R -

POSTSECONDARY I \
Electronic Standards Council D

PESC-ORG

Data Transport Standard
Specification

Version 2.0

May 21, 2007

Prepared by

PESC DTS Technical Workgroup

© Postsecondary Electronic Standards Council (PESC) 2007. All Rights Reserved.

This document may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. This
document itself, however, may not be modified in any way except when expressly approved by
PESC for the purpose of developing standards and specifications.

Notice:

The material contained herein is not a license, either express or implied, to any intellectual
property owned or controlled by any of the authors or developers of this material or PESC. The
material contained herein is provided on an “ASIS” basis and to the maximum extent
permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the
authors and developers of this material and PESC hereby disclaim all other warranties and
conditions, either express, implied or statutory.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERILA OR PESC BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUSTITUTES GOODS OR
SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL,
CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER
CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS
OR ANY OTHER AGREEMENT RELATING TO THIS MATERIAL, WHETHER OR NOT
SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

PESC DTS Technical Workgroup
Data Transport Standard v 2.0 Specification

Executive Summary

Business Problem

Over time, the Higher Education community has developed multiple methods to exchange data
and information with multiple trading partners and operating systems. Each partner has
developed their own protocols, standards or utilized commercial products independently. The
lack of a common standard to transport electronic data has caused each player in the Higher
Education community to develop, maintain and support a wide variety of transport solutions
and hindered its ability to use a common protocol across the Higher Education community.
Differing transport methods make it difficult to support each trading partners proprietary
needs. As technologies advance more organizations are looking for a real-time transport
solution. Due to the lack of a standard transport, entities are forced to develop proprietary
processes or purchase commercial products with licensing and royalties issues.

The primary means of transporting information today is the use of FTP and/or an electronic
mail processes. Each of these has limitations and is not suitable for the exchange of information
for real time processing or acknowledgement. Differing transport definitions and standards
make it difficult to build interfaces that ensure simplicity and reliability as it relates to electronic
exchange of data.

Solution

Since the Higher Education community share common points of interaction, the Data Transport
workgroup was formed to develop a common solution for data transport with representation
from each of the major players in the community.

The Data Transport Standard (DTS) is a specification for a web service architecture that enables
entities to send and respond to any type of request (transaction, inquiry, report) utilizing
standard web service protocols. DTS is a culmination of different specifications and defines
how to use them together. DTS is a result of a PESC initiative to create a standard method to
exchange data within the Higher Education community, regardless of the business process. It is
a recommended replacement for POP3/SMTP (e-mail) and an industry wide solution for real-
time or immediate requests. DTS offers a solution for transport and may coexist or replace FTP.

Web services are based on request-response patterns. These request-response patterns occur in
a synchronous (uninterrupted) mode. DTS defines the request-response pattern to be used in a
SOAP format. SOAP (Simple Object Access Protocol) is widely accepted and an open industry
standard for exchanging messages. Some of the benefits of the SOAP standard are: speed,
extensibility, interoperability and tool integration.

Below is a list of some of the advantages DTS offers to the Higher Education community as a
transport standard.

¢ Guaranteed delivery - real time communication that confirms delivery and receipt, regardless if
payload is processed real-time or not.

Version: 2.0 May 21, 2007
Status: Draft Page iii

PESC DTS Technical Workgroup
Data Transport Standard v 2.0 Specification

e Supports immediate and deferred processing requests.

¢ Single transport method for all business applications (payload insensitive - XML, flat file, binary file,
etc).

¢ No need to analyze payload to determine type and destination.

e Can accommodate a variation of technical platforms (among schools, servicers, lenders, FAMS,
guarantors and FSA).

e Highly secure - transparent encryption via HTTPS and authentication via X.509 digital certificates.

e Supports larger payloads.

¢ No distribution royalties.

e Uses open standards.

e Can be used both for internal and external communications.

The current landscape of the industry offers a unique opportunity for the Higher Education
community to promote a common data transport standard. Many in the higher education
community are either looking to develop a transport process or streamline and consolidate
transports by the adoption or creation of a new transport process. The industry can be
proactive and develop a standard that can meet the needs of multiple business sectors within
our industry. PESC does not want to be reactive, as each sector develops its own solutions for
data transport.

Version: 2.0 May 2006
Status: Approved Page iv

PESC DTS Technical Workgroup
Data Transport Standard v 2.0 Specification

Table of Contents
EXECUTIVE SUMMARY ..ottt 1]
TABLE OF CONTENTS ...ttt ettt se e s st s bR b e bR b et b e s bbb e bbb et e b b et et e senebetanas \Y
TABLES AND FIGURES ..ottt h et b bbbt b st VIl
1 INTRODUCTION ..ottt ettt bt h bbb 1
L1 OVERVIEW...oiiiiiiiiitce ekt h et s ettt sttt 1
1.2 PURPOSE... 1
1.3 SCOFE.... 2
1.4 INTENDED AUDIENCEccccvurrrenne 2
1.5 ORGANIZATION OF THE DOCUMENT ...outttttetrtetetrtetstetetsestssststebessbebstsssssbebssss st b s sbsbebsbsb st bbb et et bssebebessnes 3
2 OVERVIEW AND DESCRIPTION OF DTS SPECIFICATIONccooiiiiiiriiiiirinieiesisieiisis s 1
3 SECURITY (ENCRYPTION/AUTHENTICATION) ..ottt 1
4 DTS WSDL (WEB SERVICE DEFINITION LANGUAGE)... LA
41 TyPES A
42 MESSAGES.....cccvurererenne. .2
4.3 INTERFACES (PORTTYPES) .2
4.4 BINDINGS. 2
A5 SERVICES.....etteittetstete ittt e ettt ettt e ettt £ 222 £ £ 242 £ £ A2 E £ £ £ £ £ £ £ E £ et ettt ettt et ettt 4
5 DTS SOAP DESCRIPTIONS.......oitiiiititieieieitieieieteieieiese et ie bbb bbbt st b bbb bt s bbb s b eb b eb e bbb sb e bbbt eb bbb es 9
5.1 DTS SOAP HEADER ELEMENTS.uititttriitetsisiseststse sttt sttt sttt sttt sttt sttt sttt s ettt sttt 9
5.2 DTS REQUEST SOAP (SEE THE SUPPLEMENTAL SECTION OF THIS DOCUMENT FOR EXAMPLE SOAP) .9
Header Elements
BOOY ..o b bbbk bbb bbb s bbbt b e n et
5.3 DTS RESPONSE SOAP (SEE THE SUPPLEMENTAL SECTION OF THIS DOCUMENT FOR EXAMPLE SOAP).......11
Header Elements
BOOY et
5.4 DTS COMMON HEADER ELEMENT (SEE THE SUPPLEMENTAL SECTION OF THIS DOCUMENT FOR EXAMPLE
SOAP) e
6 COMMUNICATION OR FRAMEWORK ERRORS GENERATED OUTSIDE DTS.
7 DTS ERROR HANDLING REQUIREMENTS: ..ottt 15
7.1 DTS SERVICE ERROR HANDLING TABLE......ctitititiririiteiiiitetentstebeies sttt eb b st et ensneea 15
7.2 WS-SECURITY ERROR HANDLING REQUIREMENTS (PROCESSING ERRORS)c.cuiuiriniiniiicneeree e 15
7.3 DTS FAULTS SUMMARYccuiiiititreeteteststettse st sne sttt sttt sttt es et sea et ses et ses s e e eseae e s es e nenens 16
7.4 DTS CLIENT ERROR HANDLINGcutititiuiiiieteitrtetetst ettt ettt bbbkttt 19
7.5 SUPPLEMENTAL DOCUMENTATION. ..ottt 20
DTS 2.0 WSDL 1.ttt bbbttt ettt 20
Entire Java DTS SOAP REGUESL:cuiuitiiriiieteirieieesisiete sttt bbbt 22
Entire Java DTS SOAP RESPONSE:covvviriiiiririie ettt 23
ENtire .NET DTS SOAP REOUESL:c.eviieieriisiereiiieieesis ettt sttt sessesesessesesessssesesessesenenens 24
Entire .NET DTS SOAP RESPONSE:cvviiiiiiriiiii sttt 25
8 RECOMMENDATIONS ...ttt ettt ettt et bbbt b bbb e b bbb e b e bbb et e bbb e bbb e b bbb e bbb en s s e e s 26
O APPENDIX .ttt b bbb bbb h bbb £ bbb bbbttt 27
Version: 2.0 May 21, 2007

Status: Draft Page v

PESC DTS Technical Workgroup
Data Transport Standard v 2.0 Specification

GLOSSARY ..ot 40
ACKNOWLEDGEMENTS ..ottt 41
REVISION HISTORY ..ottt bbb bbbt 42
Version: 2.0 May 2006

Status: Approved Page vi

PESC DTS Technical Workgroup
Data Transport Standard v 2.0 Specification

Tables and Figures
Tables
Table 4.1 = WSDL EIEINENLES.........coouimiiiiiiciiii ettt saenen 1
Table 7.1 - Fault Summary Table...........cccccoiiiiiiiiicc s 15
Version: 2.0 May 21, 2007

Status: Draft Page vii

1 Introduction

1.1 Owerview

This document defines the Data Transport Standard (DTS), utilizing a set of non-proprietary
Web Services specifications to transport data, along with clarifications and amendments to
those specifications that provide interoperability. The contents were derived by creating
reference implementations and from many Information Technology industry resources
including, but not limited to:

e Simple Object Access Protocol (SOAP) 1.1

e Web Services Description Language (WSDL) 1.1

e Extensible Markup Language (XML) 1.0 (Second Edition)

e RFC2616: Hypertext Transfer Protocol -- HTTP/1.1

e Web Services Interoperability Basic Profile 1.0

e RFC1950: Zlib Protocol

e WS-Security Specification v1.1

1.2 Purpose

The purpose of this specification is to describe the Data Transport Standard (DTS) web service
through the use of Web Service Definition Language (WSDL). The SOAP elements defined are
the minimum required to transport data in a manner that meets the business problem. This
document provides the exact minimum structure for the SOAP that is transmitted between a
web service and its client. If two entities created a web service client and service that transmits
the SOAP described here, the applications should communicate correctly without further work.

It is intended to be a guide for PESC members and the education community in general, to use
when implementing the Data Transport Standard throughout the community.

Version: 2.0 May 21, 2007
Status: Draft Page 1

http://www.w3.org/TR/SOAP/�
http://www.w3.org/TR/wsdl.html�
http://www.w3.org/TR/REC-xml�
http://www.ietf.org/rfc/rfc2616�
http://www.ws-i.org/Profiles/BasicProfile-1.0.html�
http://www.ietf.org/rfc/rfc1950�
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-soapmessagesecurity.pdf�

1.3 Scope

This specification provides a technical guideline for a web service to electronically exchange
data between organizations. It focuses on defining the transport layer, the DTS WSDL, and DTS
SOAP.

