

- Current deer levels will likely prevent regeneration developing into a new stand. Fencing is recommended to protect seedlings from deer. A fence can be constructed either before or after treatment. If fencing is constructed after treatment, fencing should be done as soon as possible.

These prescriptions generally produce the desired results, requires an investment, and usually will yield an economic return at the same time. If such investment meets your organization's economic criteria, we recommend it. If not, we recommend no treatment. In the case of regeneration prescriptions, stands generally will not reproduce without the recommended treatment.

## SILVAH - Management Unit \#7 Printout

Silvah-7 SILVICULTURE OF ALLEGHENY HARDWOODS AND OAK

```
Generated by: SILVAH-7 (version: 7.0.2.30)
SIL file: C:\Users\Barry Rose\Documents\2016 Gov Dick\2-SILVAH7-Gov Dick Files\Mgmt Unit #7 - Mature Black
Birch - old Route 72.si17 (version: 7.0.6)
DEF file: C:\Users\Barry Rose\Documents\2016 Gov Dick\2-SILVAH7-Gov Dick Files\2016 Gov Dick CAP 106.def7
(version: 7.0.2)
SCR file: current SCR file (modified) (version: 7.0.5)
Report date: Jan 26, 2017
Owner/Agency: Gov Dick
County/District: Lebanon
Compartment/Unit: BB22
Stand name: Mgmt Unit #7
Area: 21.0
Effective age: 111.9
Site index: 67 for BO
Forest type: northern hardwood
Allegheny NF Forest type: Oak-hardwoods
Size class: large sawtimber
Size class: large sawt
Remarks: Mature black Birch - Old Route 72 - Plots 1-7 + 18
Trees to include: live only
Contents:
    2016: Original Stand Conditions
        -Cruise Information (Type, Sampling Error, etc.)
        -Narrative Summary and Analysis
        -Overstory Summary- Quality, Diameters, Age, Structure, Density, volumes, values
        Initial treatment: SILVAH recommended prescription: Shelterwood` seed Cut- herbicide, fence
            -Treatment Description with Marking Instructions
            -Wildlife Habitat Considerations for Prescriptions
```

Overstory Cruise Information
Overstory data is from a prism cruise, using a 20 factor prism, and with trees tallied by 1 inch dbh classes, overstory data is based on 8 plots. Only live trees are included in calculations.
Mean basal area is 120.0 plus or minus 14.4 square feet per acre at $90 \%$ confidence ( $12.0 \%$ of mean).

- No additional plots needed to reach $15 \%$ of mean basal area.
- 4 additional plots needed to reach $10 \%$ of mean basal area.

Mean net bdft volume is 7288.1 plus or minus 1335.4 bdft per acre at $90 \%$ confidence ( $18.3 \%$ of mean) using the Mean net bdft volume is 7288.1 p
International $1 / 4$ inch log rule.

- 4 additional plots needed to reach $15 \%$ of mean net bdft volume.
- 19 additional plots needed to reach $10 \%$ of mean net bdft volume.

Mean net pulpwood is 20.3 plus or minus 2.9 cords per acre at $90 \%$ confidence ( $14.2 \%$ of mean).

- No additional plots needed to reach $15 \%$ of mean net pulpwood.
- 8 additional plots needed to reach $10 \%$ of mean net pulpwood.

Understory Cruise Information
Data on competitive regeneration, site limitations and understory is from an extended regeneration cruise using 6-ft radius plots. Understory data is based on 12 plots.
Warning: regeneration data is not based on an adequate number of plots. To give reliable results, at least 12 additional plots are needed for this stand.

Narrative Summary and Analysis (2016 inventory data)
Nonnative invasive species have the potential to displace native vegetation, including desirable timber species. There was one invasive in the overstory (ailanthus), no invasives in the overstory, and seven that were found outside the plots (ailanthus, Japanese barberry, Japanese stiltgrass, garlic mustard, multiflora rose, Norway maple and Tatarian honeysuckle)
This northern hardwood stand is dominated by Black Birch, Black Oak, White Oak, Yellow-poplar and Beech which together comprise 88 percent of the basal area.

This is a large sawtimber stand, with average medial diameter of 17.4 inches.
If this stand is managed under an even-age silvicultural system, the several species groups will mature at markedly different times. The average time to maturity (MDM = 18 inches) is 4 years. The manager wishes to regenerate the stand now. Effective stand age is about 112 years.

If this stand is managed under an all-age silvicultural system, the distribution of diameters, proportion of sawtimber, and density of shade-tolerant species would make it difficult to apply selection cutting.

Relative stand density is 79 percent of the average maximum stocking expected in undisturbed stands of similar size and species composition. This density is in the optimum range for best individual tree growth. At this relative density, growth rate of the biggest trees is probably excellent, while growth rate of the medium and smaller-sized trees is probably good and mortality due to crowding low.
Thinning to provide more growing space for the better stems is not necessary at this time.
Total growing stock amounts to 120 sq . ft. of basal area per acre. Net total volume in all trees, to a 4 -inch top, is 30.7 cords per acre; if divided into pulpwood and sawtimber, the net merchantable volume is 20.3 cords of pulp wood and 7288.1 board feet of sawtimber (International $1 / 4$ inch 10 g rule). The total stand value is estimated to be about 2325 dollars per acre.

Trees of acceptable quality for future growing stock provide a fully stocked stand by themselves. Noncommercial saplings and poles represent 13 sq . ft. of basal area and may need to be treated prior to final harvest cutting.

Competitive regeneration of all types is insufficient; harvest cuttings at this time will not likely result in a satisfactory new stand.

Undesirable understory plants may interfere with development of regeneration. Undesirable plants in this stand include dense low woody cover, dense tall woody cover and dense fern cover.
=================================================================================== (2016 inventory data)
Composition - BA, percent BA, trees per acre

| i | \|a11 species| | \| BB | \| BO | \| WO | \| TP | \| AB | RM | \|AIL| | \| BG | CO | HIC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Total BA | 120.0 | \| $55.0 \mid$ | 17.5 | 12.5 | 12.5 | \| 7.5 | 5.0 | \|2.5| | \| 2.5 | 2.5 | 2.5 ${ }^{\text {- }}$ |
| \| Percent BA | $100 \mid$ | \| 46 | 15 | 10 | $10 \mid$ | \| 6 | 4 | \| 21 | \| 2 | 2 | 21 |
| \|Trees per acre | 101\| | \| 40.8 | 11.31 | \| $5.9 \mid$ | \|13.6| | \| 7.3 | | \| 4.3 | \| $4.6 \mid$ | \| 5.7 | | 1.8 | 5.71 |

Quality - percent in AGS


Diameters and Ages - inches, years

|  | \|a11 species| | \| BB | \| BO | I wo | \|TP | \| $A B$ | RM | \| AIL | \| BG | \| CO | \| HIC | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Medial diameter | 17.4 | 17.5 | 20.7 | 20.6 | 16.2 | $15.0 \mid$ | $16.0 \mid$ | 10.01 | $9.0 \mid$ | 16.0 | 9.01 |
| Merchantable medial diameter | 17.4 | 17.5 | 20.7 | \| 20.6 | 16.2 | 15.0 | 16.0 | 10.0 | 9.0 | 16.0 | 19.0\| |
| Quadratic mean diameter | 14.8 | 15.7 | 16.8 | 19.6 | 13.0 | 13.8 | 14.6 | 10.0 | 9.0 | 16.0 | 9.0 |
| Years to maturity | 4 | 4 | 0 | 0 | 91 | 20 | 10 | 531 | 60 | 13 | 60 |
| \|Effective age | 112 \| | 116 | 138 | 137 | 81\| | \| 100| | 80 | 671 | 60 | 107\| | 601 |

