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Abstract— In this paper, we study the relationship between
two crucial properties in linear dynamical networks of diffu-
sively coupled agents, that is controllability and robustness to
noise and structural changes in the network. In particular, for
any given network size and diameter, we identify networks that
are maximally robust and then analyze their strong structural
controllability. We do so by determining the minimum number
of leaders to make such networks completely controllable with
arbitrary coupling weights between agents. Similarly, we design
networks with the same given parameters that are completely
controllable independent of coupling weights through a mini-
mum number of leaders, and then also analyze their robustness.
We utilize the notion of Kirchhoff index to measure network
robustness to noise and structural changes. Our controllability
analysis is based on novel graph-theoretic methods that offer
insights on the important connection between network robust-
ness and strong structural controllability in such networks.

I. INTRODUCTION

In a networked control system, controllability and robust-
ness to noise and structural changes in the network are two
of the most crucial attributes. Controllability describes the
ability to manipulate and drive the network to a desired
state through external inputs, whereas, network robustness
expresses the ability of the network to maintain its structure
in the event of device or link failures. Exploiting trade-offs
between network controllability and robustness can have a
far reaching impact on the overall network design.

In this paper, we study the relationship between control-
lability and robustness in diffusively coupled leader-follower
networks by focusing on finding extremal networks for these
properties. In particular, for given parameters, we obtain
networks with maximal robustness and then analyze their
controllability. Similarly, we design networks with maximal
controllability, and then evaluate their robustness. To char-
acterize network robustness, we utilize a widely used metric
Kirchhoff index (Kf ) that captures both aspects of robustness,
that is, the effect of structural changes in the network as
well as the effect of noise on the overall dynamics (for
instance, see [1], [2], [3]). To quantify control performance,
we consider the minimum number of inputs (leaders) needed
to make the network strong structurally controllable, that is,
completely controllable irrespective of the coupling weights
between nodes (e.g., see [4], [5], [6]). Accordingly, a network
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that requires fewer leaders for strong structural controllability
is preferred over the one requiring many leaders.

Our approach is primarily graph-theoretic, and turns out to
be effective in exploiting the relationship between network
controllability and robustness. Our main contributions are:

• For any given number of nodes N and diameter D,
we identify networks with maximum robustness and
provide a detailed analysis of their controllability, that
is, the number of leaders that are necessary and suffi-
cient to completely control such networks with arbitrary
coupling weights between nodes.

• For any number of nodes N and diameter D, we design
networks that are strong structurally controllable with
the minimum number of leaders. For this, we first
provide a sharp upper bound on the minimum number of
leaders for strong structural controllability with arbitrary
N and D.

• We also evaluate the robustness of maximally control-
lable networks and compare it with the robustness of
maximally robust graphs for the same N and D.

Kirchhoff index or equivalently effective graph resistance
based measures have been useful in quantifying the effect of
noise on the expected steady state dispersion in linear dynam-
ical networks, [1], [7], [8]. To maximize robustness by min-
imizing Kirchhoff index, various optimization approaches
have been proposed (e.g., [3], [9]). The main objective there
is to determine crucial edges that need to be added or
maintained to maximize robustness under given constraints
[10]. To quantify controllability, several approaches have
been adapted, such as determining the minimum number
of inputs (leader nodes) needed to (structurally or strong
structurally) control a network, determining the worst-case
control energy based on controllability Gramians, and so on
(e.g., see [11], [12]). Strong structural controllability, due
to its independence on coupling weights between nodes, is
a generalized notion of controllability. There are various
studies providing graph-theoretic characterizations of this
concept [4], [5], [6].

Very recently in [13], trade-off between controllability
and fragility in complex networks is investigated. Fragility
measures the smallest perturbation in edge weights to make
the network unstable. Authors in [13] show that networks
that require small control energy to drive from one state
to another, as measured by the eigen values of the control-
lability Gramian, are more fragile and vice versa. In our
work, for control performance, we consider minimum leaders
for strong structural controllability, which is independent



of coupling weights; and for robustness, we utilize the
Kirchhoff index which measures robustness to noise as well
as to structural changes in the underlying network graph.
Moreover, in this work we focus on designing and comparing
extremal networks for these properties.