While this document identifies the necessary SOAP elements for data exchange using web
services, the actual values contained in the SOAP elements and those industry segments will
specify usage definitions for DTS in different industry segments. Those industry segments will
define these values.

The following topics are not within the scope of this specification:

e The business reasons for adopting DTS as a data transport
e The integration of DTS with the file processing backend system
¢ How immediate or deferred (batch) data processing is performed

1.4 Intended Audience

This document is intended for experienced developers. It targets readers that have an
intermediate to expert level of knowledge on Web Services, XML and cryptography. It is not
intended to be a comprehensive tutorial on these topics. Only those topics that must be clarified
for the purposes of standardization are covered.

Version: 2.0 May 2006
Status: Approved Page 2

1.5 Organization of the Document

The Guidelines for the DTS Specification consists of the following sections:

0 Section1 - Introduction:
0 provides a high level overview, scope, and assumptions of this document
0 Section 2 - Overview and Description of DTS Specification:
0 provides an introduction to DTS and highlights topics that readers should be
familiar with before reading this document
0 Section 3 - DTS WSDL (Web Services Description Language)
0 provides a high level overview of the purpose of the DTS WSDL and outlines the
requirements for constructing the request and response SOAP
0 Section 4 - DTS SOAP Descriptions:
0 describes how a DTS Client and Service produces the SOAP requests and
responses that meet the requirements of the WSDL
0 Section 5 - Communication or Framework Errors Generated Outside DTS:
0 describes a list of possible external errors that can be encountered when creating
a web service
0 Section 6 - DTS Error Handling Requirements:
0 provides a list of all error conditions defined within the DTS framework and how
they are reported
0 Section 7 - Recommendations:
0 provides recommendations for topics of consideration that are outside the scope
of the specification but may impact an organizations implementation of DTS
0 Section 8 - Glossary:
0 provides a list of terms and definitions
0 Section 9 - Acknowledgements
Version: 2.0 May 21, 2007

Status: Draft

Page 3

2 OVERVIEW AND DESCRIPTION OF DTS SPECIFICATION

DTS is designed to be a standard for creating web services that provide real-time transfer of
data. Itis built on the standard request/response scenario of web services. It is designed so
any type of business could use this as a transport mechanism. DTS is based on computer
industry standards in the Web Services arena:

WSDL - Describes what functionality a Web Service offers, how it communicates and
where you can find it.

e SOAP - Specialized XML used as the basis for transporting data for Web Services
WS-Security - Used for authentication and protection against “man in the middle”
attacks.

HTTPS - Used for encryption and communication layer

DTS is designed to provide functionality in the following areas:

Core Services - Build SOAP based on the specification

Security (Encryption/ Authentication) - Ensure that the information is encrypted and
authenticated

o Assured Delivery - Assures that the request gets to the designated endpoint
Application Integration - Provides business application integration to gain access to the
low level SOAP elements for processing

¢ Error Handling - Provides error handling for each area in the specification

Version: 2.0 May 21, 2007
Status: Draft Page 1

3 SECURITY (Encryption/Authentication)
e SSL (HTTPS)

Organizations implementing a DTS Service, must obtain an X.509 certificate suitable for the
site’s web server thus enabling secure communications. The certificate must be obtained
from a recognized certificate authority such as VeriSign® or similar organization. Each
organization should consult its web server’s documentation (or Technical Support staff) for
details on obtaining and installing an X.509 certificate.

NOTE
Test certificates or self-signed certificates must not be
used in production environments.

Communication using SSL (https) works as follows:
e The (DTS) client connects to the web server and as part of the normal connection
process (“handshake") asks for the certificate.
e The web server, prior to the DTS Service, returns the certificate to the client,
o The client then determines which certificate authority authorized and signed the
certificate and verifies that the signature is valid by using the public key for that

authority.

o If the certificate is found to be valid, the two computers begin communication with
encryption.

o If the certificate, domain name, or keys do not match up correctly, the connection is
aborted.

While this is an over simplification of SSL encryption, there are two key items to point out.
First, all of these steps are part of the https protocol and lie completely outside of a DTS
implementation. Second, the public key exchange occurs during the “handshake” of client
and server, so there is no need for manual exchange of the public key contained in the X.509
certificate. Commonly available Web Server applications and Web Browser applications
have security via SSL built in.

Version: 2.0 May 21, 2007
Status: Draft Page 1

e WS-Security Specification

e This version of the DTS specification requires the inclusion of parts of the WS-Security
Specification v1.1 to provide authentication.

0 Timestamp
The <Timestamp> block is required. It provides a mechanism to ensure timely
delivery of a message and protect against “man in the middle” attacks.

<wsu:Timestamp xmlIns:wsu="http:/ /docs.oasis-open.org/wss/2004/01/ oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsu:Created>2006-10-24T15:58:33.984Z< / wsu:Created>
<wsu:Expires>2006-10-24T15:59:03.9847Z< / wsu:Expires>

</wsu:Timestamp>

0 Signature

The <Signature> block is required. It provides a mechanism to ensure that a digital
signature is included with the transmission. It is the primary way to authenticate the
originator of the transmission.

<ds:Signature xmlns:ds="http:/ /www.w3.org/2000/09/ xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http:/ /www.w3.org/2001/10/xml-exc-c14n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<ds:Reference URI="#id-15101782">
<ds:Transforms>
<ds:Transform Algorithm="http:/ /www.w3.org/2001/10/xml-exc-c14n#"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#shal"/>
<ds:DigestValue>d4xBaldR/LpOExBkaNQxT7oYrVw=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>DoRhJCLVe4H3xZD71jEXizvOi03WD+psQdZjl pS4r8 W33aw YE01SX4r1x]BkB/MMO9u1fUoGJ

dgfus2ZCQh2zyC67bAErQIZdj9Fg AZ9z1xXRmPwO4SYyxTqkix4YkallDIf7Fsk8WMm/ zK+culi/ w5WmcNOe3ual
I0rwM26b8=</ ds:SignatureValue>

<ds:KeyInfo Id="KeyId-20201168">
<wsse:SecurityTokenReference wsu:Id="STRId-12413535" xmlIns:wsu="http:/ / docs.oasis-
open.org/wss/2004/01/ oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Reference URI="#Certld-1563400" ValueType="http:/ / docs.oasis-open.org/wss/2004/01/ oasis-200401-
wss-x509-token-profile-1.0#X509v3" />
</wsse:Security TokenReference>
</ds:KeyInfo>

</ds:Signature>

Version: 2.0 May 2006
Status: Approved Page 2

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-soapmessagesecurity.pdf�
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-soapmessagesecurity.pdf�

0 Binary Security Token
The <BinarySecurityToken> is required. The value contained in this element must
be the X.509 certificate that is used to verify the digital signature in the <Signature>
block. This will allow the receiver of the transmission to verify the signature without
having to exchange the X.509 certificate out of band prior to the transmission.

<wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/ oasis-200401-wss-soap-message-

security-1.0#Base64Binary" ValueType="http:/ / docs.oasis-open.org/wss/2004 /01 / oasis-200401-wss-x509-token-profile-

1.0#X509v3" wsu:Id="CertId-1563400" xmIns:wsu="http:/ / docs.oasis-open.org/wss/2004 /01 / oasis-200401-wss-

wssecurity-utility-1.0.xsd">
MIICXjCCAccCCQCMGanSPbP8XzANBgkqhkiGIWOBAQQFADCBWELMAKGATUEBhMCVVMxCzAJBgNVB
AgTAIBBMQ4wDAYDVQQHEWVFbm9sY TEPMAOGATUEChMGUKITQ2IUMQwwCgYDVQQLEWNEVFMxF
zAVBgNVBAMTDk1hcmsg TWFsaW5vc2tpMSIwIAY]KoZIhveNAQKBFhNtbWFsaW5vc0ByaXNjaXQuY29tMB
4XDTA2MDgyMzIzMjMINVoXDTA5SMDgyMjlzMjMINVowYDELMAKGATUEBhMCVVMxCzA]JBgNVBAgT
Ak1BMQ8wDQYDVQQHEwWZCb3N0b24xDzANBgNVBA0oTBkNsaWVudDEMMA0oGA1TUECXMDRFRTMRQ
wEgYDVQQDEwtDbGIIbnQgQ2VydDCBnzANBgkqhkiGIWOBAQEFAAOBjQAwgYkCgYEA4KV0JJj3R38AY2
N8NUSPILQVgn/ /Wt7dFXzWIJrP7bvp434pSszPf3DIH183TIgMjrW39zIHxjvMDBa5bEqS+Rdgi/FbJFxyaa30Oa
uAuc75uvWYoPW/dLyP4bvygtewEy+aFV3zOuJKc76H50LxsOHaOwQ3r19UmGAC/xInvF+cCAWEAATAN
BgkqhkiG9w0BAQQFAAOBgQCOUVZ7tP6beZEcly7JOkg+ctuMMRhAIw4R51SyJnKpcPPS1k39uquSF9zVC]Y
RulCXLFj07yCGOfRr/ +EavfhnpONJnF0q3YboP5b4CjnYrK34PkGDIAt] Z2znZ3LcyJmuHKrSrIPjAj46Qibk2MU
1u0za40CT8DSWs4VKPil71Ng==

</wsse:BinarySecurity Token>

Certificate Validation

The certificate will also need to be validated to ensure its authenticity. The sections
below outline the three areas of X.509 certificate validation:

1. Validating the Trust Chain
This is a required operation of both a DTS service and client. The trust
chain must be checked to ensure that a valid certificate from the PESC designated
certificate authority(s) is in the certificate chain.

2. Expiration
This is a required operation of both a DTS service and client. This check must be
done to ensure the certificate is still within its current validity dates.

3. Revoked
This is a required operation of both a DTS service and client. The certificate must
be checked against the PESC designated certificate authority(s) revocation list to
ensure that the X.509 certificate has not been compromised.

See the Section 7 for DTS error requirements for X.509 validation.

Version: 2.0 May 21, 2007
Status: Draft Page 3

4 DTS WSDL (Web Service Definition Language)

The Web Services Definition Language (WSDL) is an XML-based language used to describe the
services a business offers and to provide a way for individuals and other businesses to access
those services electronically. It also provides a roadmap to how the SOAP will look in the Web
Service transaction. The definition of the SOAP provides the foundation for this entire
specification. Any organization implementing the specification must ensure that the SOAP
produced from their applications conforms to the DTS WSDL.

There are five high level elements contained within a WSDL document. The table below
summarizes each section.

