May 21, 2007

DTS Specification Change Document

Version 2.0 versus Version 1.1

Page 2 of 8

[image: image1.jpg]§ Celebrating Our 10" Anniversary in 2007 ?

POSTSECONDARY
|

DTS Specification
Change Document
Version 2.0 versus Version 1.1

May 21, 2007
Prepared by

PESC DTS Technical Workgroup

© Postsecondary Electronic Standards Council (PESC) 2007. All Rights Reserved.

This document may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. This document itself, however, may not be modified in any way except when expressly approved by PESC for the purpose of developing standards and specifications.
Notice:

The material contained herein is not a license, either express or implied, to any intellectual property owned or controlled by any of the authors or developers of this material or PESC. The material contained herein is provided on an “AS IS” basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and PESC hereby disclaim all other warranties and conditions, either express, implied or statutory.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERILA OR PESC BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUSTITUTES GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

1
Introduction

1.1
Overview
This document describes the differences between the Data Transport Standard (DTS) version 1.1 and the DTS version 2.0 specifications. It outlines and defines exact changes to the SOAP package being transmitted as well as the reasons for the changes. The primary change between the versions is the incorporation of portions of the Web Services Security specification. Changes were also made relating to the organization of the SOAP structure for the DTS SOAP:Header elements bringing them inline with other Web Services standard specifications.
1.2
Purpose

The purpose of this document is to provide a succinct description of the changes between versions. The information provided in this document will describe the evolution of various information technology standards and specifications as well as the evolution/enhancement of the software tool kits used to prove interoperability. This document can be used by agencies that have already implemented DTS version 1.1 (or anyone already familiar with DTSv1.1) to quickly identify the sections of interest in the new specification.
2 DTS SOAP Descriptions

2.1
Guidelines removed in version 2
The DTSv1.1 Specification defined two guidelines that had to be adhered to in order for interoperability between Java and .Net to be achieved. Advancements in the tool kits being used has allowed for the removal of these guidelines. The capability of the newer tool kits no longer requires following the previous guidelines; this simplifies coding efforts.

The xsi:type is no longer a requirement.
The following section was removed from the specification during creation of Version 2.
Guideline 1:

On the root element of each header element, the xsi:type attribute must be present:

xsi:type=”Qualified Name Of Element”

The following example shows the qualified name for the DTSRequestRouting header element:

xsi:type="DTSRequestRouting"
The xmlns attribute is no longer a requirement inside the root element of each header element. However, all examples provided in the DTSv2 Specification include this attribute as well as being assigned a moniker that will be used for the child elements. The removal of this guideline is due to the ability of the toolkits to have the attribute or not and the code still function correctly.
The following section was removed from the specification during creation of Version 2.

Guideline 2:

On the root element of each header element, the xmlns attribute must be present:

xmlns=”namespace of the service”

The following example shows the namespace attribute for the DTSRequestRouting header element:

xmlns="urn:org:pesc:datatransport"
2.2 DTS SOAP:Header elements
The DTSv1.1 Specification defined several SOAP:Header elements that were specific to DTS. The purpose and requirement of these elements have not changed.

The organization of, and process for creating, these elements have changed. The changes in organization were made for the DTS specification to more closely resemble other Web Service-* specifications. With the inclusion of the WS-Security (WS-S) specification a few elements defined and created by the DTS Specification are no longer needed since they are included in WS-S.
2.2.1 Authentication via Digital Signatures
The DTSv1.1 Specification defined the <DTSRequestSignature> and <DTSResponseSignature> SOAP:Header elements to contain the digital signature of the compressed and encoded payload. These elements were immediate children of the <SOAP:Header> block and were a one-off implementation of digital signatures within web services. They both utilize X.509 certificates for the creation of the signatures but the elements were proprietary instead of contained within the existing WS-S specification. The primary reason for this course was due to interoperability and the xsi:type attribute. With the removal of the requirement to provide the xsi:type attribute the adoption of portions of WS-S becomes possible.

The following definitions and corresponding examples present in version 1.1 were removed from the specification during creation of version 2:
DTSRequestSignature Element (Complex Type) (Specification Defined)

This element is to be used to hold the digital signature of the compressed and encoded request payload. The data in this element must be base64 encoded. This element is defined as a complex type to address .Net and Java interoperability.