II. PRELIMINARIES

Let G(V, E) be an undirected graph with a vertex set V
and edge set E . The graphs in this paper are loop-free, that
is, no self loops between nodes. A node u is a neighbor of
v if an edge exists between u and v, which is denoted by
an unordered pair (u, v). The neighborhood of u is denoted
by Nu = {v ∈ V|(u, v) ∈ E}. The distance between nodes
u and v, denoted by d(u, v), is the number of edges in the
shortest path between u and v. The diameter of G, denoted
by D, is the maximum distance between any two nodes
in G. A graph is weighted if edges are assigned values
(weights) using some weighting function w : E −→ R+.
The adjacency matrix of G is defined as

Aij =

{
w(i, j) if (i, j) ∈ E ,

0 otherwise. (1)

Similarly, the degree matrix of G is defined as

∆ij =

{ ∑
k∈Ni

Aik if i = j,

0 otherwise.
(2)

The Laplacian of G is then defined as

L = ∆−A. (3)

A. Network Dynamics
We consider a network of agents modeled by a graph

G(V, E) in which the node set V = {1, 2, . . . , N} represents
agents and the edge set E ⊆ V × V represents inter-
connections between agents. Each agent i updates its state
xi ∈ R by the following dynamics

ẋi(t) = −
∑
j∈Ni

w(i, j)(xi(t)− xj(t)), (4)

where w(i, j) is the coupling strength between nodes i and
j. Moreover, to control and drive the network as desired,
external control inputs are injected through a subset of nodes
called leaders. The dynamics of the leader node i is,

ẋi(t) = −
∑
j∈Ni

w(i, j)(xi(t)− xj(t)) + ui(t). (5)

Let the set of leaders be represented as VL = {`1, . . . , `k} ⊆
V , where, without loss of generality, the leaders are labeled
such that `j < `j+1. If the total number of nodes is N and
the number of leader nodes is k, then the overall system
level dynamics can be written using the underlying graph’s
Laplacian as

ẋ(t) = −Lx(t) + Bu(t), (6)

where x(t) =
[
x1(t) x2(t) · · · xN (t)

]T ∈ RN be the
state vector, u(t) ∈ Rk be the control input to the leaders,
and B be an N × k input matrix with the following entries

Bij =

{
1 if i = `j
0 otherwise. (7)

III. NETWORK MEASURES AND PROBLEM SETUP

A. Robustness Measure

To measure network robustness, we use the notion of
Kirchhoff index of a graph, denoted by Kf , and defined as

Kf = N

N∑
i=2

1

λi
, (8)

where N is the number of nodes and λ2 ≤ λ3 ≤ · · ·λN are
positive eigenvalues of the Laplacian of the graph (weighted
or unweighted). A smaller value of Kf indicates higher
robustness in networks and vice versa.

Our motivation to use this robustness measure is twofold.
First, it is very useful in characterizing the robustness to noise
of linear consensus over networks. In fact, as shown in [1], it
is directly related to the H2 norm that measures the expected
steady-state dispersion of the nodes under white noise via

the relationship H2 =
(
Kf

2N

) 1
2

. Thus, it characterizes the
functional robustness – ability of the network to perform
well in the presence of noise that corrupts measurements or
information exchange within the network. Other applications
of Kf in the study of various control theoretic problems have
been surveyed in [7].

Second, Kf of a network captures its structural robustness
– the ability of the network to retain its structural attributes
in the case of edge or node deletions. It assimilates the effect
of not only the number of paths between nodes, but also their
quality as determined by the lengths of the paths [3]. For a
detailed discussion, we refer the readers to [2], [3], [9].

B. Controllability Measure

A state x ∈ RN is reachable if there exists an input
that can drive the system in (6) from origin to x in finite
time. A set of all reachable states constitutes the controllable
subspace, which is the range space of the following matrix.

Γ =
[
B −LB (−L)2B · · · (−L)N−1B

]
(9)

The dimension of controllable subspace is the rank of Γ,
which needs to be N for complete controllability. The rank
of Γ depends not only on the edge set of the graph but
also on the edge weights. In fact, a graph that is completely
controllable for one set of edge weights might not remain
completely controllable if edge weights are changed. For a
given graph and leader nodes (inputs), the minimum rank
of Γ for any choice of edge weights is the dimension of
strong structurally controllable subspace. A graph is said to
be strong structurally controllable with a given set of leaders,
if the resulting controllability matrix Γ is full rank with
any choice of edge weights. Thus, in a strong structurally
controllable network, perturbation in edge weights has no
effect on the dimension of controllable subspace, which
makes the notion of strong structural controllability quite
general and applicable in situations where exact information
of edge weights is inscrutable.

As a result, we are interested in finding the minimum num-
ber of leaders required to make a network strong structurally
controllable.



C. Problems

We are interested in exploring relationships and trade-offs
between robustness and controllability (as defined above) in
diffusively coupled systems (6). In particular, we focus on
extremal cases, and look at the following problems.

1. For given number of nodes N and diameter D, which
graphs have the minimum Kf and thus, the maximum
robustness?

2. What is the control performance, as measured by the
minimum number of leaders needed for strong structural
contrallability, of the maximally robust graphs?

3. For any N and D, what is the minimum number of
leaders that guarantee strong structural controllability?
Furthermore, how can we construct graphs that achieve
strong structural controllability with that many leaders.

4. What is the robustness of graphs in point (3) above?

IV. MAXIMALLY ROBUST NETWORKS AND THEIR
CONTROLLABILITY

In this section, our goal is to identify maximally robust
networks, and then analyze their controllability.

A. Maximally Robust Networks

For a given N and D, which graphs are maximally robust,
that is, have the minimum Kf amongst all such graphs?
Another way to state this problem is to consider a complete
graph of N nodes, denoted by KN , and obtain a subgraph of
KN that has a diameter D and has the minimum Kf amongst
all such subgraphs.

For the unweighted case, it has been shown explicitly
in [3] that for any N and D, optimal graphs having the
minimum Kf belong to a special class known as the clique
chains, defined below. A clique is a subgraph in which all
vertices are pairwise adjacent.

Definition (Clique chain [3]) Let n1, n2, · · · , nD, nD+1 be
a set of positive integers and N =

∑D+1
i=1 ni, then a clique

chain of N nodes and diameter D is a graph obtained from
a path graph of diameter D, that is PD+1, by replacing each
node with a clique of size ni such that the vertices in distinct
cliques are adjacent if and only if the corresponding original
vertices in the path graph are adjacent. We denote such a
clique chain by GD(n1, · · · , nD+1).

An example is illustrated in Figure 1.

Kn1

Kn2 Kn3

Kn4

Fig. 1: G3(1, 2, 2, 1) – A clique chain with 6 nodes and diameter
3 with n1 = 1, n2 = 2, n3 = 2, and n4 = 1.

In fact, the following result establishes optimality of clique
chains in terms of the minimum Kf .

Theorem 4.1: [3] For a given number of nodes N and D,
graphs that achieve the minimum Kf are necessarily clique

chains of the form GD(n1 = 1, n2, · · · , nD, nD+1 = 1)
where N =

∑D+1
i=1 ni.

Note that the n1 and nD+1 are always 1 in the optimal
clique chains. For the weighted case, assume that KN is
a complete graph with edge weights, and the question is
to obtain a weighted spanning subgraph of KN that has
a diameter D and has the minimum Kf . Using the same
arguments as in [3], we state the following:

Proposition 4.2: If KN is a weighted complete graph,
then among all the subgraphs of KN with N nodes and
diameter D, the graph that has the minimum Kf is a clique
chain GD(1, n2, · · · , nD, 1) where

∑D+1
i=1 ni = N .

Thus, for a given N and D, maximally robust graphs (both
for the weighted and unweighted cases) are clique chains of
the form GD(1, n2, · · · , nD, 1).

B. Controllability of Clique Chains

Next, we analyze the strong structural controllability of
the maximally robust graphs, that is, clique chains. The main
result of this section is stated below.

Theorem 4.3: Let GD(n1, · · · , nD+1) be a clique chain
with diameter D > 2, and k be the number of leaders needed
for the strong structural controllability of GD, then

N − (D + 1) ≤ k ≤ N −D. (10)
We prove this result in [14] using the following graph-

theoretic notions:
• The maximal leader invariant external equitable parti-

tions (LIEEP) [15], [16] to get the lower bound, and
• the notion of distance-to-leaders vectors and pseudo-

monotonically increasing sequences (PMI) that we in-
troduced in [5] to get the upper bound. We explain these
concepts with an example in Appendix.

To obtain the lower bound in (10), we first note that
the maximal LIEEP consisting of only singleton cells is a
necessary condition for complete controllability. Next, we
determine the minimum number of leaders to have such a
maximal LIEEP, which directly gives the minimum number
of leaders for strong structural controllability. For the upper
bound in (10), we determine the minimum number of leaders
such that the graph has a full PMI sequence (see Appendix),
which in turn would imply that the network is strong
structurally controllable with that many leaders. A detailed
proof is available in [14].

V. MAXIMALLY CONTROLLABLE NETWORKS AND THEIR
ROBUSTNESS

In the previous section, we looked at maximally robust
networks, and analyzed their controllability. Here, we obtain
graphs that are strong structurally controllable with the
minimum leaders and evaluate their robustness.

A. Maximally Controllable Networks

For any given N and D, which graphs exhibit strong struc-
tural controllability with the minimum number of leaders? To
answer this, we first need to study for an arbitrary N and D,
what is the minimum number of leaders needed to guarantee



strong structural controllability? One of the main results in
this section is as follows:

Theorem 5.1: For any N and D, there exist graphs that
are strong structurally controllable with k leaders, where

k ≤
⌈
N − 1

D

⌉
. (11)

Remark 1 - The above bound on the number of leaders
is tight and cannot be improved for arbitrary N and D. In
other words, there are graph classes for which we need at
least k = dN−1D e leaders for strong structural controllability,
for instance path graphs (D = N − 1 and k = 1), cycle
graphs (D = dN/2e and k = 2), complete graphs (D = 1
and k = N − 1).

To construct graphs satisfying the conditions in Theorem
5.1, we again use the notion of PMI sequences of distance-
to-leaders vectors along with the result in Theorem 1.1. For
any N and D, we construct graphs that give a full PMI
sequence wih k leaders, thus, graphs with strong structural
controllability. Moreover, we want k to be as small as
possible, and note that for certain N and D, k is dN−1D e
as discussed previously. In fact, we first show that if a graph
has a full PMI sequence with k leaders, then k ≥ dN−1D e.

Theorem 5.2: Let G be a graph with N nodes, diameter
D, and k leaders such that G has a full PMI sequence, then
N ≤ (kD + 1).

A proof of the above result is available in [14].
Thus, to have a full PMI sequence, we cannot do better

than selecting a minimum of k = dN−1D e leaders. Next,
we show that for any N and D, we can construct graphs
that have full PMI sequences (and hence strong structural
controllability) with dN−1D e leaders. Our approach is as
follows:

First, for given positive integers k and D, we construct a
sequence of N = kD+1 vectors satisfying the PMI property.
Each vector in the sequence is k-dimensional and contains
values from the set {0, 1, · · · , D}.

Second, we construct a graph with N nodes and k leaders
such that the distance-to-leader vectors of nodes are exactly
same as the vectors obtained in the above step. Thus, the
constructed graph has a full PMI sequence of distance-to-
leader vectors. The maximum distance between any leader
and non-leader node in such a graph will be D.

Third, we densify the above graph, that is, maximally
add edges to the graph while ensuring that the distance-to-
leader vectors of nodes do not change. Consequently, we get
graphs with N nodes, D diameter and k leaders. Adding
edges always reduces Kf and hence, improves robustness.
The graphs obtained have full PMI sequences of distance-
to-leader vectors, and are strong structurally controllable.

To construct sequences, we state the following proposition.
Proposition 5.3: Let S(i, k) define the following set of k

vectors in Zk:

S(i, k) =


i i + 1 . . . i + 1
i i . . . i + 1
...

...
. . .

...
i i . . . i

 ,

then the following sequence of kD + 1 vectors in Zk
defines a PMI sequence for any positive integers k and D.


0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

S(1, k) S(2, k) . . . S(D − 1, k)

D
D
D
...
D


(12)

Graph Construction: Next, we construct a graph M with
k leaders and N = kD + 1 nodes whose distance-to-leader
vectors are same as in (12). To do so, consider a vertex set

V = {`i} ∪ {x} ∪ {ui,j} ,

where i ∈ {1, 2 · · · , k} and j ∈ {1, 2, · · · , D− 1}. Nodes
in {`1, `2, · · · , `k} are leaders. We connect these vertices as
follows:
• All leader nodes `i are pair-wise adjacent and induce a

clique.
• x is adjacent to each `i and ui,1, ∀i ∈ {1, · · · , k}.
• For each i ∈ {2, · · · , k}, ui,1 is adjacent to leaders `p,
∀p ∈ {i, i+ 1, · · · , k}.

• For each i ∈ {1, · · · , k}, ui,j is adjacent to ui,j+1,
where j ∈ {1, · · · , D − 1}.

The above construction is illustrated in Figure 2.

...
...

· · ·

· · ·

· · ·

`1

`2

`k−1

`k

u1,1

u2,1

uk,1

u1,2

u2,2

uk−1,2

uk,2

x

uk,D−1

uk−1,D−1

u2,D−1

u1,D−1

uk−1,1

...
...

· · ·

Fig. 2: GraphM with N = kD+1 nodes, where k is the number
of leaders and D is the maximum distance between a leader `i and
some other node. Here, d(`i, u1,D−1) = D,∀i.

Next, we compute the distance-to-leader vectors of nodes
in M as follows:
• For all i ∈ {1, · · · , k}, the distance-to-leaders vector of
`i is a vector of all 1’s except at the ith index , where
it is 0. For the node x, it is a vector of all 1’s.

• For node u1,j , where j ∈ {1, · · · , D− 1}, it is a vector
in which all entries are j + 1.

• For node ui,j , where i ∈ {2, · · · , k} and j ∈
{1, · · · , D − 1}, the distance-to-leaders vector has first
(i−1) entries equal to (j+1) and the remaining entries
are j.

Next, we consider the following sequence of nodes,

[`1, `2, · · · , `k, x, u2,1, u3,1, · · · , uk,1, u1,1,
u2,2, u3,2, · · · , uk,2, u1,2, u2,3, u3,3, · · · , uk,3, u1,3,

· · · , u2,D−1, u3,D−1, · · · , uk,D−1, u1,D−1]. (13)

If the distance-to-leader vectors of nodes in M are ar-
ranged in the same order as in (13), we get the same



sequence as in (12), which is a PMI sequence of length N .
Hence,M has a full PMI sequence, and is strong structurally
controllable.

Example: Consider the graph in Figure 3, with N = 21
nodes and k = 4 leaders. For any leader `i, the maximum
distance between `i and any other node is D = 5. A full
PMI sequence of distance-to-leaders vectors is given below.
Note that for each vector, there is an index (row index of the
circled value) such that the corresponding row value of all
the subsequent vectors in the sequence is strictly larger than
the circled value, thus constituting a full PMI sequence.

`1 · · · `4 x u2,1 u3,1 · · · u3,4 u4,4 u1,4

0© 1 1© 2 2 5 5 5©
1 · · · 1 1 1© 2 · · · 5 5 5
1 · · · 1 1 1 1© · · · 4© 5 5
1 0© 1 1 1 4 4© 5



`2

`3

`1

x
u1,1 u1,2 u1,3 u1,4

`4 u4,1 u4,2 u4,3 u4,4

Fig. 3: A graph with 21 nodes and 4 leaders.

Adding Edges to Graph M: We note that removing an
edge from M could change the distance-to-leader vectors
of nodes. However, we can add edges to M to improve
its robustness by lowering the Kirchhoff index. Next, we
construct a new graph M̄ by maximally adding edges
to M while preserving distances between leaders and all
other nodes. Consequently, all distance-to-leader vectors and
resulting PMI sequence ofM and M̄ are same. We describe
the addition of new edges below.
• For a fixed j, all the nodes in ui,j , where i ∈ {i, · · · , k}

induce a clique.
• Each ui,j is adjacent to u1,j−1.
• For a fixed j > 1, each ui,j , where i > 1, is adjacent

to up,j−1, ∀p ∈ {i+ 1, · · · , k}.
An example of M̄ obtained fromM for N = 21, D = 5,

and k = 4 is shown in Figure 4.

`2

`3

`1

x
u1,1 u1,2 u1,3 u1,4

`4 u4,1 u4,2 u4,3 u4,4

Fig. 4: Construction of M̄ by adding a maximal edge set (red
edges) to M. Here N = 21, k = 4 and D = 5.

Proposition 5.4: For fixed k and D, the graph M̄ is
maximal in the sense that adding any new edge would change
the distance-to-leader vector of some node.

Proof – Available in [14].

Next, we state the following:
Proposition 5.5: If D is the maximum distance between

a leader node `i and some other node in M, then D is the
diameter of M̄ constructed from M.
Remark 3 - So far, we have assumed that N = kD + 1
for some integer k. However, we can obtain the desired
graph for any N by modifying M̄. Let Na be the actual
number of nodes, and D be the desired diameter, then
we construct a graph M̄ with N = kD + 1 nodes where
k = dNa−1

D e. We need at least that many leaders to have
a graph with a full PMI sequence (Theorem 5.2). Since
Na < N , we need to delete (N − Na) nodes from M̄.
We delete the required number of nodes in the following
order: first, we delete the nodes (in the same order)
u1,D−1, uk,D−1, uk−1,D−1, uk−2,D−1, · · · , u3,D−1, then
u1,D−2, uk,D−2, uk−1,D−2, uk−2,D−2, · · · , u3,D−2, and so
on until the total number of nodes in the remaining graph
is Na. Note that the nodes u2,D−i, where i ∈ {1, 2, · · · }
are not deleted to preserve the diameter D. In fact, it
is easy to verify that as a result of nodes deletion, the
distance-to-leaders vectors of nodes in the remaining graph
remain the same as in the original graph, and hence the
longest PMI sequence of distance-to-leaders vectors of the
nodes in the remaining graph has a length Na (full PMI
sequence). Thus, we can state the following proposition.

Proposition 5.6: For any N and D, there exist graphs
that have full PMI sequences with k = dN−1D e leaders.

Since having full PMI sequences is a sufficient condition
for strong structural controllability (Theorem 1.1), and since
we can construct graphs with full PMI sequences for any N
and D with k = dN−1D e leaders (Proposition 5.6), we get
the result in Theorem 5.1 as a direct consequence.

B. Robustness of Maximally Controllable Networks

Here, we compare the robustness of maximally control-
lable graphs for a given N and D as obtained above
with the the robustness of maximally robust graphs, that
is clique chains. Although we know that for given N and
D, maximally robust graphs belong to GD(1, n2, · · · , nD, 1)
where N = 2 +

∑D
i=2 ni; we don’t know the exact values

of ni’s in general and need to compute them numerically. In
Table I, we choose the same values of N and D as in Table
1 in [3], wherein the Kf of optimal (unweighted) clique
chains corresponding to the selected N and D are given.
We compare these values with the Kf of the maximally
controllable graphs (unweighted) for the same N and D.
It is seen that the Kf of maximally controllable graphs is
roughly the double of the Kf of the corresponding clique
chain, especially for the larger D values.