Table 4.1 - WSDL Elements

Element Name Description
Types A container for abstract type definitions defined using XML Schema
message A definition of an abstract message that may consist of multiple parts, each

part may be of a different type

portType An abstract set of operations supported by one or more endpoints
(commonly known as an interface); operations are defined by an exchange
of messages

binding A concrete protocol and data format specification for a particular portType

Service A collection of related endpoints, where an endpoint is defined as a
combination of a binding and an address (URI)

4.1 Types

The WSDL types element is a container for XML Schema type definitions. The type definitions
placed here are referenced from higher-level message definitions in order to define the
structural details of the message. The types element contains zero or more schema elements
from the http:/ /www.w3.org/2001/XMLSchema namespace.

Below is an example of part of the types section defined in the DTS WSDL:

<xsd:element name="DTSRequestHeader">
<xsd:complexType>
<xsd:all>
<xsd:element maxOccurs="1" minOccurs="1" name="DTSRequestRouting" type="tns:DTSRouting"/>
<xsd:element maxOccurs="1" minOccurs="1" name="DTSRequestPayloadType" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="DTSRequestSignature" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="DTSRequestPayloadBytes" type="xsd:string"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

Version: 2.0 May 21, 2007
Status: Draft Page 1

http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci213404,00.html�

4.2 Messages

The WSDL message element defines an abstract message that can serve as the input or output
of an operation. Messages consist of one or more part elements where each part is associated
with an element. The messages and their parts must be named making it possible to refer to
them from elsewhere in the WSDL definition.

Below is an example of part of the message section defined in the DTS WSDL:

<wsdl:message name="DTSRequest">

<wsdl:part element="tns:DTSRequest" name="DTSRequest"/>
</wsdl:message>
<wsdl:message name="DTSResponse">

<wsdl:part element="tns:DTSResponse" name="DTSResponse"/>
</wsdl:message>

4.3 Interfaces (portTypes)

The WSDL portType element defines a group of operations also known as an interface in most
environments. A portType element contains zero or more operation elements. Each portType
must be given a unique name making it possible to refer to it from elsewhere in the WSDL
definition. Each operation element contains a combination of input and output elements, and
when you have an output element you can also have a fault (exception) element.

Below is an example from the portTypes section defined in the DTS WSDL:

<wsdl:portType name="submitDTS">
<wsdl:operation name="submitDTS">
<wsdl:input message="tns:DTSRequest"/>
<wsdl:output message="tns:DTSResponse"/>
</wsdl:operation>
</wsdl:portType>

4.4 Bindings

The WSDL binding element describes the concrete details of using a particular portType with a
given protocol. The binding element contains several extensibility elements as well as a WSDL
operation element for each operation in the portType which it describes. A binding must be
given a unique name so you can refer to it from elsewhere in the WSDL definition. The binding
must also specify which portType it describes through the type attribute.

Version: 2.0 May 2006
Status: Approved Page 2

Below is an example from the bindings section defined in the DTS WSDL:

<wsdl:binding name="submitDTS" type="tns:submitDTS">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="submitDTS">
<wsdlsoap:operation soapAction="http://www.datatransportstandard.com/submitDTS"/>
<wsdl:input>
<wsdlsoap:body use="literal"/>
<wsdlsoap:header message="tns:DTSRequestHeader" part="DTSRequestHeader" use="literal"/>
</wsdl:input>
<wsdl:output>
<wsdlsoap:body use="literal"/>
<wsdlsoap:header message="tns:DTSResponseHeader" part="DTSResponseHeader" use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

Version: 2.0
Status: Draft

May 21, 2007
Page 3

4.5 Services

The WSDL service element defines a collection of ports, or endpoints, that expose a particular
binding. You must give each port a name and assign it a binding. Then, within the port
element, you use an extensibility element to define the address details specific to the binding.

Below is an example from the services section defined in the DTS WSDL:

<wsdl:service name="submitDTS">
<wsdl:port binding="tns:submitDTS" name="submitDTS">
<wsdlsoap:address location="http://localhost:8080/DTS2.0/services/Referencelmplementation"/>
</wsdl:port>
</wsdl:service>

Note: The Supplemental Documentation section of this document includes the full DTS WSDL.

Version: 2.0 May 2006
Status: Approved Page 4

5 DTS SOAP Descriptions

A DTS Client and Service must produce SOAP requests and responses that meet the
requirements of the WSDL located in the supplemental documentation section of this
document.

5.1 DTS SOAP Header Elements

The specification defines several header elements designed to allow any line of business the
capability of transferring data without interrogating the request and/ or response payload.
Most of the header elements within the specification do not have any pre-determined values
associated with them. This will allow each line of business to determine what values are
necessary to perform their business functions. See the annotations (Specification defined vs.
Business defined) beside each header element to determine if the value is necessary within the
specification or to be defined by a line of business.

The following sections describe each of the DTS request and response SOAP packets.

5.2 DTS Request SOAP (See the supplemental section of this document for example
SOAP)

Header Elements

o <DTSRequestHeader> Element (Complex Type)
This element groups all of the header information for the DTS request.

<DTSRequestRouting> Element (Complex Type - DTSRouting)

<DTSRequestServiceExpectation> Element (Simple Type - xsd:string)
(Business Defined)
This element is to be used to identify how the transaction should be processed.

<DTSRequestPayloadBytes> Element (Simple Type - xsd:string)

(Specification Defined)

This element holds the decompressed byte count of the request payload. Every DTS
Service will have system resource constraints (memory, disk space, etc.) that should be
taken into consideration when attempting to decompress the request payload. The byte
count is required to provide a reliable method to assist the DTS Service in determining
the best method to decompress the request payload.

Version: 2.0 May 2006
Status: Draft Page 9

<DTSRequestPayloadType> Element (Simple Type - xsd:string)
(Business Defined)

This element identifies the type of payload within the request.

The follow are examples of the <DTSRequestHeader>:

Java Example DTSRequestHeader SOAP Element

<dts:DTSRequestHeader soapenv:actor="urn:org:pesc:datatransport/dts"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" soapenv:mustUnderstand="1" xmins:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmIns:dts="urn:org:pesc:datatransport">
<dts:DTSRequestRouting>
<dts:DTSUUID>936977f0-afd1-11db-b2d3-eaebla53a454</dts:DTSUUID>
<dts:DTSSourcelD>Mark</dts:DTSSourcelD>
<dts:DTSSourcelDSubCode>Malinoski</dts:DTSSourcelDSubCode>
<dts:DTSRecipientID>Nathan</dts:DTSRecipientID>
<dts:DTSRecipientIDSubCode>Chitty</dts:DTSRecipientiDSubCode>
</dts:DTSRequestRouting>
<dts:DTSRequestServiceExpectation>Immediate</dts:DTSRequestServiceExpectation>
<dts:DTSRequestPayloadType>CRC:APPSEND</dts:DTSRequestPayload Type>
<dts:DTSRequestPayloadBytes>54</dts:DTSRequestPayloadBytes>
</dts:DTSRequestHeader>

.Net Example DTSRequestHeader SOAP Element

<DTSRequestHeader xmins:dts="urn:org:pesc:datatransport" soap:mustUnderstand="1"

soap:actor="urn:org:pesc:datatransport/dts" xmins="urn:org:pesc:datatransport">
<dts:DTSRequestRouting>
<dts:DTSUUID>99309714-176a-42fa-80fe-29736753f1e0</dts:DTSUUID>
<dts:DTSSourcelD>Nathan</dts:DTSSourcelD>
<dts:DTSSourcelDSubCode>Chitty</dts:DTSSourcelDSubCode>
<dts:DTSRecipientID>Mark</dts:DTSRecipientID>
<dts:DTSRecipientIDSubCode>Malinoski</dts:DTSRecipientIDSubCode>
</dts:DTSRequestRouting>
<dts:DTSRequestPayloadType>CRC:APPSEND</dts:DTSRequestPayloadType>
<dts:DTSRequestPayloadBytes>53</dts:DTSRequestPayloadBytes>
<dts:DTSRequestServiceExpectation>Immediate</dts:DTSRequestServiceExpectation>

</DTSRequestHeader>

Body

e <DTSRequest> (Type xsd:string)
(Business Defined)

This is the payload of the transaction. The data in this element must be zlib compressed
and base64 encoded.

Java Example submitDTSRequest SOAP Element
<soapenv:Body>
<DTSRequest xmins="urn:org:pesc:datatransport">
eJWLSK1LLUrNS05V8MwtyEnNNTc1LLMnMz1MISKzMyU9MUQQAYZIMDQ==
</DTSRequest>
</soapenv:Body>

Net Example submitDTSRequest SOAP Element

<soap:Body>
<DTSRequest xmins="urn:org:pesc:datatransport">eJwLzswtyEIVCEkiLgEAGNYEKw==</DTSRequest>
</soap:Body>
Version: 2.0 May 2006

Status: Approved Page 10

5.3 DTS Response SOAP (See the supplemental section of this document for example
SOAP)

Header Elements

e <DTSResponseHeader> Element (Complex Type)
This element identifies all of the header information for the response.

<DTSResponseRouting> Element (Complex Type - DTSRouting)

<DTSResponsePayloadType> Element (Simple Type - xsd:string)
(Business Defined)
This element is to be used to identify the type of payload within the response.

<DTSResponseAcknowledge> Element (Simple Type - xsd:string)

(Business Defined)

This element is used to identify how the Service handled or will handle the request
payload.

<DTSResponsePayloadBytes> Element (Simple Type - xsd:string)

(Specification Defined)

This element holds the decompressed byte count of the response payload. Every DTS
Client will have system resource constraints (memory, disk space, etc.) that should be
taken into consideration when attempting to decompress the response payload. The
byte count is required to provide a reliable method to assist the DTS Client in
determining the best method to decompress the response payload.