DTSResponseSignature Element (Complex Type) (Specification Defined)

This element is to be used to hold the digital signature of the compressed and encoded response payload. The data in this element must be base64 encoded. This element is defined as a complex type to address .Net and Java interoperability.
The following is an example of the SOAP:Header structure that is defined and required by the DTSv2 specification as provided by WS-S that replaces the proprietary elements from version 1.1 above. The <SignatureValue> element within the Security\Signature block is the one to one replacement for <DTSRequestSignature> and <DTSResponseSignature>. The additional information contained in the <Security> block is to adhere to the WS-S specification.
<wsse:Security soap:mustUnderstand="1">

<wsu:Timestamp wsu:Id="Timestamp-5de36a39-5165-4c24-87ab-8975ff8847c5">

<wsu:Created>2007-01-29T20:04:23Z</wsu:Created>

<wsu:Expires>2007-01-29T20:09:23Z</wsu:Expires>

</wsu:Timestamp>
<wsse:BinarySecurityToken ValueType=http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="SecurityToken-e3cd258e-b9f1-4a7a-8287-8752ef077feb">

MIICcjCCAdsCCQDMhQGu43qMhzANBgkqhkiG9w0BAQQFADCBhjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAlBBMQ4wDAYDVQQHEwVFbm9sYTEPMA0GA1UEChMGUklTQ2lUMQwwCgYDVQQLEwNEVFMxFzAVBgNVBAMTDk1hcmsgTWFsaW5vc2tpMSIwIAYJKoZIhvcNAQkBFhNtbWFsaW5vc0ByaXNjaXQuY29tMB4XDTA2MDgyMTE1NDI1NloXDTA5MDgyMDE1NDI1NlowdDEUMBIGA1UEAxMLamF4LTMyMDUzMGwxEjAQBgNVBAsTCU5hdGhhbkRUUzESMBAGA1UEChMJTmF0aGFuRFRTMRUwEwYDVQQHEwxKYWNrc29udmlsbGUxEDAOBgNVBAgTB0Zsb3JpZGExCzAJBgNVBAYTAlVTMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC0nwGCXlgD9MmxQtDu/HyFicJG64p3fRGHFgEuucOWrIJaWQBxl+9M5Lyq9eVaCNv3odINkSKMI5z/oaIshfew5uPK3rT+h/iSAiUB4AkxQ+p8FT0YpVFqVJRz31FffopcvlskGBfx9p0oH2b5GBhjz/wtAnIYroOUJlgpWAmQrwIDAQABMA0GCSqGSIb3DQEBBAUAA4GBAFkh3kiwegZlW8MzQEjtUPGPxRm0Jutl05wGJYB7lvmq96S5sm5oLV4KjBXQd30sKd2p2d+wDlvwHBN9YhlK4w5OvDEKE11eA/ryFdNukwmftbQo/DyiqI2ZDLEC+0ADdUsSpGPCjQlydCh6gK4L42nFtyM9NV7MsDEkrpbxiz1B

</wsse:BinarySecurityToken>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<Reference URI="#Id-e5b57f73-0afa-4a99-b7b1-5cf7a88af5e9">

<Transforms>

<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>RbkUhmToq17rYW8dBQis8RiwXx8=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

oy34LhSYxeWyx/rsoNzOCqthyy4FX4xEIzFYIzt6UHxIQgq8sxcDVtcCfuL+5709++B2BjsK0+4HBtm8gQ7wStZnJTa/KDDrL95XUIYUrj4qjZbORGY0xgMfGjUWwCZRUEH5jn8ZuszVbEyfFCIl2PdtmLCf3lbv2IMqgCQMZYc=

</SignatureValue>

<KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI="#SecurityToken-e3cd258e-b9f1-4a7a-8287-8752ef077feb" ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>

</wsse:SecurityTokenReference>

</KeyInfo>

</Signature>
</wsse:Security>

The <BinarySecurityToken> element within the security block contains the X.509 certificate that can be used to verify the signature of the data transmitted. The certificate holds trust chain information that can be used to ensure that the certificate was issued by a trusted authority that the recipient also trusts to assert the sender is indeed the sender. By verifying the signature and validating the trust chain to the root Certificate Authority it can be assured that the data was sent without being compromised by a third party or from a third party. See the specification for complete details regarding how this process is valid and works.
In version 1.1 the X.509 certificate had to be exchanged between trading partners prior to being able to transmit data via DTS. With the inclusion of the <BinarySecurityToken> by version 2, the prior out-of-band exchange does not have to take place. This allows DTS version 2 to satisfy the final business requirement of minimizing key management and exchange.
2.2.2 DTS Timestamp Element
The header values defined by version 1.1 of the DTS specification also contained the <transmissionDateTime> element nested in the <DTSRequestRouting> and <DTSResponseRouting> elements. In the SOAP example above of the WS-S <Security> header block there is a <TimeStamp> complex element. The <transmissionDateTime> element has been removed from version 1.1 of DTS because the <Security> block contains a <TimeStamp> element conveying the same information. In addition to conveying the same information, the inclusion of <Created> and <Expired> introduces a limited window of opportunity for a man in the middle attack.

2.2.3 DTS Proprietary Element Organization

In version 1.1 of the DTS specification all header elements created to provide information relating to the DTS transmission were immediate children of the SOAP:Header element. The information being provided is still necessary and required for DTS transport to work properly but the organization of these elements has been modified to more closely resemble structures provided by other web services standard specifications. New complex header elements have been created for the DTS Request and DTS Response as a child of SOAP:Header which contain child elements that were identified and defined in version 1.1.