Structure


Relative density - percent


Volumes and Values (per acre) - International 1/4 inch Log Rule

| $\mid$ \| | \|a11 species| | \| BB | \| BO | \| wo | \| TP | \| $A B$ | \| RM | \|AIL |  | \| 00 | HIC ${ }^{\text {\| }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Gross Total Cords | 38.41 | 17.0 | 6.1 | 4.4 | 4.1 | 2.21 | 1.7 | 0.71 | 0.71 | 0.8 | 0.61 |
| Net Total Cords | 30.71 | 13.6 | 4.9 | 3.6 | 3.21 | 1.7 | 1.3 | 0.6 | 0.5 | 0.7 | 0.51 |
| Net Pulpwood Cords | 20.3 | 9.9 | 2.5 | 1.7 | 1.91 | 1.4 | 1.0 | 0.6 | 0.5 | 0.4 | 0.5 |
| \|Gross Board-foot | 9599.9 | 4120.1 | 1896.8 | 1406.4 | 1202.9 | 433.9 | 287.1 | 0.0 | 0.0 | 252.7 | 0.01 |
| Net Board-foot | 7288.1 | 2398.8 | 1803.7 | 1281.7 | 1101.9 | 232.8 | 249.0 | 0.0 | 0.0 | 220.1 | 0.0 |
| \| Dollars | $2325.0 \mid$ | 535.8 | 714.8 | 503.7 | 437.91 | 29.5 | 58.7 | \| $0.0 \mid$ | 1.1 | 42.4 | $1.0 \mid$ |

Treatment Description with Marking Instructions (2016)
SILVAH has recommended a Shelterwood Seed cut- herbicide, fence.
Use a Two-cut shelterwood sequence to increase competitive regeneration. The first (seed) cut should reduce relative stand density to 60 percent to provide for the establishment of a large number of additional advance seedlings, without allowing them to grow rapidly enough to become attractive to deer. The seed cut made now can be followed in 5 to 10 years by final overstory removal (assuming adequate competitive seedlings develop). A combination of high deer density and low seed production will probably make it difficult to get adequate competitive regeneration established. Protect the stand from deer browsing with a fence. Overstory density is low enough and seed supply sufficient for competitive regeneration to become established within 3 - 10 years. Fencing is recommended to protect seedlings from deer.

Warnings:

- The merchantable medial diameter (17.4) is just below the 18 inch decision point in Chart $A$ the stand may be mature.
- The relative density (79.3) is just above the $75 \%$ decision point in Chart $E$; a Shelterwood Seed Cut may not be appropriate.


## Additional treatments

- Treat the undesirable understory plants with an application of herbicide during the appropriate part of the growing season. Herbicide is an effective, safe and economical technique for removing vegetation that interferes with establishment and growth of oak regeneration. There are five different application techniques for using herbicides to control interfering vegetation. Each is matched with a specific set of conditions where it will provide effective control. With all, be sure to follow all instructions on the herbicide label, wear appropriate safety clothing and equipment, and follow applicable laws with regard to herbicide applicator licensing. Please refer to the silvicultural guide for details about implementing this prescription.
- Current deer levels will likely prevent regeneration developing into a new stand. Fencing is recommended to protect seedlings from deer. A fence can be constructed either before or after treatment. If fencing is constructed after treatment, fencing should be done as soon as possible.

These prescriptions generally produce the desired results, requires an investment, and usually will yield an economic return at the same time. If such investment meets your organization's economic criteria, we recommend it. If not, we recommend no treatment. In the case of regeneration prescriptions, stands generally will not reproduce without the recommended treatment.

Yields

- A combined sawlog/pulpwood sale will yield 592 bd.ft./ac. (International $1 / 4$ inch) and 5 cords./ac.
- A sawlog-only sale will yield 592 bd.ft./ac. (International $1 / 4$ inch)
- A pulpwood-only sale will yield 6 cords./ac.

About $100 \%$ of the basal area harvested ( 26 sq.ft.) will be UGS. This will result in removal of about $96 \%$ of the UGS in this stand, and $96 \%$ of the merchantable-size UGS.
Cut Guides
Reduce relative stand density to $60 \%$. Within the size and quality constraints below, favor the best trees wherever possible. Try to preserve seed sources of scarce species if they are desired in the regeneration, and strive for uniform spacing among residuals whenever possible.

Cut 4 out of 5 trees in the pole size class.
Cut 1 out of 10 trees in the sma11 sawtimber size class
cut a few ( $<10 \%$ ) of the trees in the medium sawtimber size class.
cut 1 out of 10 trees in the large sawtimber size class.

## Leave Guides

Leave 94 sq.ft. of basal area per acre using the basal area distribution below.
Basal area distribution

| \|Size class | \|Basal Area| |
| :---: | :---: |
| \| Saplings | 0 |
| Pole | 6 |
| \|Smal1 sawtimber | 28 |
| Medium sawtimber | 45 |
| \|Large sawtimber | 15 |

Wildlife Habitat Considerations for Prescriptions: (2016)
The tables below have a common format. For each wildlife habitat attribute, the table shows the basal area by broad size classes, indicating roughly how much basal area is occupied by species whose value for that attribute is HIGH. As marking plans are developed, the prescriber/marker can make an effort to conserve trees with high wildlife value while achieving other objectives of the prescription.

In some cases, removing species with high wildlife value may be an essential element of a prescription, such as a prescription removing mid- and understory shade to create a positive environment for establishment and growth of seedlings. In these cases, we recommend selecting islands across the stand where the wildife value will be retained through the regeneration period.

Valuable Hard Mast Resources

|  | \|Total Basal Area| | \|BA High Value| | \| BO | I wo | \| $A B$ | \| 00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Saplings | 0.00 | 0.00 | 0.00 | 0.00 | \|0.00| | 0.00 |
| Poles | 25.00 | 5.00 | 2.50 | 0.00 | \|2.50| | \|0.00| |
| Smal1 Saw | 30.00 | 7.50 | 0.00 | 2.50 | \|2.50| | \|2.50| |
| medium Saw | 47.50 | 17.50 | 10.00 | 5.00 | 12.50 | \|0.00| |
| Large Saw | 17.50 | 10.00 | 5.00 | 5.00 | \|0.00| | \| $0.00 \mid$ |
| Tota 1 | 120.00 | 40.00 | 17.50 | 12.50 | \|7.50| | \|2.50| |

Valuable Soft Mast Resources

|  | \|Total Basal Area|BA High Value|BG |  |  |
| :---: | :---: | :---: | :---: |
| Sap1ings | 0.00 | 0.00 | 10.00\| |
| Poles | 25.00 | 2.50 | \|2.50| |
| Smal1 Saw | 30.00 | 0.00 | \|0.00| |
| Medium Saw | 47.50 | 0.00 | \| $0.00 \mid$ |
| Large Saw | 17.50 | 0.00 | 0.00\| |
| Total | 120.00 | 2.50 | \|2.50| |

Valuable Structural Contribution

|  | \|Total Basal Area|BA High value|TP |  |  | \| AB | \| BG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \| Saplings | $0.00 \mid$ | 0.00 | 0.00 | 0.00 | 0.001 |
| Poles | 25.00 | 10.00 | 5.00 | 2.50 | \|2.50| |
| Smal1 Saw | 30.00 | 7.50 | 5.00 | 2.50 | \|0.00| |
| Medium Saw | 47.50 | 2.50 | 0.00 | 2.50 | \| $0.00 \mid$ |
| \| Large Saw | $17.50 \mid$ | 2.50 | 2.50 | 0.00 | \|0.00| |
| \|Total | 120.00\| | 22.50 | 12.50 | 17.50 | \|2.50| |

## APPENDIX G

## PNDI Search Results

Pennsylvania Department of Conservation and Natural Resources
PNDI Receipt: project_receipt_gov_dick_cap_106_plan_620775_FINAL_1.pdf

1. PROJECT INFORMATION

Project Name: Gov Dick CAP 106 Plan
Date of Review: 2/2/2017 12:17:08 AM
Project Category: Forest Stewardship Plan
Project Area: 1,115.31 acres
County(s): Lebanon
Township/Municipality(s): CORNWALL; MOUNT GRETNA; WEST CORNWALL
ZIP Code: 17042; 17545
Quadrangle Name(s): LEBANON; MANHEIM
Watersheds HUC 8: Lower Susquehanna; Lower Susquehanna-Swatara
Watersheds HUC 12: Conewago Creek; Little Chickies Creek; Snitz Creek-Quittapahilla Creek; Upper Chickies
Creek
Decimal Degrees: 40.248816, -76.451129
Degrees Minutes Seconds: $\mathbf{4 0}^{\circ} \mathbf{1 4}^{\prime} 55.7361^{\prime \prime} \mathrm{N}, 76^{\circ} 27^{\prime} 4.627^{\prime \prime}$ W

## 2. SEARCH RESULTS

| Agency | Results | Response |
| :--- | :--- | :--- |
| PA Game Commission | No Known Impact | No Further Review Required |
| PA Department of Conservation and | Potential Impact | FURTHER REVIEW IS REQUIRED, See <br> Agency Response |
| Patural Resources | No Known Impact | No Further Review Required |
| U.S. Fish and Boat Commission Wildlife Service | Potential Impact | FURTHER REVIEW IS REQUIRED, See <br> Agency Response |

As summarized above, Pennsylvania Natural Diversity Inventory (PNDI) records indicate there may be potential impacts to threatened and endangered and/or special concern species and resources within the project area. If the response above indicates "No Further Review Required" no additional communication with the respective agency is required. If the response is "Further Review Required" or "See Agency Response," refer to the appropriate agency comments below. Please see the DEP Information Section of this receipt if a PA Department of Environmental Protection Permit is required.

Note that regardless of PNDI search results, projects requiring a Chapter 105 DEP individual permit or GP 5, 6, 7, 8, 9 or 11 in certain counties (Adams, Berks, Bucks, Carbon, Chester, Cumberland, Delaware, Lancaster, Lebanon, Lehigh, Monroe, Montgomery, Northampton, Schuylkill and York) must comply with the bog turtle habitat screening requirements of the PASPGP.

Gov Dick CAP 106 Plan


Gov Dick CAP 106 Plan


## 3. AGENCY COMMENTS

Regardless of whether a DEP permit is necessary for this proposed project, any potential impacts to threatened and endangered species and/or special concern species and resources must be resolved with the appropriate jurisdictional agency. In some cases, a permit or authorization from the jurisdictional agency may be needed if adverse impacts to these species and habitats cannot be avoided.

These agency determinations and responses are valid for two years (from the date of the review), and are based on the project information that was provided, including the exact project location; the project type, description, and features; and any responses to questions that were generated during this search. If any of the following change: 1) project location, 2) project size or configuration, 3) project type, or 4) responses to the questions that were asked during the online review, the results of this review are not valid, and the review must be searched again via the PNDI Environmental Review Tool and resubmitted to the jurisdictional agencies. The PNDI tool is a primary screening tool, and a desktop review may reveal more or fewer impacts than what is listed on this PNDI receipt. The jursidictional agencies strongly advise against conducting surveys for the species listed on the receipt prior to consultation with the agencies.

## PA Game Commission

## RESPONSE:

No Impact is anticipated to threatened and endangered species and/or special concern species and resources.

## PA Department of Conservation and Natural Resources

## RESPONSE:

Further review of this project is necessary to resolve the potential impact(s). Please send project information to this agency for review (see WHAT TO SEND).

DCNR Species: (Note: The Pennsylvania Conservation Explorer tool is a primary screening tool, and a desktop review may reveal more or fewer species than what is listed below. After desktop review, if a botanical survey is required by DCNR, we recommend the DCNR Botanical Survey Protocols, available here: http://www. gis.dcnr.state.pa.us/hgiser/PNDI_DCNR.aspx.)

| Scientific Name | Common Name | Current Status | Proposed Status | Survey Window |
| :--- | :--- | :--- | :--- | :--- |
| Dryopteris clintoniana | Clinton's Wood Fern | Special Concern <br> Species* | Threatened | Deciduous; survey summer - <br> fall |
| Magnolia virginiana | Sweet Bay Magnolia | Threatened | Threatened | flowers late May - June |
| Poa paludigena | Bog Bluegrass | Threatened | Special Concern <br> Species* | late may - June |
| Rudbeckia fulgida | Eastern Coneflower | Special Concern <br> Species* | Threatened | flowers August - october |

## PA Fish and Boat Commission

## RESPONSE:

No Impact is anticipated to threatened and endangered species and/or special concern species and resources.

## U.S. Fish and Wildlife Service

## RESPONSE:

Further review of this project is necessary to resolve the potential impact(s). Please send project information to this agency for review (see WHAT TO SEND).

* Special Concern Species or Resource - Plant or animal species classified as rare, tentatively undetermined or candidate as well as other taxa of conservation concern, significant natural communities, special concern populations (plants or animals) and unique geologic features.
** Sensitive Species - Species identified by the jurisdictional agency as collectible, having economic value, or being susceptible to decline as a result of visitation.


## WHAT TO SEND TO JURISDICTIONAL AGENCIES

If project information was requested by one or more of the agencies above, upload* or email* the following information to the agency(s). Instructions for uploading project materials can be found here. This option provides the applicant with the convenience of sending project materials to a single location accessible to all three state agencies. Alternatively, applicants may email or mail their project materials (see AGENCY CONTACT INFORMATION).
*Note: U.S.Fish and Wildlife Service requires applicants to mail project materials to the USFWS PA field office (see AGENCY CONTACT INFORMATION). USFWS will not accept project materials submitted electronically (by upload or email).