The follow are examples of the <DTSResponseHeader>:

Java Example DTSResponseHeader SOAP Element
<dts:DTSResponseHeader soapenv:actor="urn:org:pesc:datatransport/dts"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/* soapenv:mustUnderstand="1" xmins:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmIns:dts="urn:org:pesc:datatransport">
<dts:DTSResponseAcknowledge>Deferred</dts:DTSResponseAcknowledge>
<dts:DTSResponsePayloadBytes>62</dts:DTSResponsePayloadBytes>
<dts:DTSResponsePayloadType>CRC:RESPONSE</dts:DTSResponsePayloadType>
<dts:DTSResponseRouting>
<dts:DTSRecipientID>Nathan</dts:DTSRecipientID>
<dts:DTSRecipientIDSubCode>Chitty</dts:DTSRecipientiDSubCode>
<dts:DTSSourcelD>Mark</dts:DTSSourcelD>
<dts:DTSSourcelDSubCode>Malinoski</dts:DTSSourcelDSubCode>
<dts:DTSUUID>99309714-176a-42fa-80fe-29736753f1e0</dts:DTSUUID>
</dts:DTSResponseRouting>
</dts:DTSResponseHeader>

.Net Example DTSResponseHeader SOAP Element
<DTSResponseHeader xmins:dts="urn:org:pesc:datatransport” xmlns="urn:org:pesc:datatransport">
<dts:DTSResponseRouting>
<dts:DTSUUID>ed5a7410-afd3-11db-8ded-f1b1cb25f748</dts:DTSUUID>
<dts:DTSSourcelD>Nathan</dts:DTSSourcelD>
<dts:DTSSourcelDSubCode>Chitty</dts:DTSSourcelDSubCode>
<dts:DTSRecipientiD>Mark</dts:DTSRecipient|D>
<dts:DTSRecipientIDSubCode>Malinoski</dts:DTSRecipientIDSubCode>
</dts:DTSResponseRouting>

Version: 2.0 May 2006
Status: Draft Page 11

<dts:DTSResponsePayloadType>CRC:RESPONSE</dts:DTSResponsePayloadType>
<dts:DTSResponsePayloadBytes>54</dts:DTSResponsePayloadBytes>
<dts:DTSResponseAcknowledge>Deferred</dts:DTSResponseAcknowledge>
</DTSResponseHeader>

Body

e <DTSResponse> (Type xsd:string)
(Business Defined)
This is the response of the transaction. The data in this element must be zlib compressed
and base64 encoded.

Java Example DTSResponse SOAP Element
<soapenv:Body>
<DTSResponse xmIns="urn:org:pesc:datatransport">
eJxzCQIWCEpNSy1KzUtOVfDMLchJzU3NKOksyczPAOoUF+TnFacCAPOrDfA=
</DTSResponse>
</soapenv:Body>

Net Example DTSResponse SOAP Element
<soap:Body>
<DTSResponse xmins="urn:org:pesc:datatransport">
eJwWLTi0qyOxOdc7PLShKLS50TdExstAJhgiG5IEJGXxrChMNSizLTKn2DdYxNjAHxPBa4
</DTSResponse>
</soap:Body>

Version: 2.0 May 2006
Status: Approved Page 12

5.4 DTS Common Header Element (See the supplemental section of this document for
example SOAP)

<DTSRouting> Element (Complex Type)
Common header element used by both the <DTSRequestHeader> and
<DTSResponseHeader>.

<DTSSourcelD> (Simple Type - xsd:string) (Business Defined)
Identifies the source of the request/response.

<DTSSourceSubCode> (Simple Type - xsd:string) (Business Defined)
Identifies a secondary code that helps identify the source of the
request/response.

<DTSRecipientID> (Simple Type - xsd:string) (Business Defined)
Identifies the recipient of the request/response.

<DTSRecipientSubCode> (Simple Type - xsd:string) (Business Defined)
Identifies a secondary code that helps identify the recipient of the
request/response.

<DTSUUID> (Simple Type - xsd:string) (Business Defined)
Is a unique identifier for the request/response. See the recommendations section
of this document or further clarification of UUID.

Version: 2.0 May 2006
Status: Draft Page 13

6 COMMUNICATION OR FRAMEWORK ERRORS GENERATED
OUTSIDE DTS

The following is a non-inclusive list of possible external errors that should be given
consideration in conjunction with a DTS Implementation:

TCP/1P Specification Errors

HTTP/S Specification Errors
e.g. 400/500/505

Web Service errors generated natively by programming toolkits (SDK)
e.g. De-serialzation Errors for child elements of a SOAP header element missing.

Version: 2.0 May 2006
Status: Approved Page 14

7 DTS ERROR HANDLING REQUIREMENTS:

Each component of a DTS enabled application must provide error handling and report
exceptions to the appropriate component.

71 DTS Service Error Handling Table
The table below defines the three categories that can produce an error.

Table 7.1 - DTS Fault Summary Table

Element or Condition Element is Element Exists but | Processing Failure
Missing Length is Zero
WS-Security Aggregate DTS.SECURITY.001 N/A See the WS-Security Error
Handling section below.
DTSRequestHeader Aggregate DTS.HEADER.001
DTSRouting Aggregate
DTSSourcelD DTS.HEADER.002
DTSRecipient]D DTS.HEADER.002
DTSUUID DTS.HEADER.002
DTSRequestPayloadType DTS.HEADER.003
DTSRequestServiceExpectation DTS.HEADER.004
DTSRequestPayloadBytes DTS.HEADER.005
Compressed, encoded Payload DTS.PAYLOAD.001
Payload cannot be decoded DTS.PAYLOAD.002
Payload cannot be decompressed DTS PAYLOAD.003
Payload too large to decompress DTS.PAYLOAD.004
Application unable to process DTS.APPLICATION
transaction

7.2 WS-Security Error Handling Requirements (Processing Errors)

Error handling for WS-Security is described in Section 12 of the WS-Security Specification v1.1 .
The WS-Security specification explicitly outlines the fault requirements if errors occur while
processing the WS-Security header block. Any organization implementing this version of DTS
should follow the WS-Security specification for reporting errors while processing the WS-
Security header block.

If the WS-Security element is not present in the SOAP packet see the DTS WS-Security Error
Handling section below.

Version: 2.0 May 2006
Status: Draft Page 15

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-soapmessagesecurity.pdf�

7.3 DTS Faults Summary

Detailed fault descriptions are provided below:
Detail Error Conditions Reported to DTS Client via SOAP Fault
e Error handling for DTSRequestHeader Element

Condition 1 - DTSRequestHeader Element is null (not found in SOAP)
Fault Code: DTS.HEADER.001
Fault String: DTS SOAP Header Error with DTS Request Header
Information.
Fault Detail: DTS Request Header Information is not set in the SOAP
Packet

e Error handling for DTSRouting Element

The DTSRouting Element fault conditions should be combined if more than 1
of the error conditions exists.

Condition 1 - Length of DTSSourceID =0
Fault Code: DTS.HEADER.002
Fault String: DTS SOAP Header Error with DTS Routing Information.
Fault Detail: =~ DTS Source Id value is missing.

Condition 2 - Length of DTSRecipientID =0
Fault Code: DTS.HEADER.002
Fault String: DTS SOAP Header Error with DTS Routing Information.
Fault Detail: =~ DTS Recipient Id value is missing.

Condition 3 - Length of DTSUUID =0
Fault Code: DTS.HEADER.002
Fault String: DTS SOAP Header Error with DTS Routing Information.
Fault Detail: =~ DTS UUID value is missing.

e Error handling for DTSRequestPayloadType Element

Condition 1 - Length of DTSRequestPayloadType =0
Fault Code: DTS.HEADER.003
Fault String: DTS SOAP Header Error with DTS Payload Type
Information
Fault Detail: =~ DTS Request Payload Type value is missing.

Version: 2.0 May 2006
Status: Approved Page 16

e Error handling for DTSRequestServiceExpectation Element

Condition 1 - Length of DTSRequestServiceExpectation = 0
Fault Code: DTS.HEADER.004
Fault String: DTS SOAP Header Error with DTS Request Service
Expectation Information
Fault Detail: =~ DTS Request Service Expectation value is missing

o Error handling for DTSRequestPayloadBytes Element

Condition 1 - Length of DTSRequestPayloadBytes = 0
Fault Code: DTS.HEADER.005
Fault String: DTS SOAP Header Error with DTS Request Payload Bytes
Information
Fault Detail: =~ DTS Request Payload Bytes value is missing

¢ Error handling for DTSRequest

Condition 1 - Length of Compressed and Encoded Payload = 0
Fault Code: DTS.PAYLOAD.001
Fault String: DTS Payload Error
Fault Detail: =~ DTS Payload is missing.

Note: This is a valid check since compressing and encoding a zero byte string will always result
in a non-zero byte length string.

Condition 2 - Payload cannot be decoded
Fault Code: DTS PAYLOAD.002
Fault String: DTS Payload Error
Fault Detail: DTS Payload decoding error.

Condition 3 - Payload cannot be decompressed
Fault Code: DTS.PAYLOAD.003
Fault String: DTS Payload Error
Fault Detail: =~ DTS Payload decompress error.

Condition 4 - Payload too large
Fault Code: DTS.PAYLOAD.004
Fault String: DTS Payload Error
Fault Detail: =~ DTS Payload could not be decompressed because of size
limitations.

Version: 2.0 May 2006
Status: Draft Page 17

o Error handling for DTS WS-Security

Condition 1 -Security Header Element not found.
Fault Code: DTS.SECURITY.001
Fault String: DTS Security Error
Fault Detail: ~ Could not find WS-Security Element.

Service Backend Processing Error Handling

If the backend processing of a DTS Service cannot be invoked or encounters errors during
processing the error conditions must be reported to the DTS Client via the following
SOAP fault:

Any Condition
Fault Code: DTS.APPLICATION
Fault String: ~ Backend Processing Error
Fault Detail: ~ Provided by the DTS Service Application.

Example DTSRequestRouting Fault SOAP Element

<soapenv:Fault>
<faultcode>soapenv:DTS.HEADER.001</faultcode>
<faultstring>DTS SOAP Header Error with DTS Routing Information</faultstring>
<detail>
<string>DTS Source Id value is missing.</string>
</detail>
<detail>
<string>DTS UUID value is missing.</string>
</detail>
</soapenv:Fault>

Version: 2.0 May 2006
Status: Approved Page 18

7.4 DTS Client Error Handling

The DTS Client must process any SOAP faults received by the called service in accordance to
the implementation specific requirements for error handling.

In addition, the DTS response SOAP must meet the following requirements:

e The WS-Security block must be present in the SOAP packet and error handling
should be done in accordance to Section 12 of the WS-Security Specification
vl.l.

e DTSResponseHeader Element is not null (must be present in SOAP)

e Length of DTSSourcelD must be >0
o Length of DTSRecipientID must be > 0
o Length of DTSUUID must be > 0

o Length of DTSResponsePayloadType must be >0
o Length of DTSResponseAcknowledge must be > 0
¢ Length of DTSResponsePayloadBytes must be > 0

If the DTS response SOAP violates any of the above requirements, action taken by the DTS
client will be implementation specific for each receiving entity.

Version: 2.0 May 2006
Status: Draft Page 19

7.5 SUPPLEMENTAL DOCUMENTATION

This section contains additional documentation to assist entities to understand the specification.
It includes the DTS Web Service Definition Language (WSDL), which describes the web service
that is created using the specification and example SOAP Request and Response packets for
both .Net and JAVA.

DTS 2.0 WSDL

<l-- ¢ ->
<l-- Data Transport Standard >
<l-- Web Service Definition Language (WSDL) -->
<l-- Version 2.0.0 >
<I-- 01/29/2007 >
<l-- >

<wsdl:definitions targetNamespace="urn:org:pesc:datatransport" xmins:apachesoap="http://xml.apache.org/xml-soap"
xmins:impl="urn:org:pesc:datatransport" xmins:intf="urn:org:pesc:datatransport" xmiIns:tns="urn:org:pesc:datatransport"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/" xmIns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<wsdl:types>
<xsd:schema elementFormDefault="qualified" targetNamespace="urn:org:pesc:datatransport"
xmins:tns="urn:org:pesc:datatransport" xmins:xsd="http://iwww.w3.0rg/2001/XMLSchema">
<xsd:import namespace="ttp://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
schemalocation="http://docs.oasis-open.org/wss/v1.1/0asis-200401-wss-wssecurity-secext-1.0.xsd"/>
<xsd:element name="DTSRequestHeader">
<xsd:complexType>
<xsd:all>
<xsd:element maxOccurs="1" minOccurs="1" name="DTSRequestRouting" type="tns:DTSRouting"/>
<xsd:element maxOccurs="1" minOccurs="0" name="DTSRequestServiceExpectation" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="1" name="DTSRequestPayloadType" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="DTSRequestPayloadBytes" type="xsd:string"/>

</xsd:all>
</xsd:complexType>
</xsd:element>
<xsd:element name="DTSResponseHeader">
<xsd:complexType>
<xsd:all>
<xsd:element name="DTSResponseRouting" type="tns:DTSRouting"/>
<xsd:element name="DTSResponseAcknowledgement" type="xsd:string"/>
<xsd:element name="DTSResponsePayloadType" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="DTSResponsePayloadBytes" type="xsd:string"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="DTSRouting">
<xsd:all>
<xsd:element maxOccurs="1" minOccurs="1" name="DTSUUID" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="1" name="DTSSourcelD" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="DTSSourceSubCode" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="DTSRecipientID" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="DTSRecipientSubCode" type="xsd:string"/>

</xsd:all>
</xsd:complexType>
<xsd:element name="DTSRequest" type="xsd:string"/>
<xsd:element name="DTSResponse" type="xsd:string"/>
</xsd:schema>
</wsdl:types>
<wsdl:message name="DTSRequest">
<wsdl:part element="tns:DTSRequest" name="DTSRequest"/>
</wsdl:message>
<wsdl:message name="DTSResponse">
<wsdl:part element="tns:DTSResponse" name="DTSResponse"/>
</wsdl:message>

Version: 2.0 May 2006
Status: Approved Page 20

<wsdl:portType name="submitDTS">
<wsdl:operation name="submitDTS">
<wsdl:input message="tns:DTSRequest"/>
<wsdl:output message="tns:DTSResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="submitDTS" type="tns:submitDTS">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="submitDTS">
<wsdlsoap:operation soapAction="http://www.datatransportstandard.com/submitDTS"/>
<wsdl:input>
<wsdlsoap:body use="literal"/>
<wsdlsoap:header message="tns:DTSRequestHeader" part="DTSRequestHeader" use="literal"/>
</wsdl:input>
<wsdl:output>
<wsdlsoap:body use="literal"/>
<wsdlsoap:header message="tns:DTSResponseHeader" part="DTSResponseHeader" use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="submitDTS">
<wsdl:port binding="tns:submitDTS" name="submitDTS">
<wsdlsoap:address location="http://localhost:8080/DTS2.0/services/Referencelmplementation"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Version: 2.0
Status: Draft

May 2006
Page 21

Entire Java DTS SOAP Request:

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsd="http://ww.w3.0rg/2001/XMLSchema" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd">
<wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#Base64Binary" ValueType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:ld="Certld-1563400" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd">MIICXjCCAccCCQCMGanSPbP8XzANBgkghkiGOWOBAQQFADCBhJELMAKGA1IUEBhMCVVMxCzAJBgNVBAQTAIBBMQ
4wDAYDVQQHEWVFbm9sYTEPMAOGALIUEChMGUKITQ2IUMQwWwCgYDVQQLEWNEVFMxFzZAVBgNVBAMTDk1lhcmsgTWFsaW
5vc2tpMSIwlAY JKoZIhveNAQKBFhNtbWFsaw5vc0ByaXNjaXQuY29tMB4XDTA2MDgyMzIzMjM1INVoXDTA5MDgyMjlzMjM1INVow
YDELMAKGA1UEBhMCVVMxCzAJBgNVBAgGTAk1BMQ8wDQYDVQQHEWZCb3N0b24xDzANBgNVBA0TBkNsaWVudDEMMA0OGA
1UECXMDRFRTMRQWEQYDVQQDEWtDbGIIbnQgQ2VydDCBnzANBgkghkiGOWOBAQEFAAOBjQAWgYKCgYEA4KV0JJj3R38AY2N
8NUBPILQVgn//Wt7dFXzW13rP7bvp434pSszP{3DIH183TIgMjrw39zIHxjvMDBa5bEqS+Rdgi/FbJFxyaa3OauAuc75uvWYoPW/dLyP
4bvygtewEy+aFV3zOuJKc76H50LxsOHaOwQ3rlI9UmMGdC/x9nvF+cCAWEAATANBgkghkiGOWOBAQQFAAOBgQCOUVZ7tP6beZEc
ly7JOkg+ctuMMRhAIWAR51SyInKpcPPS1k39uquSF9zVCJIYRuU1CXLFj07yCGOfRr/+EavthnpONJInF0q3YboP5b4CjnYrK34PkGDIAt
JZ2znZ3LcyImuHKTrSrIPjAj46Qibk2MUuoza40CT8DSWs4VkPil71Ng==</wsse:BinarySecurityToken>
<ds:Signature xmins:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<ds:Reference URI="#id-1670071">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<ds:DigestValue>n9tgS63MW6NC4alL Sadxxkji904o0=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>1rxIMRHDMZ3fORXQ+9Rvgm+wdNCz2ro610a/zc37hcOhGGWCEelgvhSOuKNJUzANpBZknif T/dHIEA+WKFTa
L1CRvv4M77exDi9rcWBBgNu8wZmaRHsxhHsnAIWUFE5zsFfi/k7LES8tcmgLRgHVPYiViXxGsFr51ZTINoAlITQ=</ds:SignatureVal
ue>
<ds:KeylInfo Id="Keyld-12413535">
<wsse:SecurityTokenReference wsu:ld="STRId-9936523" xmIns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Reference URI="#Certld-1563400" ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
x509-token-profile-1.0#X509v3"/>
</wsse:SecurityTokenReference>
</ds:KeylInfo>
</ds:Signature>
<wsu:Timestamp xmiIns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsu:Created>2007-01-29T720:01:40.796Z</wsu:Created>
<wsu:Expires>2007-01-29T20:02:10.796Z</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
<dts:DTSRequestHeader soapenv:actor="urn:org:pesc:datatransport/dts"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" soapenv:mustUnderstand="1" xmIns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmIns:dts="urn:org:pesc:datatransport">
<dts:DTSRequestRouting>
<dts:DTSUUID>889ccfa0-afd3-11db-b8aa-c72490605f03</dts:DTSUUID>
<dts:DTSSourcelD>Mark</dts:DTSSourcelD>
<dts:DTSSourcelDSubCode>Malinoski</dts:DTSSourcelDSubCode>
<dts:DTSRecipientID>Nathan</dts:DTSRecipientID>
<dts:DTSRecipientiDSubCode>Chitty</dts:DTSRecipientiDSubCode>
</dts:DTSRequestRouting>
<dts:DTSRequestServiceExpectation>Immediate</dts:DTSRequestServiceExpectation>
<dts:DTSRequestPayloadType>CRC:APPSEND</dts:DTSRequestPayload Type>
<dts:DTSRequestPayloadBytes>54</dts:DTSRequestPayloadBytes>
</dts:DTSRequestHeader>
</soapenv:Header>
<soapenv:Body wsu:ld="id-1670071" xmIns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd">
<ns1l:DTSRequest
xmins:ns1="urn:org:pesc:datatransport">eJwLTsxTcMIMTcOXyCxWSFRILOpNLFEoyEIMTIUoyVcoyyzOLFFIzEsBCVUqIGeWZCi4h
ATrAQAAQxKQ</ns1:DTSRequest>
</soapenv:Body>
</soapenv:Envelope>

Version: 2.0 May 2006
Status: Approved Page 22

Entire Java DTS SOAP Response:

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd">
<wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#Base64Binary" ValueType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:ld="Certld-1563400" xmIns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd">MIICXjCCAccCCQCMGanSPbP8XzANBgkghkiGOWOBAQQFADCBhJELMAKGA1IUEBhMCVVMxCzAJBgNVBAGTAIBBMQ
4wDAYDVQQHEWVFbm9sYTEPMAOGALUEChMGUKITQ2IUMQwwCgYDVQQLEWNEVFMxFzZAVBgNVBAMTDk1hcmsgTWFsawW
5vc2tpMSIwIAY IKoZIhveNAQKBFhNtbWFsaW5vcOByaXNjaXQuY 29tMB4XDTA2MDgyMzIzMjM1NVoXDTASMDgyMjlzMjM1NVow
YDELMAKGA1UEBhMCVVMxCzAJBgNVBAGTAk1BMQ8WDQYDVQQHEWZCbh3N0b24xDzANBgNVBA0TBkNsaWVudDEMMAOGA
1UECXMDRFRTMRQWEgYDVQQDEWtDbGIIbnQgQ2VydDCBnzANBgkghkiGOWOBAQEFAAOB|QAWgYKCgY EA4KVOJJj3R38AY2N
8NUBPILQVgNn//Wt7dFXzW IJrP7bvp434pSszPf3DIH183TIgMjrw39zIHxjvMDBa5bEqS+Rdgi/FbJFxyaa30auAuc75uvWYoPW/dLyP
4bvygtewEy+aFV3zOuJKc76H50LxsOHaOwQ3rI9UmGAC/x9nvF+cCAWEAATANBgkghkiGOWOBAQQFAAOBgQCOUVZ7tP6beZEc
ly7JOkg+ctuMMRhAIW4R51SyJnKpcPPS1k39uquSF9zVCJIYRU1CXLFj07yCGOfRr/+EavfhnpONJInF0q3YboP5b4CjnY rk34PkGDIAt
JZ2znZ3LcyImuHKrSrIPjAj46Qibk2MUuoza4oCT8DSWs4VkPil71Ng==</wsse:BinarySecurityToken>
<ds:Signature xmins:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<ds:Reference URI="#id-10893564">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<ds:DigestValue>SuXOn6+mD8eowNt3VtajUVEsrvw=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>

<ds:SignatureValue>sIFP5FPgcnaQ4IlUFK8WsHN5tdXVW640H0J5N/w+NEQunXa2a4WdsEQHcx3AttASw/F+b6/kGNgpFoowUnB
+z4rE4TzBRU7I7xie8xBkpihdgeef/CgbEe4eRPYgcPKazUexNme66n6SU/wsc2VBmnPn1cAw/8/GiGvu3A9IDUE=</ds:SignatureValu
e>
<ds:Keylnfo Id="Keyld-5484244">
<wsse:SecurityTokenReference wsu:ld="STRId-33223668" xmIns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Reference URI="#Certld-1563400" Value Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
x509-token-profile-1.0#X509v3"/>
</wsse:SecurityTokenReference>
</ds:KeylInfo>
</ds:Signature>
<wsu:Timestamp xmiIns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsu:Created>2007-01-29T720:01:41.265Z</wsu:Created>
<wsu:Expires>2007-01-29T20:02:11.265Z</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
<dts:DTSResponseHeader soapenv:actor="urn:org:pesc:datatransport/dts"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/* soapenv:mustUnderstand="1" xmins:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmIns:dts="urn:org:pesc:datatransport">
<dts:DTSResponseAcknowledge>Deferred</dts:DTSResponseAcknowledge>
<dts:DTSResponsePayloadBytes>62</dts:DTSResponsePayloadBytes>
<dts:DTSResponsePayloadType>CRC:RESPONSE</dts:DTSResponsePayloadType>
<dts:DTSResponseRouting>
<dts:DTSRecipientID>Mark</dts:DTSRecipientID>
<dts:DTSRecipientIDSubCode>Malinoski</dts:DTSRecipientiIDSubCode>
<dts:DTSSourcelD>Nathan</dts:DTSSourcelD>
<dts:DTSSourcelDSubCode>Chitty</dts:DTSSourcelDSubCode>
<dts:DTSUUID>889ccfa0-afd3-11db-b8aa-c72490605f03</dts:DTSUUID>
</dts:DTSResponseRouting>
</dts:DTSResponseHeader>
</soapenv:Header>
<soapenv:Body wsu:ld="id-10893564" xmIns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd">
<DTSResponse
xmlns="urn:org:pesc:datatransport">eJwLTi0OqyOxOdc7PLShKLS50TdEXM9AJhgiG5iEIm5rAhMNSizLTKn2DdQx0ANpeFn0=</DT
SResponse>
</soapenv:Body>
</soapenv:Envelope>

Version: 2.0 May 2006
Status: Draft Page 23

Entire .NET DTS SOAP Request:

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/" xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xmIns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd" xmIns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<soap:Header>
<DTSRequestHeader xmIns:dts="urn:org:pesc:datatransport" soap:mustUnderstand="1"
soap:actor="urn:org:pesc:datatransport/dts" xmIns="urn:org:pesc:datatransport">
<dts:DTSRequestRouting>
<dts:DTSUUID>99309714-176a-42fa-80fe-29736753f1e0</dts:DTSUUID>
<dts:DTSSourcelD>Nathan</dts:DTSSourcelD>
<dts:DTSSourcelDSubCode>Chitty</dts:DTSSourcelDSubCode>
<dts:DTSRecipientID>Mark</dts:DTSRecipientID>
<dts:DTSRecipientIDSubCode>Malinoski</dts:DTSRecipientiIDSubCode>
</dts:DTSRequestRouting>
<dts:DTSRequestPayloadType>CRC:APPSEND</dts:DTSRequestPayloadType>
<dts:DTSRequestPayloadBytes>53</dts:DTSRequestPayloadBytes>
<dts:DTSRequestServiceExpectation>Immediate</dts:DTSRequestServiceExpectation>
</DTSRequestHeader>
<wsse:Security soap:mustUnderstand="1">
<wsu:Timestamp wsu:ld="Timestamp-ba2a92ea-e368-4049-a796-a2fd65581db9">
<wsu:Created>2007-01-29T719:48:59Z</wsu:Created>
<wsu:Expires>2007-01-29T19:53:59Z</wsu:Expires>
</wsu:Timestamp>
<wsse:BinarySecurityToken ValueType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-
1.0#X509v3" EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary" xmins:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:ld="SecurityToken-122ch9a7-82de-40a5-91e5-
4a4a5cf00b90">MIICcjCCAdsCCQDMhQGuU43qMhzANBgkghkiGOWOBAQQFADCBhELMAKGALUEBhMCVVMxCzAJBgNVBAGTAI
BBMQ4wDAYDVQQHEWVFbm9sY TEPMAOGA1IUEChMGUKITQ2IUMQwWwWCgYDVQQLEWNEVFMxFzAVBgNVBAMTDk1hcmsgTW
FsaW5vc2tpMSIwlAY JKoZIhveNAQkBFhNtbWFsaW5vcOByaXNjaXQuY29tMB4XDTA2MDgyMTE1INDI1INIoXDTASMDgyMDE1NDI
1NlowdDEUMBIGA1UEAXMLamF4LTMyMDUzMGwXEjAQBgNVBAsSTCU5hdGhhbkRUUZESMBAGA1UEChMJTmFOaGFURFRTM
RUWEWYDVQQHEWXKYWNrc29udmlsbGUXEDAOBgNVBAQTB0Zsb3JpZGEXCzAJBgNVBAYTAIVTMIGIMAOGCSqGSIb3DQEBA
QUAA4GNADCBIQKBgQCONwWGCXIgDIMmxQtDu/HyFicJG64p3fRGHFgEUUcCOWrIJawQBxI+9M5Lyq9eVaCNv3odINKSKMI5z/oal
shfew5uPK3rT+h/iISAIUB4AkxQ+p8FTOYpVFqVJIRz31FffopcviskGBfx9p0oH2b5GBhjz/wtAnlYroOUJIgpWAmMQrwIDAQABMAOGCS
qGSIb3DQEBBAUAA4GBAFkh3kiwegZIW8MzQEjtUPGPXRmMOJutlo5wGJYB7lvmq96S5sm50LV4KjBXQd30sKd2p2d+wDIvwHBN9
YhIK4w50vDEKE11eA/ryFdNukwmftbQo/Dyiql2ZDLEC+0ADdUsSpGPCjQlydCh6gK4L42nFtyMINV7MsDEkrpbxiz1B</wsse:Binar
ySecurityToken>
<Signature xmIns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<Reference URI="#ld-2fc19e22-84e5-4b4a-9379-e19ec31db9e7">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<DigestValue>z1vyRGTtIJDgW28yPPisPIxa5oio=</DigestValue>
</Reference>
</SignedInfo>

<SignatureValue>QzYgLTcY4bimSe2AXAARO/tcTHsMZUGVZISxPbAosH2LV7J1+0SttyGVO44SIxbD+I2aM2gHOQBTXSEncDO/ut
FIOTTIS9JfZvc5q8RSbJ21Y/1wced1rsVFK59ZKWe090XAp0/9/c/FR8huoR+9P/zh7mxhEPy61JfwTvCdg+s=</SignatureValue>
<KeylInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#SecurityToken-122ch9a7-82de-40a5-91e5-4a4a5cf00b90" Value Type="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3" />
</wsse:SecurityTokenReference>
</Keylnfo>
</Signature>
</wsse:Security>
</soap:Header>
<soap:Body wsu:ld="Id-2fc19e22-84e5-4b4a-9379-e19ec31db9e7">
<DTSRequest
xmlins="urn:org:pesc:datatransport">eJwLyUhVyEmsqIRlyU9XyCrNLUhNUcgvSy1SKAFKJOeXFyskJSZn6+npGRgaGZuYmplbWB
00AgDxtBCz</DTSRequest>
</soap:Body>
</soap:Envelope>

Version: 2.0 May 2006
Status: Approved Page 24

Entire NET DTS SOAP Response:

<soap:Envelope xmins:soap="http://schemas.xmlisoap.org/soap/envelope/* xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xmins:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" xmIns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<soap:Header>
<DTSResponseHeader xmins:dts="urn:org:pesc:datatransport" xmins="urn:org:pesc:datatransport">
<dts:DTSResponseRouting>
<dts:DTSUUID>ed5a7410-afd3-11db-8ded-f1b1cb25f748</dts:DTSUUID>
<dts:DTSSourcelD>Nathan</dts:DTSSourcelD>
<dts:DTSSourcelDSubCode>Chitty</dts:DTSSourcelDSubCode>
<dts:DTSRecipientlD>Mark</dts:DTSRecipientID>
<dts:DTSRecipientlIDSubCode>Malinoski</dts:DTSRecipientIDSubCode>
</dts:DTSResponseRouting>
<dts:DTSResponsePayloadType>CRC:RESPONSE</dts:DTSResponsePayload Type>
<dts:DTSResponsePayloadBytes>54</dts:DTSResponsePayloadBytes>
<dts:DTSResponseAcknowledge>Deferred</dts:DTSResponseAcknowledge>
</DTSResponseHeader>
<wsse:Security soap:mustUnderstand="1">
<wsu:Timestamp wsu:ld="Timestamp-5de36a39-5165-4c24-87ab-8975{f{8847c5">
<wsu:Created>2007-01-29T20:04:23Z</wsu:Created>
<wsu:Expires>2007-01-29T20:09:23Z</wsu:Expires>
</wsu:Timestamp>
<wsse:BinarySecurityToken Value Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3" EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary" xmins:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:ld="SecurityToken-e3cd258e-b9f1-4a7a-8287-
8752ef077feb">MIICcjCCAdSCCQDMhQGU43qMhzANBgkghkiGOWOBAQQFADCBhELMAKGALUEBhMCVVMxCzAJBgNVBAGTAI
BBMQ4wDAYDVQQHEWVFbm9sY TEPMAOGA1IUEChMGUKITQ2IUMQwwCgYDVQQLEWNEVFMxFzAVBgNVBAMTDk1hcmsgTW
Fsaw5vc2tpMSIwlAY JKoZlhveNAQKBFhNthWFsaW5vcOByaXNjaXQuY29tMB4XDTA2MDgyMTE1INDI1INIoXDTASMDgyMDE1NDI
1NlowdDEUMBIGA1IUEAXMLamFALTMyMDUzMGwXEJAQBgNVBAsSTCU5hdGhhbkRUUZESMBAGA1UEChMJTmFOaGFURFRTM
RUWEWYDVQQHEWXKYWNrc29udmlsbhGUXEDAOBgNVBAQGTB0Zsb3JpZGExCzAJBgNVBAYTAIVTMIGIMAOGCSqGSIb3DQEBA
QUAA4GNADCBIQKBgQCONnwWGCXIlgD9MmxQtDu/HyFicJG64p3fRGHFgEuUucOWrlJawQBxI+9M5Lyq9eVaCNv3odINkSKMI5z/oal
shfew5uPK3rT+h/iISAIUB4AkxQ+p8FTOYpVFqVJIRz31FffopcviskGBfx9p0oH2b5GBhjz/wtAnlYroOUJIgpWAmMQrwIDAQABMAOGCS
gGSIb3DQEBBAUAA4GBAFkh3kiwegZIW8MzQEjtUPGPXRmOJutl05wGJYB7lvmg96S5sm50LV4K|jBXQd30sKd2p2d+wDIivwHBN9
YhIK4w50vDEKE11eA/ryFdNukwmftbQo/Dyiql2ZDLEC+0ADdUsSpGPCjQlydCh6gK4L42nFtyMINV7MsDEkrpbxiz1B</wsse:Binar
ySecurityToken>
<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<Reference URI="#ld-e5b57{73-0afa-4a99-b7b1-5cf7a88af5e9">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<DigestValue>RbkUhmToq17rYW8dBQis8RiwXx8=</DigestValue>
</Reference>
</SignedInfo>

<SignatureValue>0y34LhSYxeWyx/rsoNzOCqthyy4FX4xEIzFY1zt6 UHxIQgq8sxcDVtcCfuL +5709++B2BjsK0+4HBtm8gQ7wStZnJTa
/KDDrL95XUIYUrj4qjZbORGY 0xgMfGjUWWCZRUEH5jn8ZuszVbEyfFCII2PdtmLCf3lbv2IMggCQMZYc=</SignatureValue>
<KeylInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#SecurityToken-e3cd258e-b9f1-4a7a-8287-8752ef077feb" Value Type="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3" />
</wsse:SecurityTokenReference>
</Keylnfo>
</Signature>
</wsse:Security>
</soap:Header>
<soap:Body wsu:ld="1d-e5b57f73-0afa-4a99-b7b1-5cf7a88af5e9">
<DTSResponse
xmins="urn:org:pesc:datatransport">eJWLTsxTcMIMTcOXyCxWSFRILOpNLFEoyEIMTIUoyVcoyyzOLFFIZEsBCVU(qIGeWZCi4hATr
AQAAQXKQ</DTSResponse>
</soap:Body>
</soap:Envelope>

Version: 2.0 May 2006
Status: Draft Page 25

8 Recommendations
It is the recommendation of the PESC DTS Technical Committee that the <DTSUUID> sub-
element of the <DTSRouting> header element for both a request and a response be formatted

according to the IETF Draft Uuid Specification. Supporting documentation can be found at the
following link: http:/ /en.wikipedia.org/wiki/UUID.

It is the recommendation of the PESC DTS Technical Committee that the uncompressed source
data not exceed 50 megabytes. Technology will allow for data sizes greater than 50 megabytes,
but this requires modifications to the implementation of the specification and web server
configuration parameters.

The error handling section of the specification does not require values being present in the
<DTSRouting> sub-elements <DTSSourceIDSubCode> and <DTSRecipientIDSubCode> within
the <DTSRequestHeader> and <DTSResponseHeader> blocks. It is the recommendation of the
PESC DTS Technical Committee that the IDSubCode sub elements be populated with the
assigning organization of the Sourceld and Recipientld codes respectively.

For example: Sourceld = 12345678, SourceIDSubCode = ABCDE

It is recognized entities may have internal uses of the specification. When used internally
entities may chose to not implement the security portions of this specification.

Version: 2.0 May 2006
Status: Approved Page 26

http://www.ietf.org/internet-drafts/draft-mealling-uuid-urn-04.txt�
http://en.wikipedia.org/wiki/UUID�

9 Appendix

Below is the PKI WSS Proposal submitted to the PESC Steering Committee in October 2006. It
provides technical information supporting the move to DTS v2.0.

Problem Statement:

DTS Version 1.0 provides the mechanism to authenticate and validate the request/response
through asymmetric PKI using X.509 certificates. Currently, the only way to exchange public
keys is to physically send the X.509 Certificates to the trading partners you want to do DTS
transactions with.

The DTS technical workgroup proposed three technical solutions for key exchange, referenced
in both the specification and reference implementation guide documents. However, the
industry landscape and technical choices available at the time eliminated adoption of any
method that would reduce public key management complexities.

New Technical solution for key exchange:

With the advance in technology and standards, the WS-S (Web Service Security) specification
has provided a solution for key exchange, simple management, and eliminates the need for any
of the original three technical solutions proposed. The DTS technical workgroup has been
working on proving out this new solution and would like to present it for approval to PESC
before making the appropriate changes to the DTS specification.

Actual Solution:

The WS-S specification allows for the X.509 certificate to be sent within the security header of
the SOAP message. Extending the DTS specification to use WS-S would allow the recipient of
the SOAP transaction to extract the public key of the sender’s certificate and for the recipient to
verify the digital signature without any separate exchange of public keys.

Issues/Benefits:
e Trusting that the X.509 certificate is valid.

0 Aroot Certificate Authority (CA) should sign the certificate.
0 For added trust, a second Certificate Authority could sign the certificate.

0 By “trusting” that the Certificate Authority executed due diligence to ensure that
the certificate provided to them to sign was indeed the agency represented in the
certificate, the certificate of the Certificate Authority is all each trading partner
needs in the beginning

0 Root certificates from major Certificate Authorities come already installed on
most computers.

e Checking revocation lists.

Version: 2.0 May 2006
Status: Draft Page 27

0 Version 3 of X.509 certificates allows for Certificate Revocation List (CRL)
Distribution Endpoints, which provides the URL to retrieve information
concerning the status of certificates that is maintained by the CA.

o Utilizing this list allows for an agency to communicate a problem with their key
to one institution (the CA) and everyone they trade with (who checks that status
with the CA) will immediately be aware of the potential compromise.

o If the CA becomes aware of a potential problem the certificate can be
immediately revoked thus allowing all others to know.

e Key Expiration
0 CA’s typically only issue certificates that are valid for one year.

0 Periodically changing keys becomes a necessity at a higher level than just one
institution’s corporate policy.

Recommendations:
1. PESC becomes a Certificate Authority allowing their certificate to be part of the trust chain.
Action items:

e Research the feasibility of PESC becoming a CA.

e Research outsourcing to Verisign or some other third party CA acting on behalf of
PESC.

e Ensure Verisign or other third party provides the appropriate safeguards and
procedures to perform CA responsibilities correctly.

2. Have the DTS technical workgroup create a Version 2.0 of the DTS specification to include
this new solution for key exchange using WS-S. This would include restructuring the
current DTS header elements to align more closely to WS-* specifications.

Version: 2.0 May 2006
Status: Approved Page 28

Supplemental Information

The following sections and diagrams explain the technology behind, viability of, validity of, and
justification for the proposed solution.

While the “DTS Version 1 Specification” requires the use of digital signatures, the means by
which to do so is not defined through a proven and standardized method. However, the “DTS
Version 1 Reference Implementation” does state “Signing and verifying require the use of X.509
certificates.”

Version 2 of DTS would require the use of X.509 Certificates and that they must be issued by a
Certificate Authority. The inclusion of proven, interoperable, portions of the Web Services -
Security specification would also be explicitly required; thus also stating the means by which to
implement the Digital Signature.

Other changes to the DTS specification are limited to regrouping the SOAP Headers defined in
Version 1. In doing so, the header elements required by DTS will be brought into a format that
follows all other Web Services specifications. The reorganization doesn’t eliminate any of the
data elements being provided in Version 1. Rather, they are either replaced by elements
included in the WS-S specification or simply located elsewhere in the message structure. This
means that any Version 1 interface already implemented will not have to change.

The following information discusses: what are X.509 certificates, what do they contain, and how
will/are they used by DTS and WS-S.

Digital Signature Summary

A Digital Signature is used to ensure that 1) the contents of the message have not been changed
and 2) to authenticate the sender of the message. In order to validate a digital signature, the
receiver must have the sender’s public key. A public key is not a secret and may be freely
distributed. A trusted “certificate authority” validates the owner of the public key.

What is a Digital Signature?

Technically, a digital signature is an encrypted hash of the signed message presented in a
standard format. A hash is an algorithm (mathematical function) which produces a short string
(or number) which is very likely to change if the content of the message is changed. The output
of the hash algorithm is called a digest.

A digital signature does two things. First, the receiver is assured that the message received is
the message sent and, the content of the message has not been tampered with. The hash
algorithm provides this guarantee.

Second, the digital signature provides authentication of the signer. Digital signatures use a
public-private key pair. The public key is made available to the receiver of the message in an
X.509 certificate. The certificate includes the name or organization which owns the certificate
and information about the certificate authority which vouches for the certificate’s authenticity.

Version: 2.0 May 2006
Status: Draft Page 29

What is an X.509 Certificate?

An X.509 Certificate is a container for a public key. In addition, the certificate is digitally signed
by the issuer of the certificate, a trusted Certificate Authority.

If an X.509 certificate is to be trusted, then the user must believe that the Certificate Authority
has adequately validated the identity of the certificate’s owner. In addition, the Certificate
Authority must maintain the ability to revoke the certificate if the owner reports that the
matching private key has been compromised. The certificate contains the information necessary
for programmatically contacting the revocation list. Often there is a chain of trusted certificate
authorities. For example, an entity may obtain a certificate from a well known and trusted
commercial certificate authority. Then the entity may act as a Certificate Authority itself and
issue certificates. Users who choose to trust the entity can verify the identity of the entity via
the commercial Certificate Authority.

How is a Digital Signature created?

The first step in creating a digital signature is to hash the contents of the message. Standard
hash algorithms are used to “compress” the contents of the message into a relatively short
number.

The next step is to encrypt the hash number. The signer uses its private key to perform the
encryption. Only the signer’s public key will decrypt the hash.

The final step is to create the digital signature itself which includes some information in
addition to the encrypted digest, such as the algorithm used to create the digest.

The digital signature is then sent with the message.

The receiver must also have access to an X.509 Digital Certificate which contains the signer’s
public key. Often the Digital Certificate is included with the signed message.

How is a Digital Signature validated?

The first step in validating a digital signature is to obtain and validate the public key of the
signer. Usually, the signer’s public key is delivered in an X.509 Certificate. To validate the
certificate, and thus validate that the public key belongs to the signer, the Certificate Authority’s
X.509 Certificate must be in the user’s collection of trusted Certificate Authorities.

The next step is to ensure that the Certificate Authority has not revoked the certificate. All
Certificate Authorities provide a mechanism(s) for determining if a certificate has been revoked.

Knowing that the certificate is issued by a trusted authority and has not been revoked, the hash
digest in the digital signature is decrypted using the public key in the X.509 Certificate.

Finally, the user computes the hash digest of the received message. The signature is valid if the
computed digest matches the decrypted digest in the digital signature.

Version: 2.0 May 2006
Status: Approved Page 30

How are public-private key pairs obtained and distributed?

A user creates a public-private key pair on their own computer using commonly available
software. Microsoft operating systems provide this ability. UNIX based systems may use open
source software to create the key pair.

Once the key pair is created, the user is responsible for guarding the secrecy of the private key.
The public key, however, is not a secret and may be safely disclosed to anyone.

Users want assurance of the public key owner’s identity. This is accomplished by obtaining an
X.509 Certificate from a trusted Certificate Authority. The public key is sent to the Certificate
Authority and the authority returns a signed X.509 Certificate.

The X.509 Certificate may be distributed to anyone. Since the certificate contains only public
information, it does not need to be encrypted before transmission. Because the X.509 Certificate
is signed by a trusted Certificate Authority, the authenticity of the certificate may be
independently validated.

The simplest distribution method is to include the X.509 Certificate with the message rather
than using a separate “out-of-band” mechanism. This is safe because 1) none of the information
in the certificate is secret and 2) the ownership and contents can be verified by the issuing
Certificate Authority.

Version: 2.0 May 2006
Status: Draft Page 31

Diagram 1: Expected X.509 Certificate (public key) exchange under Version 1

getting CA signed Certificate

. Exchange X.509 Certificates
Alice (using DTS version 1) Bob
PBa Erlvale key kept secrat e PBb
Private kay kept secret ’
PRa PRb
Ceriificate Store Certificate Store
Or ather Internal After fallowing steps for Or other Intemal
Respositony getting CA signed Certificate Respository
q £ Share Certificate q =
C==¢-BBa with Trading partner (==r-FBa
Certa Certa
' 4 Share Certificate C
G==-BBb with Trading Partner &= PBb
Certb

Certb
After following steps for /

Benefits:

e Decreased cost
(though minimal) if
not requiring CA to
issue the certificate.

e By using X.509 as the
container for the
public key,
interoperability
between platforms is
guaranteed.

Shortcomings:

e New certificates and
updates must be
exchanged with all
trading partners

e The certificates are
exchanged, stored,
and validated outside
of the specification.

e Validation outside of
specification could
allow an entity to be
compromised, if the
entity does not create
due diligent
programmatic
processes that are not
explicitly stated in
the specification

Version: 2.0
Status: Approved

May 2006
Page 32

Diagram 2: Required X.509 Certificate (public key) “exchange” under Version 2

Ai Exchange X.509 Certificates Benefits: Lot
IC® " (using DTS version 2, WSS) * Nomanual exchange
of certificates.
e Interoperability is
guaranteed by using
X.509 as the container
PBa Private key kept secret PBb for the public key.
|: A e DTS version 2
e Specification would
ERRE Bl et re include WS-S and thus
the key exchange and
PRb validation are within
Ceriificate Store After fallowing steps Certificate Store the specification (see
Or ather Internal for getting CA Or other Internal Diagram 6).
Respository signed Certificate Respository « Minimal key
a & management.
===BPb e Single Pomt of
revocation.
Certa Certa e Single point of key
Pre-installed on update.
Trusted Root Store sy:fmgluﬁim;g';% s Trusited Rool Store e Only trusted
aquire separately certificate(s) is required
to be obtained before
‘E:fu BCca transport via DTS
CARoot CARoot
Cert Cert .
Shortcomings:
B T Obtained from e By requiring CA to
AniERd Boot e PESC T'usied Root Store issue the certificate
there is an increased
cost (TBD based on
' esc result of action items in
PESC pESC recommendation 1).
Root Root
Version: 2.0 May 2006

Status: Draft

Page 33

Diagram 3: Obtaining X.509 Certificate from Certificate Authority
The following diagram depicts the steps an organization would follow for obtaining a certificate from a
certificate authority.

Version: 2.0 May 2006
Status: Approved Page 34

Alice

Generate Generate Generate
Public & Certificate Validation
Private Request Information Stores Digital
Key PBa for for Certificate
Exchange Certifying Certifying
Pair Authority Authority
PRa = PBa
Process for Obtaining a Digital Certificate
ﬂ ® ® U ®
Certificate
Request
Validation
’ Information %
PBa Digital Cerificate
(contains PBa and CA's
ﬂ signature of PBa)
Certifying Authority
Stores
Validates Alice’s Information per it's i
Cartification Policy Statement s
Digital
Certificate
Version: 2.0 May 2006
Status: Draft Page 35

Diagram 4: Transport - Sending/Receiving via DTS Version 1

Alice Notes:
Alice’s certificate
Encryption via SSL | is obtained
directly from
{ Alice via a
previous out-of-
— band, non-DTS
Alice's Private Key TS communication
Bob
Encryption via SSL
p Compute
From Alice
; DTSvT
Receive } Y Compare
Package]|
Unlock
Alice's X.509 Certificate P'
containing Public Key; Ba
obtained directly from Certa
Alice
Version: 2.0 May 2006

Status: Approved Page 36

Diagram 5: Transport - Sending via DTS Version 2

Alice

e

) .'
“r:PBa
Certa

.

Encryption via SSL

ATC..9
AALT

T

HPackage—

Alice’s Private Key /

Notes:

The certificate is
added to the
SOAP package
under the WS-S
specification

The certificate
contains Alice’s
public key, the
Certificate
Authority’s
signature of the
public key, and
the entire
certificate trust
chain

Diagram 6: Transport - Receiving/ Verifying via DTS version 2

Version: 2.0
Status: Draft

May 2006
Page 37

Encryption via S5L

From Alice

U

Bob

Compute

Compare

Alice's cerlificate can be
used because it is trusted by

: PESC, PESC's certificata
Bk can be used because it is
trusted by an external
Certificate Authority (for
more detail see Diagram 7).
Bl By placing PESC in the
PESC certificate chain, a layer of
root Authorization is added within
the same mechanism of
i Authentication
‘E“ a

S 4

pa

CARoot
Cert

Notes:

Alice’s certificate
is received from
Alice during the
same DTS
communication.

=

*’(Formatted: Bullets and Numbering

Diagram 7: Detailed Certificate Chain Validation
The following diagram depicts the X.509 trust chain verification at a detailed level. Alice’s certificate is

transmitted with the DTS Version 2 SOAP package and is extracted. Its” authenticity is verified by use of
the PESC certificate already installed on the computer. The certificate from PESC is authenticated by use

of the root certificate of a Certificate Authority, preinstalled on most computers.

Version: 2.0
Status: Approved

May 2006
Page 38

If signature of PBa matches
through use of trust chain,
Pba Is used

) "“””’ ’ Computs

PBa PBa

Certa

If signature of PBpesc
maiches through use of CA

root cert, PBpesc is used

root m

PESCRoot cert from
trusted store

{ :> PHca
Pica— CARoot cert fram

CARoot
trusted store
Cert

Via Web Services Security (WSS)
Implementation

Version: 2.0
Status: Draft

May 2006
Page 39

Glossary

This section should list a glossary of terms and their definitions helpful in deciphering this
document. - Will be provided at a later date.

Version: 2.0 May 2006
Status: Approved Page 40

Acknowledgements

PESC DTS Workgroup would like to recognize the following individuals and their respective

organizations for their time and effort with the development of the DTS Specification

Mark Malinoski - AES
Nathan Chitty - Nelnet
Laura Damkoehler - ELM
John Gill - TG

Barry Needalman - ASA
Gary Sandler - ELM

Kim Shiflette - USA Funds
Richard Henninger - Datatel
Carl Romanik - NextStudent
Greg Zink - NY HESC
Larry Casey - accessGroup
Chet Sharrar - accessGroup

Version: 2.0
Status: Draft

May 2006
Page 41

Revision History

DATE SECTION/ DESCRIPTION REQUESTED BY MADE BY
PAGE
5/24/05 | Whole Initial Version Mark Malinoski
Document Nathan Chitty
8/2/05 Whole Format, grammar, and style review Gary Sandler Laura
Document and changes. Damkoehler
05/19/06 | Whole Header and footer date changes Kim Shiflette Kim Shiflette
Document
10/23/06 | Whole Typographical changes and example | Mark Malinoski Nathan Chitty
Document consistency corrections
10/24/06 | Security Added security section to describe DTS Tech Group Mark Malinoski
Section WS-S (San Diego)
2/1/07 Whole Modified Document to include all of | DTS Tech Group Mark Malinoski
Document the WS-S requirements and the
reformatting of the DTS headers (Las
Vegas and Santa Fe)
2/6/07 Whole Modified Document based on DTS Tech Group Mark Malinoski
Document comments made during webanar
review session
2/26/07 | Whole Minor formatting changes. Mark Malinoski
Document
Version: 2.0 May 2006

Status: Approved

Page 42

| E=cior
Lkrary
(Fle A1

Schema for Schema for
Secior A Secue 3
| Message Type (Maszage Type

"

Or igihtion and Dsbursament

Demogrannics Sector

'
'
I FlREZD
'
'

| Basic Core
| Compone it

Sunpc:
Arens

Sector Library Laval

Cora Componentl

Version: 2.0
Status: Draft

May 2006
Page 43

	Executive Summary
	Table of Contents
	Tables and Figures
	Introduction
	Overview
	Purpose
	Scope
	Intended Audience
	Organization of the Document

	OVERVIEW AND DESCRIPTION OF DTS SPECIFICATION
	SECURITY (Encryption/Authentication)
	DTS WSDL (Web Service Definition Language)
	Types
	Messages
	Interfaces (portTypes)
	Bindings
	Services

	DTS SOAP Descriptions
	DTS SOAP Header Elements
	DTS Request SOAP (See the supplemental section of this document for example SOAP)
	Header Elements
	Body

	DTS Response SOAP (See the supplemental section of this document for example SOAP)
	Header Elements
	Body

	DTS Common Header Element (See the supplemental section of this document for example SOAP)

	COMMUNICATION OR FRAMEWORK ERRORS GENERATED OUTSIDE DTS
	DTS ERROR HANDLING REQUIREMENTS:
	DTS Service Error Handling Table
	WS-Security Error Handling Requirements (Processing Errors)
	DTS Faults Summary
	DTS Client Error Handling
	SUPPLEMENTAL DOCUMENTATION
	DTS 2.0 WSDL
	Entire Java DTS SOAP Request:
	Entire Java DTS SOAP Response:
	Entire .NET DTS SOAP Request:
	Entire .NET DTS SOAP Response:

	Recommendations
	Appendix
	Glossary
	Acknowledgements
	Revision History