The following is an example of the new DTS Request Header structure:

<DTSRequestHeader xmlns:dts="urn:org:pesc:datatransport" soap:mustUnderstand="1" soap:actor="urn:org:pesc:datatransport/dts" xmlns="urn:org:pesc:datatransport">

<dts:DTSRequestRouting>

<dts:DTSUUID>79bcaa05-82b8-4ea3-99bd-4bfb5787b84d</dts:DTSUUID>

<dts:DTSSourceID>Nathan</dts:DTSSourceID>

<dts:DTSSourceIDSubCode>Chitty</dts:DTSSourceIDSubCode>

<dts:DTSRecipientID>Mark</dts:DTSRecipientID>

<dts:DTSRecipientIDSubCode>Malinoski</dts:DTSRecipientIDSubCode>

</dts:DTSRequestRouting>

<dts:DTSRequestPayloadType>Testing</dts:DTSRequestPayloadType>

<dts:DTSRequestPayloadBytes>53</dts:DTSRequestPayloadBytes>

<dts:DTSRequestServiceExpectation>CRC01 Request</dts:DTSRequestServiceExpectation>
</DTSRequestHeader>
The following is an example of the new DTS Response Header structure:

<DTSResponseHeader xmlns:dts="urn:org:pesc:datatransport" xmlns="urn:org:pesc:datatransport">

<dts:DTSResponseRouting>

<dts:DTSUUID>ed5a7410-afd3-11db-8ded-f1b1cb25f748</dts:DTSUUID>

<dts:DTSSourceID>Nathan</dts:DTSSourceID>

<dts:DTSSourceIDSubCode>Chitty</dts:DTSSourceIDSubCode>

<dts:DTSRecipientID>Mark</dts:DTSRecipientID>

<dts:DTSRecipientIDSubCode>Malinoski</dts:DTSRecipientIDSubCode>

</dts:DTSResponseRouting>

<dts:DTSResponsePayloadType>Response</dts:DTSResponsePayloadType>

<dts:DTSResponsePayloadBytes>54</dts:DTSResponsePayloadBytes>

<dts:DTSResponseAcknowledge>CRC01 Response</dts:DTSResponseAcknowledge>
</DTSResponseHeader>
3 DTS Error Handling

Version 1.1 of the specification provided exact definitions and circumstances for providing a SOAP:Fault. With the changes between specifications described above there is also the need to modify the conditions under which error messages are provided. See section 7 of the DTSv2 Specification for complete details.
	Version 1.1 Specification SOAP Header block
	Version 2.0 Specification SOAP Header block

	<SOAP:Header>

<DTSRequestRouting

xsi:type="DTSRequestRouting"

xmlns="http://www.datatransportstandard.com">

 <UUID>

 <transmissionDateTime>

 <sourceID>

 <sourceIDCode>

 <recipientID>

</DTSRequestRouting>

<DTSRequestPayloadType

xsi:type="DTSRequestPayloadType"

xmlns="http://www.datatransportstandard.com">

 <value></value>

</DTSRequestPayloadType>

<DTSRequestPayloadBytes

xsi:type="DTSRequestPayloadBytes"

xmlns="http://www.datatransportstandard.com">

 <value></value>

</DTSRequestPayloadBytes>

<DTSRequestServiceExpectation

xsi:type="DTSRequestServiceExpectation"

xmlns="http://www.datatransportstandard.com">

 <value></value>

</DTSRequestServiceExpectation>

<DTSRequestSignature

xsi:type="DTSRequestSignature"

xmlns="http://www.datatransportstandard.com">

 <value> </value>

</DTSRequestSignature>

</SOAP:Header>
	<SOAP:Header>

<DTSRequestHeader

xmlns:dts="urn:org:pesc:datatransport"

soap:mustUnderstand="1"

soap:actor="urn:org:pesc:datatransport/dts"

xmlns="urn:org:pesc:datatransport">

 <dts:DTSRequestRouting>

 <dts:DTSUUID>

 <dts:DTSSourceID>

 <dts:DTSSourceIDSubCode>

 <dts:DTSRecipientID>

 <dts:DTSRecipientIDSubCode>

 </dts:DTSRequestRouting>

 <dts:DTSRequestPayloadType>

 <dts:DTSRequestPayloadBytes>

 <dts:DTSRequestServiceExpectation>

</DTSRequestHeader>

<wsse:Security soap:mustUnderstand="1">

 <wsu:Timestamp>

<wsu:Created>

<wsu:Expires>

 </wsu:Timestamp>

...
 <Signature>
 <SignatureValue>
 </Signature>
…

</wsse:Security>

</SOAP:Header>

The following table illustrates the different organizational structure of DTS Soap:Header elements.

�

