

### Thermoelectric Network Meeting Engineering Challenges and the Thermoelectric Roadmap

Market Applications and Future Activities

Dr Cedric Rouaud, Chief Engineer, Engines Product Group

21st April 2016

Delivering Excellence Through Innovation & Technology w

© Ricardo plc 2016

#### Content



#### Key market applications

Potential research activities

#### **Key market applications – focus on Internal Combustion Engines**

- Seebeck effect Heat to Electrical Power for reduction of fuel consumption and CO2 emissions:
  - Internal Combustion Engines:
    - Passenger car Diesel, gasoline engines ~ 0.5-1 kW
    - Heavy Duty Vehicles Diesel, natural engines ~ 2-5 kW
    - Stationary engines Diesel, Natural gas > 5-100kW
    - Combined Heat and Power Diesel, Natural gas
  - Industrial plants, furnaces
  - Autonomous sensors
- Peltier effect Electrical Power to Heat / Cold for thermal comfort, cooling of electronics
  - Transport applications: cabin thermal comfort (steering wheel, seat), battery cooling/heating, power electronics cooling
  - Buildings heating and cooling









#### Passenger car – Electrification trend Legislative drivers will continue to demand ever lower CO2 emissions and with zero air quality impact





Thermoelectric Network Meeting

21<sup>st</sup> April 2016

© Ricardo plc 2016 4

Electrification is here to stay but no "one size fits all" solution – Micro/48 volt systems for volume and PHEV for premium





#### Micro/Mild: Solution for the "Average Car"

- Ricardo HyBoost ~ 95 g/km in "C" class car
- Ricardo ADEPT ~ 70 i
- g/km in family car
- Micro-hybrid 48v architecture under development since 2011
- Below 60v "hazardous" threshold

#### Full Hybrid: Niche or High Performance

- Prius best-selling hybrid
   But, at 89g/km cost/benefit eroded
- New cycles place more weight on highway driving where hybrids have less benefit
- KERS systems make sense in supercars

Plugged In: The Future? – From Premium to Volume

- Favourable treatment in legislative cycles makes technology attractive in larger premium vehicles
- BMW i3 EV with optional range extender
- Tesla shows that it is possible to make money with a premium "eco" product

## Advanced combustion engines & electrification of the powertrain are key to future of light duty vehicles



LONG TERM: ~2050 SHORT TERM: ~2015 MEDIUM TERM: ~2025 Extreme downsizing with Plug-in/Hybrid electric Boosting & downsizing 2 & 3 cylinder engines systems dominate Turbocharging Combined turbo/ Very high specific Supercharging supercharging systems power ICE's/Fuel Cells Low speed torque Advance 48 volt micro 50% lower weight enhancements hybrid systems dominate Range of application Friction reduction • PHEV's in premium & specific low carbon fuels Advanced thermal performance products Exhaust & Coolant systems EV's for city vehicles energy recovery Stop/Start & low cost Significant weight Advanced Micro Hybrid technology reduction thermodynamic Cycles Niche Hybrid, PHEV's & High Efficiency Lean – Split Cycle? Electric Vehicles Stratified Gasoline Heat Pumps? Weight reduction (5-10%) Advanced low carbon Increasing Importance fuel formulations

of Electrification

### RICARDO

#### Passenger car – Electrification trend Estimates of Market Penetration of Diesel/gasoline Engines: Passenger Cars & SUVs without chassis frames – Europe & US





#### Commercial Vehicles - Electrification trend Estimates of Market Penetration of Diesel/gasoline Engines: Heavy Commercial Vehicles (HCV) – Europe & US





## Possible integration of thermoelectric generator (TEG) on engines (Diesel, gasoline, Natural gas)



- Example: Application on 3 cylinder downsized gasoline engine wit or without EGR (HP or LP)
- Thermoelectric Generator can be installed after Exhaust After Treatment or as EGR cooler (HP or LP) and cooled by engine coolant and/or engine lubricating oil
- Objectives:
  - Recover exhaust / EGR heat and convert it into electricity using thermoelectric effect (Seebeck materials)
  - Recover exhaust/EGR heat and transfer it to engine coolant and/or engine lubricating oil
  - Improve engine coolant and/or engine oil warm-up
  - Fuel Consumption benefit over NEDC: 3-5%, WLTC: 2-4%



#### **Marine – Large Diesel engines**



• Example of installation of TEG





Source: Wartsila, example of heat exchanger for WHR (ORC here)



21<sup>st</sup> April 2016

#### **Boundary conditions – hot / cold for transport applications**



|                            | Passenger<br>car –<br>gasoline<br>engine                        | Passenger<br>car – Diesel<br>engine                             | Heavy Duty Diesel<br>vehicle                                    | Large Engine<br>(Marine) - Diesel |
|----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|
| Exhaust gas temperature *  | 300 - 800°C                                                     | 150 - 650⁰C                                                     | 300 - 450°C                                                     | 300 - 350°C                       |
| EGR<br>temperature         | 400 - 900°C                                                     | 250 - 700⁰C                                                     | 350 − 650°C                                                     | N/A                               |
| Cold source<br>temperature | 40 - 100°C<br>(engine or Low<br>temperature<br>circuit coolant) | 40 - 100°C<br>(engine or Low<br>temperature<br>circuit coolant) | 40 - 100°C<br>(engine or Low<br>temperature circuit<br>coolant) | < 45°C<br>(sea)                   |

\* Temperature after after-treatment system

#### Hot/cold sources – Gasoline & Diesel engines - NEDC





- Key market applications
- Potential research activities

### Thermoelectric generator challenges – to reach 10% efficiency thermoelectric generator



- Several activities are still needed; simulations, specifications, tests, FMEA, risk & hazard analysis
- Thermoelectric components :
  - Shape of thermoelectric elements/generator (annular or flat plate)
  - Assembly process / High T° brazing and differential expansion
  - Insulation for reducing thermal losses between p and n joints (aerogel)
  - Improvement merit coefficient ZT (now 0.4 to 0.8 objective 1.5-2)
    - Interest of the segmentation for materials for optimising ZT / T°
  - Thermomechanical behaviour / reliability / durability

Thermoelectric Network Meeting

- Reduce the number of material layers between hot and cold sources in order to reduce thermal resistance
- Efficient heat transfer on exhaust line without increasing the pressure drop (usually: + 100 mbar on exhaust line => -1 to -4 kW on the engine crankshaft)
- Electric production strategies (HW / SW) : electric auxiliaries / strategy / DC/DC MPP Tracker with high efficiency
- Cost / benefit ratio competitive with other Waste Heat Recovery Solutions

Interface risks: control of « global efficiency » (holistic approach)



BC: Boundary Condition

## Exhaust heat energy recovery can yield significant efficiency gains for the IC engine

Variety of exhaust energy recovery approaches to improve engine efficiency

| 30-50% of<br>energy is<br>wasted in | Turbo-compounding *                     | <ul> <li>Mechanical systems applied to long-haul trucks</li> <li>Electrical systems also offered by suppliers</li> </ul>                                  |
|-------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coolant,<br>Friction,               | Thermo-electric<br>(Seebeck)            | <ul> <li>Potential simple solution with no moving parts</li> <li>Research to develop improved materials</li> </ul>                                        |
|                                     | Bottoming cycle<br>(Rankine, Brayton) * | <ul> <li>Commonly used for power generation</li> <li>Packaging and irregular thermal load issues require detailed systems development approach</li> </ul> |
| Exhaust heat                        | Thermo-chemical *                       | <ul> <li>Ethanol reformation to increase calorific value</li> <li>Has been demonstrated at laboratory level</li> </ul>                                    |
| Usable Engine<br>Energy             | Novel engine cycles                     | <ul> <li>Compression and combustion/expansion processes separated</li> <li>Demonstrated at Ricardo for power generation</li> </ul>                        |

\*Not presented here

Source: Scania, Bowman Power, MTZ, RWE Innogy

Thermoelectric Network Meeting

Case Martine Contractor

#### All WHR systems are costly relative to many application needs Solutions in bold are being studied actively for HDD/passenger cars



| < 2020                                                 | Heat<br>energy<br>recovery | Typical<br>FE gain | Applications                             | Issues                                                      | Transiency | Cost | Technology maturity                       |
|--------------------------------------------------------|----------------------------|--------------------|------------------------------------------|-------------------------------------------------------------|------------|------|-------------------------------------------|
| Turbo<br>compounding (m)                               | 5 %                        | 3 - 5%             | Heavy duty Truck,<br>Off Highway,        | Mechanical losses at low load                               | +++        | -    | Commercialised in<br>premium products     |
| Turbo<br>compounding (e)                               | 15%                        | 3 -10%             | Marine, Rail &<br>Power<br>Passenger car | Need for electrical<br>power consumer or<br>motor           | +++        |      | Commercially-ready systems available      |
| Rankine cycle /<br>ORC                                 | 20%                        | 3 -10%             |                                          | Condenser cooling, bulk and cost                            | ++         |      | Working prototypes developed              |
| Thermo electrics<br>(Seebeck)                          | 10%                        | 3 -5%              | Passenger cars<br>Heavy duty diesel      | Cost                                                        | +++        |      | Concept (Automotive)<br>Comm'd (Space)    |
| Fuel reforming                                         |                            | 3-10%              | Combustion<br>improvement – any<br>ICE   | Reformate<br>management,<br>transients, Cost                | +          |      | Concepts and prototypes                   |
| AMTEC-Alkali<br>Metal Thermal to<br>Electric Converter | 20-30%                     | 3 - 10%            | Passenger cars                           | High temperature<br>operations<br>Material (Na, K),<br>BASE | ++         |      | Concepts and prototypes                   |
| Stirling engines                                       | 20%                        | 3 - 12%            | Micro CHP<br>Marine engines              | Requires precise matching, Cost                             | ++         |      | Commercialized as standalone devices      |
| Split cycle engines                                    | 60%                        | 36%                | Power generation<br>Automotive           | Complexity, risk, Cost                                      | ++         |      | Prototype (Power)<br>Concept (Automotive) |

> 2020

The high level technology roadmap for Waste Heat Recovery Systems, using exhaust gas and/or any other fluids available on gasoline / diesel vehicles (coolant, oil, EGR, charge air)



Europe: Technology Roadmap for Thermal Management gasoline/Diesel

| Emissions                            | Euro 4 (200 | 5) Euro 5                      | (2009)                       | Euro 6 (2014)     | Euro 7 (2020)                         |
|--------------------------------------|-------------|--------------------------------|------------------------------|-------------------|---------------------------------------|
| kW/I                                 | <           | 75 85                          | 130g/km                      |                   | <b>295</b> g/km CO₂ target            |
|                                      | Exhaust H   | eat Recovery for e             | engine/transmiss             | sion/cabin warm-  |                                       |
| Waste<br>Heat<br>Recovery<br>Systems | τι          | irbocompounding                | (mechanical) or              |                   |                                       |
|                                      |             |                                | 1 <sup>st</sup> market: HD   | DD Turbocom       | pounding (electrical)                 |
|                                      |             | 1 <sup>st</sup> market: Genset | s, HDD (2017)                | Rankine cycle     | e (mech/electrical)                   |
|                                      |             | 1:                             | <sup>st</sup> market: passen | iger car Therm    | noelectricity (Seebeck)               |
|                                      |             |                                |                              | Energy            | Recovery / Split Cycle                |
|                                      |             |                                |                              |                   | Fuel reforming                        |
|                                      |             |                                |                              | Heat to Cool (at  | osorption, adsorption)                |
|                                      |             |                                | AMTEC (Alkal                 | i Metal Thermal t | o Electric Conversion) 📘              |
|                                      |             |                                |                              | TAG (Therr        | noAcoustic Gener <mark>ator)</mark> 📘 |
| 2                                    | 005         | 2010                           | 2015                         | 5                 | 2020 202                              |

### THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?



# RICARDO 1915–2015

Ricardo UK Ltd – Shoreham Technical Centre, Shoreham-by-Sea, West Sussex, BN43 5FG, UK



Dr Cedric Rouaud Chief Engineer – Engines Product Group

 Direct Dial:
 +44 (0)1273 794 095

 Reception:
 +44 (0)1273 455 611

 Mobile:
 +44 (0)7809 595 874

 cedric.rouaud@ricardo.com

www.ricardo.com