## Check-list of Minimum Materials to be submitted:

Project narrative with a description of the overall project, the work to be performed, current physical characteristics of the site and acreage to be impacted.

A map with the project boundary and/or a basic site plan(particularly showing the relationship of the project to the physical features such as wetlands, streams, ponds, rock outcrops, etc.)
In addition to the materials listed above, USFWS REQUIRES the following
SIGNED copy of a Final Project Environmental Review Receipt
The inclusion of the following information may expedite the review process.
Color photos keyed to the basic site plan (i.e. showing on the site plan where and in what direction each photo was taken and the date of the photos)

Information about the presence and location of wetlands in the project area, and how this was determined (e.g., by a qualified wetlands biologist), if wetlands are present in the project area, provide project plans showing the location of all project features, as well as wetlands and streams.

## 4. DEP INFORMATION

The Pa Department of Environmental Protection (DEP) requires that a signed copy of this receipt, along with any required documentation from jurisdictional agencies concerning resolution of potential impacts, be submitted with applications for permits requiring PNDI review. Two review options are available to permit applicants for handling PNDI coordination in conjunction with DEP's permit review process involving either T\&E Species or species of special concern. Under sequential review, the permit applicant performs a PNDI screening and completes all coordination with the appropriate jurisdictional agencies prior to submitting the permit application. The applicant will include with its application, both a PNDI receipt and/or a clearance letter from the jurisdictional agency if the PNDI Receipt shows a Potential Impact to a species or the applicant chooses to obtain letters directly from the jurisdictional agencies. Under concurrent review, DEP, where feasible, will allow technical review of the permit to occur concurrently with the T\&E species consultation with the jurisdictional agency. The applicant must still supply a copy of the PNDI Receipt with its permit application. The PNDI Receipt should also be submitted to the appropriate agency according to directions on the PNDI Receipt. The applicant and the jurisdictional agency will work together to resolve the potential impact(s). See the DEP PNDI policy at https://conservationexplorer.dcnr.pa.gov/content/resources.

## 5. ADDITIONAL INFORMATION

The PNDI environmental review website is a preliminary screening tool. There are often delays in updating species status classifications. Because the proposed status represents the best available information regarding the conservation status of the species, state jurisdictional agency staff give the proposed statuses at least the same consideration as the current legal status. If surveys or further information reveal that a threatened and endangered and/or special concern species and resources exist in your project area, contact the appropriate jurisdictional agency/agencies immediately to identify and resolve any impacts.

For a list of species known to occur in the county where your project is located, please see the species lists by county found on the PA Natural Heritage Program (PNHP) home page (www.naturalheritage.state.pa.us). Also note that the PNDI Environmental Review Tool only contains information about species occurrences that have actually been reported to the PNHP.

## 6. AGENCY CONTACT INFORMATION

PA Department of Conservation and Natural

## Resources

Bureau of Forestry, Ecological Services Section 400 Market Street, PO Box 8552

> Harrisburg, PA 17105-8552

Email: RA-HeritageReview@pa.gov
Fax:(717) 772-0271
PA Fish and Boat Commission Division of Environmental Services 450 Robinson Lane, Bellefonte, PA 16823 Email: RA-FBPACENOTIFY@pa.gov

## U.S. Fish and Wildlife Service

Pennsylvania Field Office
Endangered Species Section
110 Radnor Rd; Suite 101
State College, PA 16801
NO Faxes Please
PA Game Commission
Bureau of Wildlife Habitat Management
Division of Environmental Planning and Habitat
Protection
2001 Elmerton Avenue, Harrisburg, PA 17110-9797
Email: RA-PGC_PNDI@pa.gov
NO Faxes Please

## 7. PROJECT CONTACT INFORMATION



## 8. CERTIFICATION

I certify that ALL of the project information contained in this receipt (including project location, project size/configuration, project type, answers to questions) is true, accurate and complete. In addition, if the project type, location, size or configuration changes, or if the answers to any questions that were asked during this online review change, I agree to re-do the online environmental review.