VI. CONCLUSIONS

Networks that exhibit higher robustness to noise and struc-
tural changes typically require many leader nodes (inputs) to
be completely controllable. For a fixed number of nodes N ,
complete graphs are maximally robust but require (N − 1)
leaders for complete controllability. At the same time, path
graphs require only one leader for complete controllability,



TABLE I: Kf of optimal clique chains and maximally
controllable graphs M̄.

N D k Kf (G∗D) [3] Kf (M̄)
2 13 25.08 35.05
3 9 28.22 49.36

26 4 7 37.63 66.08
5 5 51.90 107.18
6 5 70.28 109.15
2 25 49.04 68.41
3 17 52.11 95.40

50 4 13 64.03 126.22
5 10 84.31 174.86
6 9 110.01 202.77
2 50 99.02 137.77
3 33 102.05 193.63

100 4 25 117.51 252.58
5 20 148.11 322.26
6 17 189.44 393.08
2 61 121.01 168.28
3 41 124.04 231.81

122 4 31 140.68 300.42
5 25 175.11 376.06
6 21 222.84 460.38

however, such graphs are minimally robust. We observed a
similar relationship between controllability and robustness if
we also fix the diameter D of a graph along with N vertices.
Clique chains are optimal from the robustness perspective
for given N and D. However, they require a large number
of leaders for strong structural controllability. On the other
hand, for arbitrary N and D, we can construct graphs that are
strong structurally controllable with at most dN−1D e leaders,
which is a sharp bound. However, such graphs are much less
robust compared to optimal clique chains with the same N
and D. In the future, we aim to explore graph operations
that maximally improve one of the two properties while
minimally deteriorating the other one.
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APPENDIX

Pseudo-Monotonically Increasing (PMI) Sequence
Let S =

[
S1 S2 · · · SN

]
be a sequence of vectors

where Si ∈ Rk, ∀i. Moreover, we denote the jth entry of
Si by Si,j . S is a PMI sequence if for each Si ∈ S, there
exists an index α(i) ∈ {1, 2, · · · , k} such that

Si,α(i) < Sw,α(i), ∀w > i.

In our context, we are interested in finding a longest PMI
sequence of distance-to-leaders vectors of nodes in a leader
follower graph as defined below.

Let G(V,E) be a leader follower graph with k leader
nodes `1, `2, · · · , `k. For each node i ∈ V , we define a
distance-to-leaders vector Si ∈ Zk+ such that the jth entry
of Si is the distance of node i with the leader j, that is,

Si =
[
d(i, `1) d(i, `2) · · · d(i, `k)

]T
.

An illustration of the distance-to-leaders vectors is shown in
Figure 5. A PMI sequence of distance-to-leaders vectors is,

S =

[ [
0©
2

]
,

[
2
0©

]
,

[
1©
1

]
,

[
2©
1

]
,

[
3
1©

] ]
.

Note that for each vector, there is an index (of the circled
value) such that values of all subsequent vectors at the
corresponding index are greater than the circled value.

`1

`2

[
0
2

]

[
1
1

]

[
1
1

]

[
2
0

]

[
2
1

] [
3
1

]

[
3
1

]

Fig. 5: A graph with two leaders `1, `2 and distance-to-leaders
vectors of all nodes.

Theorem 1.1: [5] The dimension of SSC is lower
bounded by the length of longest PMI sequence of distance-
to-leaders vectors.
If the longest PMI sequence of distance-to-leaders vectors in
a graph has a length equal to the number of nodes, we say
that the graph has a full PMI sequence. Hence, if a network
graph has a full PMI sequence, then it is strong structurally
controllable.


