[image: image2.wmf]Origination and Disbursement

Demographics Sector

Sector

Library

File A-1

Contacts

COD Common Record Schema

Student

Schema for

Sector A

Sector B

Schema for

Sector B

Core Component Level

Sector Library Level

Schema Level

Demographics

Subject Area

Subject

Area B

Subject

Area C

Subject

Area D

Basic Core

Component

Schema

Aggregate

Core

Component

Schema

Basic Core

Component

Schema

Aggregate

Core

Component

Schema

Basic Core

Component

Schema

Sector

Library

File A-2

SectorLibrar

y

File A-3

Sector

Library

File B-1

Sector

Library

File B-2

Message Type

2

Message Type

1

    Basic Core

    Component

    Schema

    

    Aggregate  

   

    Core

    Component

    Schema

    

Address

 City

Address Line

 State Code

Postal Code

Address

Contacts

Address

 City

Address Line

 State Code

Postal Code

<!--other data-->

<!--other data--

>


Data Transport Standard v 1.0 Reference Implementation Guide
Version 1.0
February 6, 2006
Prepared by
PESC DTS Technical Workgroup 
© Postsecondary Electronic Standards Council (PESC) 2005.  All Rights Reserved.

This document may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works.  This document itself, however, may not be modified in any way except when expressly approved by PESC for the purpose of developing standards and specifications.
Notice: 

The material contained herein is not a license, either express or implied, to any intellectual property owned or controlled by any of the authors or developers of this material or PESC.  The material contained herein is provided on an “AS IS” basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and PESC hereby disclaim all other warranties and conditions, either express, implied or statutory.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR PESC BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTES GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Table of Contents

3Table of Contents


41
Introduction


41.1
Document Description


41.2
Purpose


41.3
Terminology


41.4
Toolsets Used to Create Reference Implementations


4.NET


4JAVA


41.5
Private and Public Key Handling


41.6
Compression and Encoding
……..  

51.7
Disclaimers


Error! Bookmark not defined.2
Interfaces


93
Reference Implementation Utility Classes


104
Steps for Creating a DTS Core Client


135
Steps for Creating a DTS Core Service


156
Service Deployment Considerations


156.1
.NET Considerations


156.2
JAVA Considerations - WSDD (Web Services Description Definition)


16Java Considerations - Packaging and third party utilities


177
Net Core Client Examples


238
Net Core Service Examples


329
Java DTS Core Client Examples


4010
Java DTS Core Service Examples


45Revision History



 
Introduction

1.1 Document Description
This document is a supplemental document to the DTS Technical Specification Document.  It is to be used as a guide and a reference to implement the DTS specification.  The descriptions and examples contained in this document are taken from the reference implementations created by the DTS Technical workgroup to assist in writing the DTS specification.  

1.2 Purpose
The purpose of this document is to help entities understand the reference implementations of DTS.

1.3 Terminology
Serialization:
Serialization is the conversion of an object instance to a data stream of byte values.  In the case of Web Services it is the conversion of an object instance to a XML data stream.
De-serialization:

De-serialization is the conversion of a data stream of byte values to an object instance.  In the case of Web Services it is the conversion of a XML data stream to an object instance.
1.4 Toolsets Used to Create Reference Implementations

.NET

· .Net Framework 1.1
· WSE 1.0
· IIS 5 or later
· J# Redistributable Runtime/SharpZipLib (compression routines)
· Visual Studio .Net 2003
JAVA

· Apache Axis 1.1 web service toolkit
· Apache Jakarta Tomcat 4.x or higher
· Sun Java JRE 1.4 (SDK for Development)
· A Java IDE (Eclipse, JDeveloper)
1.5 Private and Public Key Handling 

Digital signing and verifying signatures are required processing for both a DTS Service and a DTS Client.  This is the primary means for DTS to authenticate the sender of the data.  Signing and verifying require the use of X.509 certificates.  Private keys will be maintained locally at each organization and not shared with other organizations.  Public keys will need to be distributed to each organization that produces or consumes a DTS service.  Currently there are options under review by the DTS Business workgroup to determine the best way for DTS participants to obtain public keys.  The reference implementations have provided a simple interface and a generic implementation of that interface to obtain the public keys required for the reference implementations to work.  The IPubicKeyHandler interface provides the means for the reference implementation to obtain a generic Public key that allows for the verification of the digital signatures.  Once the DTS Business workgroup determines a method for exchanging public keys, each organization will need to create its own method to meet the requirements of the DTS business workgroup.
1.6 Compression and Encoding

To reduce the amount of data being transmitted over the wire, the DTS Client Request and DTS Service Response need to be zlib compressed.  The compressed payload also needs to be base64 encoded to ensure that special characters get translated correctly when transmitted over the wire.

1.7 Disclaimers
The reference implementations are one way to implement the specification.  Entities may differ in their implementation approach as various tool sets evolve.  

2 INTERFACES:
Best practices suggest the use of Interfaces in object oriented design to ensure that all of the functionality of a particular unit of work is being completed successfully.  Implementation of Interfaces varies depending on programming language and platform.  Below is a list of the key Interfaces of the reference implementation used to meet the DTS specification.

· A DTS Core Client should implement the following Interface:

IDTSCoreClient

	 Method Name
	Return Value
	Arguments/Types
	Note

	
	
	
	The Set methods must be called prior to calling the invoke method


	setSourceId
	void
	sourceid/String
	Routing for Service

	setSourceIdSubCode
	void
	sourceidsubcode/String
	Routing for Service

	setRecipientId
	void
	recipientid/String
	Routing for Service

	setRecipientIdSubCode
	void
	recipeintidsubcode/String
	Routing for Service

	setUUID
	void
	uuid/String
	Routing for Service

	setEndpoint
	void
	endpoint/String
	Service Endpoint

	setPrivateKey
	void
	privatekey/Platform Specific
	Set prior to invoke for signing of the payload

	setPayloadType
	void
	payloadtype/String
	Set prior to invoke

	setServiceExpectation
	void
	serviceexpectation/String
	Set prior to invoke

	setPayload
	void
	payload/String
	Set prior to invoke

	setPublicKeyHandler
	void
	handler/IPublicKeyHandler
	Set prior to invoke for verifying signature

	invoke
	void
	N/A
	throws Exception

	
	
	
	The Get methods should be read after the invoke method is called


	getResponse
	String
	N/A
	Routing from Service

	getSourceId
	String
	N/A
	Routing from Service

	getSourceIdSubCode
	String
	N/A
	Routing from Service

	getRecipientId
	String
	N/A
	Routing from Service

	getRecipientIdSubCode
	String
	N/A
	Routing from Service

	getUUID
	String
	N/A
	Routing from Service

	getTransmissionDateTime
	String
	N/A
	Routing from Service

	getResponseType
	String
	N/A
	Read for Response Type

	getResponseAcknowledge
	String
	N/A
	Read for Response Acknowledge


· Both the DTS Core Client and DTS Core Service have requirements for verifying digital signatures.  Both cores will need to have their corresponding application components assign an object that meets the following interface to be able to obtain the appropriate public key for verification.  This interface is subject to change based on any decisions that the DTS business workgroup makes about key exchange.

IPublicKeyHandler

	Method Name
	Return Value
	Arguments/Types
	Note

	getPublicKey
	publickey/Platform 
	sourceId/String
	

	
	Specific
	sourceIdSubCode/String
	

	getPublicKey
	publickey/Platform 
	sourceId/String
	

	
	Specific
	payloadType/String
	

	
	
	sourceIdSubCode/String
	


· The DTS Core Service might instantiate a DTS Service Application object that implements the following interface: 

IDTSServiceApplication

	Method Name
	Return Value
	Arguments/Types
	Note

	setSourceId
	void
	sourceid/String
	Routing from Client

	setSourceIdSubCode
	void
	sourceidsubcode/String
	Routing from Client

	setRecipientId
	void
	recipientid/String
	Routing from Client

	setRecipientIdSubCode
	void
	recipeintidsubcode/String
	Routing from Client

	setUUID
	void
	uuid/String
	Routing from Client

	setPayloadType
	void
	payloadtype/String
	Set before invoke

	setServiceExpectation
	void
	serviceexpectation/String
	Set before invoke

	setPayload
	void
	payload/String
	Set before invoke

	setTransmissionDateTime
	void
	transmissiondatetime/String
	Set before invoke

	invoke
	void
	N/A
	throws Exception

	getPublicKeyHandler
	void
	handler/IPublicKeyHandler
	Read prior to invoke for validating signature

	getPrivateKey
	void
	privatekey/Platform Specific
	Read after invoke for signing the response

	getResponse
	String
	N/A
	Read after invoke  

	getSourceId
	String
	N/A
	Routing for Client

	getSourceIdSubCode
	String
	N/A
	Routing for Client

	getRecipientId
	String
	N/A
	Routing for Client

	getRecipientIdSubCode
	String
	N/A
	Routing for Client

	getUUID
	String
	N/A
	Routing for Client

	getPayloadType
	String
	N/A
	Read after invoke for Response Type

	getResponseAcknowledge
	String
	N/A
	Read after invoke for Reponse Acknowledge


3 Reference Implementation Utility Classes
JAVA

Logging

- Logging utility class.

Zlib


- Provides wrapper to the actual java zlib classes.

PublicKeyHandler
- This object implements the IPublicKeyHandler interface and returns a generic public key for the reference implementation. 

.Net

Compression

- Provides wrapper to J# zlib classes or to the SharpZipLib.

Certificates
- Provides generic method for getting RSA Cryptographic Service Provider from an X.509 certificate in the computer store or file.

4 Steps for Creating a DTS Core Client
1. Error reporting to DTS Client Application prior to calling the service:

The DTS Core Client should perform checks before calling the service to ensure that all required elements are present as per the specification.  Exceptions should be raised back to the DTS Application Client if elements are missing.

2. Create container classes for header elements:

Container classes need to be created for each header element defined in the WSDL.  The container classes provide the holding area for data to be serialized and de-serialized to and from the SOAP.

3. Directives for serialization/de-serialization:

Both .Net and Java (Apache Axis) need to define how the container classes should be serialized and de-serialized.  Java requires a qualified name attribute and namespace attribute to be associated with each header element.  These attributes are added during the call to the platform specific directives.  Without the directives the data within the container classes cannot be added or extracted from the SOAP through the respective toolkits.

4. Preparing the payload:

The DTS Core Client is required to zlib compress and base64 encode the payload.  To reduce the amount of data being transmitted over the wire the payload needs to be zlib compressed.  The compressed payload also needs to be base64 encoded to ensure that special characters get translated correctly when transmitted over the wire.

5. Signing the payload:
The DTS Core Client is required to digitally sign the compressed and encoded payload with an X.509 certificate private key.  The DTS Client Application is responsible for setting a Private Key object on the DTS Core Client so it can sign the prepared payload. The DTS Core Client is also required to base64 encode the signature prior to putting it into the DTSRequestSignature SOAP Header element.  

6. Preparing the DTS Request Headers:
Each request header container class must be instantiated and element values set correctly.  The Core Client then needs to create a SOAPHeader element for each request header object to be added to the SOAP.  The following is the full list of request header elements that need to be created:

DTSRequestRouting


DTSRequestPayloadType


DTSRequestServiceExpectation


DTSRequestPayloadBytes
See the “types” section of the DTS WSDL for a complete definition of these header elements.

7. Invoking the service:
The DTS Core Client is required to invoke a call to the DTS Service and wait for the DTS Core Service response.

8. Handling of SOAP faults returned from DTS Core Service:
The DTS Core Client is required to handle any SOAP faults raised by the DTS Core Service.  These will be returned as the body of the response.  There are no requirements to do anything special at the DTS Core Client level except to reformat the SOAP fault into an application exception that the DTS Client Application can use.  Depending on the requirements of each organization and depending on the organization’s implementation of the DTS Core Client, logging and notification processing may need to be added.  At a minimum, the exception returned to the DTS Client Application can be interrogated and processed.

See the DTS Specification for the exact fault information to be sent back.

9. Handling of communication or framework errors generated outside of DTS:
The DTS Core Client should handle any platform or protocol specific errors not explicitly generated by a DTS Core Service.  The current reference implementations simply raise these errors back to the DTS Client Application.

10. DTS Response header processing:
If no SOAP exceptions are received from the DTS Core Service, the DTS Core Client should continue processing by extracting the DTS Response header information and making it available to the DTS Client Application through the interface defined in the Interfaces section.  The following is the full list of response header elements that need to be returned from the DTS Core Service:

DTSResponseRouting


DTSResponsePayloadType


DTSResponseAcknowledge


DTSResponsePayloadBytes

See the “types” section of the DTS WSDL for a complete definition of these header elements.

11. Verifying the response signature:
The DTS Core Client is required to verify the response signature.  The DTS Core Client should instantiate a class that implements the IPublicKeyHandler interface listed above and call one of the getPublicKey methods to obtain the public key based on the information contained in the DTS Response header(s).  Once the public key is obtained the DTS Core Client should try to verify the digital signature contained in the DTS Response Signature header element.  If the signature verifies, the DTS Core Client returns control to the DTS Client Application.  If the signature does not verify, an exception should be thrown to the DTS Client Application.

**** This needs to be removed after the .Net ref implementation matches the doc ******

Note:  In the case of the current reference implementations the instantiation of an IPublicKeyHandler has not been implemented.  But for production systems that require access to multiple public keys, possibly obtained from multiple locations, the implementation of an IPublicKeyHandler object will facilitate retrieving the appropriate public keys for the DTS Core Client to use without the DTS Core Client having knowledge of where the public keys are stored.

12. Response processing:
The response string returned from the DTS Core Service will be base64 encoded and zlib compressed.  It is the responsibility of the DTS Core Client to decode and uncompress the payload and make it available to the DTS Client Application via the interface.

5 Steps for Creating a DTS Core Service
1. Create container classes for header elements:
Container classes need to be created for each header element defined in the WSDL.  The container classes provide the holding area for data to be serialized and de-serialized to and from the SOAP.

2. Directives for serialization/de-serialization:
Both .Net and Java (Apache Axis) need to define how the container classes should be serialized and de-serialized.  Java requires a qualified name attribute and namespace attribute to be associated with each header element.  These attributes are added during the call to the platform specific directives.  Without the directives the data within the container classes cannot be added or extracted from the SOAP through the respective toolkits.

3. DTS Request Header processing:
In the Java reference implementation, the request header processing is performed by the RequestHeaderHandler object prior to the service being called.  This is the definition of how the handlers are called and what order is done through the Axis WSDD configuration file.  The RequestHeaderHandler is responsible for performing the appropriate error handling as per the specification on the request header elements and creating SOAP faults as needed.  Information contained in the request header elements is passed to the service via parameters set on the MessageContext object.

In the .Net reference implementation, the request header processing is done inside the asmx file.  The objects are de-serialized and accessible by the web service as native objects to that class.

4. Instantiate the appropriate DTS Service Application:
The appropriate DTS Service Application for the web service being built needs to be instantiated.  The DTS Service Application should meet the IDTSServiceApplication interface.

5. Verifying the request signature:
The DTS Core Service is required to verify the request signature.  The DTS Core Service should instantiate a class that implements the IPublicKeyHandler interface listed above and call one of the getPublicKey methods to obtain the public key based on the information contained in the DTS Request header(s).  Once the public key is obtained the DTS Core Service should try to verify the digital signature contained in the DTS Request Signature header element.  If the signature verifies, the DTS Core Service continues processing.  If the signature does not verify, a SOAP fault should be thrown to the DTS Core Client. 

See the DTS Specification for the exact fault information to be sent back.
6. Payload processing:
The DTS Core Service is required to base64 decode and zlib uncompress the payload and set it in the DTS Service Application, see Interface section.

7. Invoking a DTS Service Application:
The DTS Core Service is required to set all of the IDTSServiceApplication values, including the payload, prior to calling the invoke method.

8. DTS Service Application exception handling:
The DTS Core Service is required to handle exceptions thrown from the DTS Service Application.  If the DTS Core Service receives a platform specific exception from the DTS Service Application it should create and prepare a SOAP fault to be sent back to the DTS Core Client.  

See the DTS specification for the exact fault information to be sent back.
9. Preparing the response:
The DTS Core Service is required to zlib compress and base64 encode the response retrieved from the DTS Service Application.

10. Signing the response:
The DTS Core Service is required to digitally sign the response with an X.509 certificate private key.  The DTS Service Application is responsible for providing the Private Key object to the DTS Core Service through an interface so the DTS Core Service can sign the prepared response. The DTS Core Service is also required to base64 encode the signature prior to setting it into the DTSResponseSignature SOAP Header element.

11. Preparing the Response Headers:
Each response header container class must be instantiated and element values set correctly.  The Core Service then needs to create a SOAPHeader element for each response header object to be added to the SOAP.  The following is the full list of response header elements that need to be created:

DTSResponseRouting


DTSResponsePayloadType


DTSResponseAcknowledge


DTSResponsePayloadBytes
See the “types” section of the DTS WSDL for a complete definition of these header elements.

6 Service Deployment Considerations

6.1 .NET Considerations

Organizations should deploy the DTS web service as any other .Net web application.  Any dependency, structure, and deployment issues that have been encountered in other applications should also be considered for DTS.  The .Net reference implementation has been tested under IIS 5.1 and built using Visual Studio .Net 2003 and the .Net Framework 1.1.  The utility classes mentioned in this document or utility classes built independently must be added to the Global Assembly Cache or placed in the bin directory of the service being deployed.

6.2 JAVA Considerations - WSDD (Web Services Description Definition)
The Java reference implementation has been tested in the Apache Jakarta Tomcat environment.  Axis requires a WSDD file to be deployed with every install.  This file describes the services available and other important items, i.e. Serialization and De-Serialization directives, pre and post handler information, and general service properties.  The current Java reference implementation uses pre and post handlers to process the DTS request and response headers.  The current Java reference implementation includes a complete and valid webapps structure along with a valid WSDD file.  

Below is the actual xml for creating references to handler classes in the WSDD:


<handler name="RequestHeaderHandler" 


type="java:com.datatransportstandard.referenceimplementation.service.RequestHeaderHandler"/> 


<handler name="ResponseHeaderHandler" 




type="java:com.datatransportstandard.referenceimplementation.service.ResponseHeaderHandler"/> 

Inside the service element you can define how you want Axis to chain the handlers and the service together.  Adding the two elements below instructs Axis to call the handler(s) identified in the <requestFlow>, then the service class and then the handler(s) identified in the <responseFlow>.

Below is the actual xml for creating request and response flows in the WSDD:


<requestFlow>


<handler type="RequestHeaderHandler"/>

</requestFlow>



<responseFlow>


<handler type="ResponseHeaderHandler"/>

</responseFlow>
Serialization and de-serialization directives are also defined inside of the service element.  This external definition differs from the client directives which are completed in code before the service is invoked.  For additional information about this directive see item 2 in JAVA DTS CORE SERVICE EXAMPLES of this document.  

Below is an example of one of the directives:

<beanMapping languageSpecificType="java:com.datatransportstandard.referenceimplementation.serializable.DTSRequestRouting" 








qname="ns2:DTSRequestRouting" xmlns:ns2="urn:org:pesc:datatransport"/>
Java Considerations - Packaging and third party utilities

The current reference implementation has one dtsreferencimpl.jar file containing all of the service classes to be placed in the DTS webapp lib directory.  The following is a list of the minimum supporting jars that are required to have the service function.  The DTS webapp lib directory in the reference implementation has all of these files.  These files can also be found in the Apache Axis 1.1 Web Services toolkit.

saaj.jar

commons-logging.jar

commons-discovery.jar

jaxrpc.jar

wsdl4j.jar

log4j-1.2.8.jar

axis.jar

7 Net Core Client Examples
Note: See the .Net reference implementation for full context of code snippet examples in this section.

1. Error reporting to DTS Client Application prior to calling the service:  

Since the .Net CoreClient implementation is a wrapper around the proxy class to the web reference, validation of the elements occurs inside the submitDTS method of the proxy.  This ensures that all header element values are being evaluated correctly and occurs prior to actually invoking the web service across the wire.  The CoreClient wrapper class to the web reference will raise the exception back to the Client Application if any element validation fails.


Below is an example of one of the validation checks:

if (this.DTSRequestRoutingVal.sourceID.Length  == 0)


{

throw new ApplicationException("DTSRequestRouting.sourceID empty");

}

2. Create container classes for header elements:  
This item is described in combination with item 3.
3. Directives for serialization/de-serialization:
To accomplish interoperability with the Java platform, the .Net header elements container classes have to be created differently for a request header versus a response header, as well as apply specific serialization directives to the container classes.  

The container classes for the header objects are added to the reference.cs file (proxy class to Web Service) that is added to a CoreClient wrapper project either manually or by adding a web reference.  If adding a reference to a service that already exists, the container classes created automatically must be augmented with directives as shown in the example below. This is required for all request and response header elements.  See the DTS Specification Document for the complete WSDL and SOAP examples.

Below is an example of the different declarations of the classes for the DTSRequestRouting and DTSResponseRouting header objects contained in the proxy class:

[System.Xml.Serialization.XmlTypeAttribute(Namespace="urn:org:pesc:datatransport")]


[System.Xml.Serialization.XmlRootAttribute(ElementName="DTSRequestRouting",

Namespace="urn:org:pesc:datatransport", IsNullable=false)]


[System.Xml.Serialization.XmlInclude(typeof(DTSRequestRouting))]


public class DTSRequestRoutingElements : System.Web.Services.Protocols.SoapHeader 


{



public string UUID;



public string transmissionDateTime;



public string sourceID;



public string sourceIDSubCode;



public string recipientID;



public string recipientIDSubCode;


}


[System.Xml.Serialization.XmlTypeAttribute(Namespace="urn:org:pesc:datatransport")]

public class DTSRequestRouting : DTSRequestRoutingElements
{
}
[System.Xml.Serialization.XmlTypeAttribute(Namespace="urn:org:pesc:datatransport")]

    
[System.Xml.Serialization.XmlIncludeAttribute(typeof(DTSResponseRouting))]

[System.Xml.Serialization.XmlRootAttribute("DTSResponseRouting",

Namespace="urn:org:pesc:datatransport", IsNullable=false)]

    
public class DTSResponseRouting : System.Web.Services.Protocols.SoapHeader 

{ 

public string UUID;

        

public string transmissionDateTime;

public string sourceID;

        

public string sourceIDSubCode;

        

public string recipientID;


  
public string recipientIDSubCode;

}
The actual element DTSRequestRouting that is in the SOAP is created by first creating a DTSRequestRoutingElements class from which it inherits.  The key to the interoperability lies in how the .Net framework serializes the class when it is packaged, so the XMLRootAttribute of “DTSRequestRouting” and the XMLInlcude specifying the type DTSRequestRouting are critical.  By creating the local variable for the container header object in the CoreClient of type DTSRequestRoutingElements and directing the framework to serialize of type DTSRequestRouting the SOAP that will be created will contain the critical attribute “xsi:type=DTSRequestRouting.”  The .Net framework does not need the xsi:type attribute to properly de-serialize and access the SOAP header objects.  Therefore, all that is necessary for the DTSResponseRouting container class is a single class with all the elements.

This is how the local variable for the header element in the CoreClient wrapper class is declared:

private DTSCore.DTSRequestRouting dtsrequestrouting = new DTSCore.DTSRequestRouting();
And this is how the variable used by the proxy that will get assigned the CoreClient’s object is declared:

public DTSRequestRoutingElements
DTSRequestRoutingVal;

4. DTS Request Header processing:
Below is an example of the CoreClient wrapper of the reference.cs proxy class creating and setting a DTSRequestRouting header.

string tempDateTimeStamp = string.Empty;


dtsrequestrouting.sourceID = this.getSourceID();


dtsrequestrouting.sourceIDSubCode = this.getSourceIdSubCode();


dtsrequestrouting.recipientID = this.getRecipientID();


dtsrequestrouting.recipientIDSubCode = this.getRecipientIDSubCode();


dtsrequestrouting.UUID = this.getSourceIdSubCode();


//format date time


tempDateTimeStamp = System.DateTime.UtcNow.ToString();

tempDateTimeStamp = tempDateTimeStamp.Remove((int)tempDateTimeStamp.Length-3,3) + 

 

 "." + System.DateTime.UtcNow.Millisecond.ToString() + "Z";

dtsrequestrouting.transmissionDateTime = tempDateTimeStamp;


//set the routing object of the service proxy


this.dtsserviceproxy.DTSRequestRoutingVal = dtsrequestrouting;

The above coding must be done for each of the header elements of the DTS Request.  Fill the local header element variable of the CoreClient with everything from the interface variables of the CoreClient and then set the web service proxy class’s header element to the CoreClient’s header element object.

5. Preparing the payload:
Below is an example of compressing and encoding the payload.  The compression utility class is used to compress the payload and it has additional functions for encoding as well.  Encoding is performed by the Convert.ToBase64String contained in the system library.  The compression class will also return several other types where the encoding can be done in a second step.

//compress and encode the payload

this.Payload = Compression.CompressEncodeString(this.Payload);

6. Signing the payload:
Below is an example of signing and base64 encoding the payload and setting the DTSRequestSignature SOAP header element.

private void FillDTSRequestSignature()

{


//this function will create the signature of the compressed and encoded payload


//using the privatekey set by the client app


//The setting of the private key and usage hasn't been fully developed in terms


//of an interface implementation.  There are several aspects for the .net imp.


//that need to be resolved.

//for now- the privatekey private var will be the key name to look up and we will 

//use the class built and proven-- this is an aspect that needs to be deal with

//TODO: fulfill interface implementation of setPrivateKey and usage of //IPrivateKeyHandler


#region This is what needs to be changed once decision of key repository is made



//Declarations



HashAlgorithm sha1m = new SHA1Managed();



byte[] signature;



//get cert and then RSA private key



Certificate oCert = new Certificate(this.PrivateKey);



RSACryptoServiceProvider rsaPrv = oCert.RSAPrivateFromCertificate();

#endregion


signature = rsaPrv.SignData(ae.GetBytes(this.Payload),sha1m);


//set signature in local header object


this.dtsrequestsignature.value = Convert.ToBase64String(signature);


//set the object of the service proxy


this.dtsserviceproxy.DTSRequestSignatureVal = this.dtsrequestsignature;

}

7. Invoking the service:
Below is the call from the CoreClient wrapper to the submitDTS method inside the proxy class to the web reference.  This call would be inside the actual invoke() method of the CoreClient after all the other properties of the proxy class were set as described above.

//call DTS Service Core

this.Response = this.dtsserviceproxy.submitDTS(this.Payload);

See the reference implementation for the actual submitDTS method declaration contained in the proxy class (reference.cs).  Most of the work is done if the web reference was added by referencing a service that already exists, though there are modifications that must be made that match the examples above.  The attributes/directives control serialization of all the SOAP elements described above and match the objects declared in the proxy class.

Below is what is contained inside the submitDTS method of the proxy class (reference.cs).  The catch blocks inside the proxy class will simply throw them back to the CoreClient wrapper, see Exception Handling for further details.

public string submitDTS(

[System.Xml.Serialization.XmlElementAttribute

(Namespace="urn:org:pesc:datatransport")] string submitDTSRequest) 

{


try


{



//pre validation



ValidateHeader();

object[] results = this.Invoke("submitDTS", new object[] {submitDTSRequest});





return ((string)(results[0]));


}


catch (SoapException sx)


{



throw sx;


}


catch (Exception ex2)


{



//This is where to catch network and serialization exceptions



throw ex2;


}

}

8. Exception handling and reporting from DTS Core Service:
A SOAP exception will be thrown out of the proxy class when it is actually reported from the DTS Core Service.  Otherwise it will be a normal .Net exception.  The below is the catch structure contained in the CoreClient in the invoke method.

catch (SoapException SoapEx)

{



//this exception would actually come from the service



//this would be where the core client would reformat a SOAP 



//exception into an appropriate platform specific exception



//to be thrown back to the Client Application-



XmlQualifiedName xmlName = SoapEx.Code;



XmlNode xmlNode = SoapEx.Detail;



string faultNumber = xmlName.Name;



string faultDescription = SoapEx.Message;



StringBuilder faultDetailSB = new StringBuilder();



XmlNodeList detaillist = SoapEx.Detail.SelectNodes("string");



for (int counter = 0; counter <= detaillist.Count-1; counter++)



{




faultDetailSB.Append(detaillist.Item(counter).InnerXml + "\r\n");



}



throw new ApplicationException(faultDetailSB.toString());

}

catch (Exception Ex)

{


throw Ex;

}

By catching the SOAP exception first, all nodes can be interrogated and reformatted in any manner to be thrown back to the Client Application as a platform exception.  Any other exception will simply go straight back to the client.

9. Response header processing:
Below is an example of how the CoreClient extracts the DTS Response header elements from the proxy class.  Because the proxy class handles all the serialization, the header elements have already been de-serialized into native objects of the class.  The Client Application can then retrieve the values from the CoreClient using the “getters.”

private void FillResponseHeaderLocalVars()

{


this.PayloadBytes =  this.dtsserviceproxy.DTSResponsePayloadBytesVal.value;


this.PayloadType = this.dtsserviceproxy.DTSResponsePayloadTypeVal.value;


this.ResponseAcknowledge = this.dtsserviceproxy.DTSResponseAcknowledgeVal.value;


//routing header elements


this.setSourceId(this.dtsserviceproxy.DTSResponseRoutingVal.sourceID);


this.setSourceIdSubCode(this.dtsserviceproxy.DTSResponseRoutingVal.sourceIDSubCode);


this.setRecipientId(this.dtsserviceproxy.DTSResponseRoutingVal.recipientID);


this.setRecipientIdSubCode(this.dtsserviceproxy.DTSResponseRoutingVal.recipientIDSubCode);


this.setUUID(this.dtsserviceproxy.DTSResponseRoutingVal.UUID);

this.transmissionDateTimeStamp = this.dtsserviceproxy.DTSResponseRoutingVal.transmissionDateTime;


this.ResponseSignature = this.dtsserviceproxy.DTSResponseSignatureVal.value;

}

10. Verifying the response signature:
Below is an example of validating the response signature.  This example also assumes the public key set will be the name of the certificate.  This may change based on individual organizations’ adaptation of a key store.

private void ValidateReturnSignature(string responseSignature, string tempPayload)

{


//create hash on this side


HashAlgorithm sha = new SHA1Managed();


//create hash of base 64 encoded payload


byte[] hashedPayload = sha.ComputeHash(this.ae.GetBytes(tempPayload));


Certificate oCert = new Certificate(this.PublicKey);


RSACryptoServiceProvider rsaPub = oCert.RSAPublicFromCertificate();


//verify the hash of hash

bool bverifyhash =  rsaPub.VerifyHash(hashedPayload,CryptoConfig.MapNameToOID("SHA1"),

Convert.FromBase64String(responseSignature));


if (!bverifyhash)


{



throw new ApplicationException("Return signature verification failed");


} 


else


{



//it was good


}

}
11. Response processing:
Below is an example of un-compressing and decoding the payload.  The compression utility class is used to un-compress the payload and it has additional functions for decoding as well.  Decoding is performed by the Convert.FromBase64String contained in the system library.  The compression class will also return several other types where the decoding can be done in a second step.  

//set response

//this.Response was the return of the submitDTS method call.

this.Response = Compression.DecodeDecompressString(this.Response);

8 Net Core Service Examples

1. Create container classes for header elements.
2. Directive for serialization/de-serialization:
For the .Net implementation, the Response headers have to be created specially to allow for interoperability and the incoming Request headers can be very simple.  The creation of the container classes for the service is the reverse of the creation of the container classes for the client.

 The container classes are created as part of the asmx file of the web service.  Below is an example of the declaration and attributes/directives of the DTSResponseRouting and DTSRequestRouting header elements.

[System.Xml.Serialization.XmlTypeAttribute(Namespace="urn:org:pesc:datatransport")]

[System.Xml.Serialization.XmlRootAttribute(ElementName="DTSResponseRouting",

Namespace="urn:org:pesc:datatransport", IsNullable=false)]

[System.Xml.Serialization.XmlInclude(typeof(DTSResponseRouting))]

public class DTSResponseRoutingElements : System.Web.Services.Protocols.SoapHeader 

{    



public string UUID;



public string transmissionDateTime;



public string sourceID;



public string sourceIDSubCode;



public string recipientID;



public string recipientIDSubCode;

}

[System.Xml.Serialization.XmlTypeAttribute(Namespace="urn:org:pesc:datatransport")]

public class DTSResponseRouting : DTSResponseRoutingElements
{
}
[System.Xml.Serialization.XmlTypeAttribute(Namespace="urn:org:pesc:datatransport")]

[System.Xml.Serialization.XmlRootAttribute(ElementName="DTSRequestRouting", 

Namespace="urn:org:pesc:datatransport", IsNullable=false)]

[System.Xml.Serialization.XmlInclude(typeof(DTSRequestRouting))]

public class DTSRequestRouting : System.Web.Services.Protocols.SoapHeader 

{



public string UUID;



public string transmissionDateTime;



public string sourceID;



public string sourceIDSubCode;



public string recipientID;



public string recipientIDSubCode;

}

The creation of these container classes in this manner follows the same logic as the creation of the Client container classes.  However, because the response header is the object that needs to be serialized with the xsi:type attribute, it is the one that inherits from the “elements” class.  .Net does not need the xsi:type attribute and the Request elements will be de-serialized and accessed correctly.

3. Request Header processing:
Below is an example of validating the DTSRequestRouting header object.  The SOAP fault is raised by use of an internal class.  All header elements have similar routines for validation.

private void ValidateRouting()

{


DTSSoapException exception = new DTSSoapException();


DTSRequestRouting routing = this.DTSRequestRoutingVal;


if (routing == null)


{



exception.AddException("ROUTING_TAG_MISSING");


}


else


{



if (routing.sourceID == null)




{





exception.AddException("SOURCEID_TAG_MISSING");




}




else if (routing.sourceID.Length == 0)





{





exception.AddException("SOURCEID_MISSING");




}




if (routing.recipientID == null)




{





exception.AddException("RECIPIENTID_TAG_MISSING");




}




else if (routing.recipientID.Length == 0)




{





exception.AddException("RECIPIENTID_MISSING");




}




if (routing.UUID == null)




{





exception.AddException("UUID_TAG_MISSING");




}




else if (DTSRequestRoutingVal.UUID.Length == 0)




{





exception.AddException("UUID_MISSING");




}




if (routing.transmissionDateTime == null)




{





exception.AddException("TRANSDT_TAG_MISSING");




}




else if (DTSRequestRoutingVal.transmissionDateTime.Length == 0)




{





exception.AddException("TRANSDT_MISSING");




}



else



{




try




{

DateTime testDateTime = DateTime.Parse( DTSRequestRoutingVal.transmissionDateTime);




}




catch(FormatException)




{





//exception.AddException("TRANSDT_ILLEGAL");




}



}


}


exception.ThrowIfError();

}

Below is the method in the DTSException internal class that adds the information to the structure that will be used to create the appropriate SOAP Fault.

internal void AddException(string key)

{


//Find the excetion info for supplied key


DTSValidation info = null;


for (int index = 0; index < exceptionInfo.Length; ++index)


{



if (exceptionInfo[index].Key == key)



{




info = exceptionInfo[index];




break;



}


}


if (info != null)


{



if (m_code == null)



{




m_message = info.Message;




m_code = info.Code;




XmlDocument doc = new XmlDocument();




XmlNode node = doc.CreateNode(XmlNodeType.Element, 




SoapException.DetailElementName.Name, 




SoapException.DetailElementName.Namespace);




XmlNode detailsChild = doc.CreateNode(XmlNodeType.Element, "string","");




detailsChild.InnerText = info.Detail;




node.AppendChild(detailsChild);




string xml = node.OuterXml;




m_details = node;



}



else



{




XmlQualifiedName newCode = info.Code;




if (newCode != m_code)




{





//throw application error




}




else




{





XmlDocument doc = new XmlDocument();





doc.LoadXml(m_details.OuterXml);





XmlNode root = doc.DocumentElement;





XmlNode child = root.FirstChild;
//<string>





while (true)





{






XmlNode nextChild = child.NextSibling;






if (nextChild != null)






{







string innerTest = nextChild.OuterXml;







child = nextChild;






}






else






{







break;






}





}





XmlNode detailMessage = doc.CreateNode(XmlNodeType.Element, "string","");





detailMessage.InnerText = info.Detail;





root.InsertAfter(detailMessage, child);





string xml = root.OuterXml;





m_details = root;




}



}


}


else


{



//throw an application error



//
key not found


}

}

Below is an excerpt of the array that contains the key information that actually fills the information of the SOAP fault being created for the RequestRouting validation.

DTSValidation[] exceptionInfo = 

{


//Routing information validations


new DTSValidation("ROUTING_TAG_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing Information is not set in the SOAP Packet"),


new DTSValidation("SOURCEID_TAG_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing SourceId Element was not found."),


new DTSValidation("SOURCEID_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing Source Id value is missing."),


new DTSValidation("SOURCE_CODE_TAG_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing sourceIDSubCode Element was not found."),


new DTSValidation("SOURCE_CODE_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing sourceIDSubCode value is missing."),


new DTSValidation("RECIPIENTID_TAG_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing Recipient Id Element was not found."),


new DTSValidation("RECIPIENTID_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing Recipient Id value is missing."),


new DTSValidation("UUID_TAG_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing UUID Element was not found."),


new DTSValidation("UUID_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing UUID value is missing."),


new DTSValidation("TRANSDT_TAG_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing TransmissionDateTime Element was not found."),


new DTSValidation("TRANSDT_MISSING", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing Transmission Date Time value is missing."),


new DTSValidation("TRANSDT_ILLEGAL", "DTS.HEADER.001", 

"DTS SOAP Header Error with DTS Routing Information", 



"DTS Request Routing Transmission Date Time value is not in 

ccyy-mm-ddTHH:mm:ss.ffZ format."),



.


.





.

}

4. Instantiate the appropriate DTS Service Application:
The DTS CoreService instantiates a DTS ServiceApplication that must implement the IDTSServiceApplication interface.  The actual implementation and instantiating of this object can be different depending on many different .Net configuration options.  For the reference implementation this object resides in the bin directory of the CoreService that is deployed.  After adding a reference to the object the following code instantiates this object.

using ServiceApplication;

//create instance of ServiceApplication

private ServiceApplication.DTSReferenceServiceApplication dtsAppl = 

new DTSReferenceServiceApplication();

After the validation of the header objects is complete the values can be set into the ServiceApplication.  The following code does it.

//routing objects

dtsAppl.setSourceId(this.DTSRequestRoutingVal.sourceID);

dtsAppl.setSourceIdSubCode(this.DTSRequestRoutingVal.sourceIDSubCode);

dtsAppl.setRecipientId(this.DTSRequestRoutingVal.recipientID);

dtsAppl.setRecipientIdSubCode(this.DTSRequestRoutingVal.recipientIDSubCode);

dtsAppl.setUUID(this.DTSRequestRoutingVal.UUID);

dtsAppl.setTransmissionDateTime(this.DTSRequestRoutingVal.transmissionDateTime);

//others except payload- need to do more work for that one
dtsAppl.setServiceExpectation(this.DTSRequestServiceExpectationVal.value);
dtsAppl.setPayloadType(this.DTSRequestPayloadTypeVal.value);

5. Verifying the request signature:
The DTS Service Application instantiated in step 4 is required to implement the “getPublicKey” method that returns a RSACryptoServiceProvider object.  After the CoreService sets the values in the ServiceApplication for the header elements, the DTS Core Service makes a call to the method to retrieve the public key to verify the request signature.  If there is a problem retrieving the key the ServiceApplication should raise an ApplicationException to the CoreService which will then be reconfigured to a SOAP Fault to be sent back to the CoreClient.  If the signature does not verify, the DTS Core Service should throw a SOAP Fault back to the DTS Core Client according to the specification.  The following code example shows how the DTS Core Service would accomplish this.

private void VerifySignature(string Signature, string tempPayload)

{


DTSSoapException exception = new DTSSoapException();


ASCIIEncoding ae = new ASCIIEncoding();


//create hash on this side


HashAlgorithm sha = new SHA1Managed();


//create hash of base 64 encoded payload


byte[] hashedPayload = sha.ComputeHash(ae.GetBytes(tempPayload));


try


{



//the service application will raise an error if there is a problem



RSACryptoServiceProvider rsaPub = dtsAppl.getPublicKey();



//verify the hash of hash 



bool bverifyhash = 
rsaPub.VerifyHash(hashedPayload,

CryptoConfig.MapNameToOID("SHA1"),

Convert.FromBase64String(Signature));



if (!bverifyhash)



{




exception.AddException("SIGNATURE_NOT_VALID");



} 


}


catch (Exception ex)


{



exception.AddException("SOURCE_PUBLIC_KEY_NOT_FOUND");


}


exception.ThrowIfError();

}

6. Payload processing:
The following code shows how the DTS CoreService validates the payload which includes decoding and uncompressing it.  Then it sets the payload into the ServiceApplication.

//validate the payload- decodes and uncompresses

payload = ValidatePayload(submitDTSRequest);

private string ValidatePayload(string payload)

{


DTSSoapException exception = new DTSSoapException();



string PayloadType = this.DTSRequestPayloadTypeVal.value;



string DecodedUncompressedPayload = string.Empty;



ASCIIEncoding ae = new ASCIIEncoding();



try



{




Convert.FromBase64String(payload);



}



catch



{




//with only one statement we know its decoding




exception.AddException("PAYLOAD_DECODE_ERROR");



}



try



{




DecodedUncompressedPayload =  Compression.DecodeDecompressString(payload);



}



catch



{




exception.AddException("PAYLOAD_DECOMPRESS_ERROR");



}



if (DecodedUncompressedPayload.Length == 0 && PayloadType != "retrieve") 



{




exception.AddException("PAYLOAD_MISSING");



}



exception.ThrowIfError();



return DecodedUncompressedPayload;

}

7. Invoking a DTS Service Application:
Once all elements required by DTS are populated in the ServiceApplication the invoke method can be called.


//set payload to service appl


dtsAppl.setPayload(payload);


//Invoke service appl


dtsAppl.invoke();
8. DTS Service Application exception handling:
Below is the method in the DTSException internal class that will create and throw the SOAP Fault.  This method is called after the validation of header objects.


internal void ThrowIfError()

{


if (m_code != null)


{



SoapException exception = new SoapException(m_message, m_code, m_actor, m_details);

throw exception;


}

}

The catch blocks below are in the submitDTS method of the service.  Catching the SoapException thrown by the code above first allows the already formatted SOAP Fault to be thrown back to the CoreClient.  Catching any other exceptions independently gives the ability to reformat the internal error to the DTS.APPLICATION fault.


catch (SoapException s)


{



//throw s;



throw new SoapException(s.Message ,s.Code ,s.Actor,s.Detail);


}


catch(Exception e)


{



string message = e.ToString();



XmlQualifiedName internalErrorName = new XmlQualifiedName("Internal Error", 
"urn:org:pesc:datatransport");

SoapException internalErrorException = new SoapException(message, internalErrorName);


throw internalErrorException;


}

9. Preparing the response:
The code below compresses and encodes the response that will be the return of the submitDTS method.

//Compress the return

tempRtn = Compression.CompressEncodeString(dtsAppl.getResponse);

The above line is not actually found in the reference implementation since it is doing things differently.  The tempRtn variable is initially populated in the CoreClient with the length of the compressed payload.  Then the actual response from the ServiceApplication is concatenated to it as well as the time it took to verify the incoming signature.  All of this can be seen in the reference implementation, though in a regular application the CoreService would simply prepare what the ServiceApplication provided.
10. Signing the response:
Below is an example of how the DTS Core Service signs the response.  The private key for signing is obtained through the interface call to the DTS Service Application “getPrivateKey.”

DTSResponseSignature returnSignature = new DTSResponseSignature();


//create hash algorithm object


HashAlgorithm sha1m = new SHA1Managed();


//compute the hash

byte[] hash = sha1m.ComputeHash(ae.GetBytes(tempRtn)); 

byte[] signature;


//hash created above; needed for Java Interop


//now need to build the RSA object


//build rsa provider with private rsa key


RSACryptoServiceProvider rsaPrv = dtsAppl.getPrivateKey();


signature = rsaPrv.SignData(ae.GetBytes(tempRtn),sha1m);


//set signature header element = to signed hash string


returnSignature.value = Convert.ToBase64String(signature);


//set the object


this.DTSResponseSignatureVal = returnSignature;

11. Preparing the Response Headers:
With the invoke method being called the full response can be prepared.  The following code populates the response header objects from the “get” interfaces of the ServiceApplication.

//assign values to the local return headers


returnRouting.sourceID = dtsAppl.getSourceID();


returnRouting.sourceIDSubCode = dtsAppl.getSourceIdSubCode();


returnRouting.recipientID = dtsAppl.getRecipientID();


returnRouting.recipientIDSubCode = dtsAppl.getRecipientIDSubCode();


returnRouting.UUID = dtsAppl.getUUID();


//we set the transmission date time instead of getting it from dtsAppl


returnRouting.transmissionDateTime = System.DateTime.UtcNow.ToString();


returnRouting.transmissionDateTime = 
returnRouting.transmissionDateTime.Remove(

(int)returnRouting.transmissionDateTime.Length-3,3) + "." + System.DateTime.UtcNow.Millisecond.ToString();

//simples

returnPayloadType.value = dtsAppl.getPayloadType();

returnAcknowledge.value = dtsAppl.getResponseAcknowledge();

returnPayloadBytes.value = tempRtn.Length.ToString();


//Set the objects to the public variables to be serialized and returned


this.DTSResponseRoutingVal = returnRouting;


this.DTSResponseAcknowledgeVal = returnAcknowledge;

this.DTSResponsePayloadTypeVal = returnPayloadType;

this.DTSResponsePayloadBytesVal = returnPayloadBytes;

9 Java DTS Core Client Examples

1. Error reporting to DTS Client Application prior to calling the service:
if (this.getSourceId.length() == 0)

{


Exception e = new Exception(“Length of Source Id = 0”);


throw e;

}

Subsequent checks of all of the remaining required elements should be done in succession.

2. Create container classes for header elements:
Below is an example of a DTSRequestRouting container class.  The private elements of the class match up with the type definition for the DTSRequestRouting element defined in the WSDL.

package com.datatransportstandard.referenceimplementation.serializable;

import java.io.Serializable;

public class DTSRequestRouting implements Serializable

{

    private String sourceID



= null;

    private String sourceIDSubCode


= null;

    private String recipientID



= null;

    private String recipientIDSubCode


= null;    

    private String uuid




= null;

    private String transmissionDateTime

= null;

    public String getSourceID()

    {

        return sourceID;

    }

    public void setSourceID(String newSourceID)

    {

        sourceID = newSourceID;

    }

    public String getSourceIDSubCode()

    {

        return sourceIDSubCode;

    }

    public void setSourceIDSubCode(String newSourceIDSubCode)

    {

        sourceIDSubCode = newSourceIDSubCode;

    }

    public String getRecipientID()

    {

        return recipientID;

    }

    public void setRecipientID(String newRecipientID)

    {

        recipientID = newRecipientID;

    }

    public String getRecipientIDSubCode()

    {

        return recipientIDSubCode;

    }

    public void setRecipientIDSubCode(String newRecipientIDSubCode)

    {

        recipientIDSubCode = newRecipientIDSubCode;

    }

    public String getUUID()

    {

        return uuid;

    }

    public void setUUID(String newUUID)

    {

        uuid = newUUID;

    }

    public String getTransmissionDateTime()

    {

        return transmissionDateTime;

    }

    public void setTransmissionDateTime(String newTransDateTime)

    {

        transmissionDateTime = newTransDateTime;

    }

}

Container classes need to be created for all request and response header elements.  The following is a complete list of header container classes that need to be created.  They all have similar structures.  You should reference the WSDL or the SOAP examples for their exact structure.

· DTSRequestRouting

· DTSRequestPayloadType

· DTSRequestServiceExpectation

· DTSRequestSignature

· DTSRequestPayloadBytes

· DTSResponseRouting

· DTSReponsePayloadType

· DTSResponseAcknowledge

· DTSResponseSignature

· DTSResponsePayloadBytes

3. Directives for serialization/de-serialization:
Below is an example of calling the Java directive to allow the Apache Axis engine to serialize and de-serialize the DTSRequestRouting object.

QName qn = new QName(“urn:org:pesc:datatransport”,"DTSRequestRouting");

call.registerTypeMapping(DTSRequestRouting.class,





qn,



new BeanSerializerFactory(DTSRequestRouting.class, qn),





new BeanDeserializerFactory(DTSRequestRouting.class, qn));
The QName object defines the qualified name attribute and the namespace attribute to be assigned to the SOAP element. Namespace = urn:org:pesc:datatransport Qualified Name = DTSRequestRouting.

It is very important that these two attributes are set correctly and match what is created on the header element.  The DTS Core Service is going to be extracting the header elements based on the same QName attributes.  If they do not match, the DTS Core Service will not be able to read the header even if the header is present in the SOAP.  The DTS Core Service will raise a SOAP fault if it cannot find the header element.

The above directive needs to be called for each DTS Header element based on the container classes you should have created in step 2.

4. DTS Request Header processing:
Below is an example of the creation, filling, and setting of the DTSRequestRouting header element into the SOAP.

DTSRequestRouting requestrouting = new DTSRequestRouting();

requestrouting.setSourceID(this.getSourceId());

requestrouting.setSourceIDSubCode(this.getSourceIdSubCode());

requestrouting.setRecipientID(this.getRecipientId());

requestrouting.setRecipientIDSubCode(this.getRecipientIdSubCode);

requestrouting.setUUID(this.getUUID());

requestrouting.setTransmissionDateTime(this.getTransmissionDateTime()); 

SOAPHeaderElement headerElement = new SOAPHeaderElement(“urn:org:pesc:datatransport”, "DTSRequestRouting");      

headerElement.setObjectValue(requestrouting);

call.addHeader(headerElement);

Note: The namespace and qualified name of the SOAPHeaderElement instantiation match the namespace and qualified name called in the QName instantiation of the serialization/de-serialization directive.

The above coding needs to be completed for each header element of the DTS request.

5. Preparing the payload:
Below is an example of preparing the payload.  The zlib utility class is used to compress the payload.  The encoding is performed from the base64 object in the org.apache.axis.encoding package.

private String preparePayload() throws IOException

{


// Zlib Compress the payload


byte[] compressedpayload = Zlib.compress(payload.getBytes());


logString += ",ClientCompressed," + compressedpayload.length;


// Base64 encode the payload

   
return Base64.encode(compressedpayload);

}

6. Signing the payload

Below is an example of how to sign and base64 encode the payload and put the results into the DTSRequestSignature SOAP Header.

private String signThePayload(String encodedpayload) throws CertificateException, 

IOException, 

InvalidKeyException, 

KeyStoreException, 

NoSuchAlgorithmException, 

UnrecoverableKeyException, 

SignatureException

{

start = new Date();

keyStore = KeyStore.getInstance(dtsprops.getPrivateKeystoreType());

keyStoreStream = new FileInputStream(dtsprops.getPrivateKeystore()); 

keyStore.load(keyStoreStream, dtsprops.getPrivateKeystorePassword().toCharArray());

Signature sign = Signature.getInstance(dtsprops.getPrivateKeystoreAlgo());

sign.initSign((PrivateKey) keyStore.getKey(dtsprops.getPrivateKeyAlias(), dtsprops.getPrivateKeyPassword().toCharArray()));

sign.update(encodedpayload.getBytes());

byte[] signed = sign.sign();

String encodedSigned = Base64.encode(signed);

end = new Date();

logString += ",ClientSignatureMS," + (end.getTime() - start.getTime()); 

return encodedSigned;

}

DTSRequestSignature requestsignature = new DTSRequestSignature();

requestsignature.setValue(encodedSigned); 

SOAPHeaderElement headerElement = new SOAPHeaderElement(“urn:org:pesc:datatransport”, 

"DTSRequestSignature");      

headerElement.setObjectValue(requestsignature);

call.addHeader(headerElement);

7. Invoking the service:
For the DTS Core client to function properly some preliminary set-up is required prior to invoking a DTS Core Service.  The operations object tells the call how to format the SOAP.  Namespace and qualified names should match what is defined in the WSDL. 

private void prepareOperation()

{

operations = new org.apache.axis.description.OperationDesc[1];

OperationDesc oper = new org.apache.axis.description.OperationDesc();

// Set the logical name of the operation

oper.setName("submitDTS");

// Payload SOAP Defintion

oper.addParameter(

   new javax.xml.namespace.QName(“urn:org:pesc:datatransport”, "submitDTSRequest"), 

   new javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema", "string"),     

   java.lang.String.class, org.apache.axis.description.ParameterDesc.IN, false, false);

// Return type from Service

oper.setReturnType(

   new javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema", "string"));

// Class associated with the return type

oper.setReturnClass(java.lang.String.class);

// Return type SOAP Definiton

oper.setReturnQName(

new javax.xml.namespace.QName(“urn:org:pesc:datatransport”, submitDTSResponse"));

// SOAP Style

oper.setStyle(org.apache.axis.enum.Style.DOCUMENT);

// Encoding Style

oper.setUse(org.apache.axis.enum.Use.LITERAL);

operations[0] = oper;




}

private void prepareCall() throws ServiceException, MalformedURLException

{

service = new Service();

call = (Call) service.createCall();

// Set the operation object form prepareOperation method

call.setOperation(operations[0]);

// Set the target URL

call.setTargetEndpointAddress( new java.net.URL(endpoint) );

// Set the operation name to be called

call.setOperationName(new QName("", "submitDTS"));

}

try

{

String callresp = (String) call.invoke( new String[] { encodedpayload } );



}

// See the exception handling catch block in the next section
8. Exception handling and reporting returned from DTS Core Service:
Below is an example of the catch portion of the try/catch block of the DTS Core Client that surrounds the invoke to the DTS Core Service.  In this case, an AxisFault is a specialized SOAP fault.  The reference implementation uses the System.out object to display to contents of the AxisFault and then the exception is thrown to the DTS Client Application.

catch (Exception e) 


{



if (e instanceof AxisFault)



{




AxisFault fault = (AxisFault) e;





// Insert Logging Here

System.out.println(fault.getFaultCode().getLocalPart());




System.out.println(fault.getFaultString());




Element[] faultdetails = fault.getFaultDetails();




for(int i = 0; i < faultdetails.length; i++)




{





Element detail = faultdetails[i];






// More logging here


System.out.println(detail.getFirstChild().getNodeValue());




}



}






// Throw the fault to the DTS Client Application to deal with

throw e;

}



9. DTS Response header processing:
Below is an example of how the DTS Core Client extracts the DTS Response Routing Header element out of the SOAP packet returned by the DTS Core Service.  The namespace and qualified name work exactly the same as the DTS Request header elements and must match exactly to the DTS Core Service creation names.

SOAPEnvelope responseEnv = 

call.getMessageContext().getResponseMessage().getSOAPEnvelope();

SOAPHeaderElement headerElement = responseEnv.getHeaderByName(

“urn:org:pesc:datatransport”,"DTSResponseRouting");




if(headerElement != null)

{





DTSResponseRouting responserouting = (DTSResponseRouting) 

headerElement.getObjectValue();

if(responserouting.getSourceId().length() == 0)

{




Exception e = new Exception(“Length of Source Id = 0”);





throw e;

}

else


sourceid = responserouting.getSourceId();

if(responserouting.getSourceIdSubCode().length() == 0)

{




Exception e = new Exception(“Length of Source Id Sub Code = 0”);




throw e;

}

else


sourceidsubcode = responserouting.getSourceIdSubCode();

…

}

else

{



Exception e = new Exception(“DTS Response Routing Element not Found.”);



throw e;


}
10. Verifying the response signature:
SOAPHeaderElement headerElement = responseEnv.getHeaderByName(“urn:org:pesc:datatransport”,"DTSResponseSignature");


if(headerElement != null)

{

responsesignature = (DTSResponseSignature) headerElement.getObjectValue();

if(responsesignature.getValue().length() == 0)

{




Exception e = new Exception(“Length of response signature = 0”);





throw e;

}

}

else

{



Exception e = new Exception(“Response Signature Element missing.”);




throw e;

}


// Hash is the encoded compressed response passed to this function


private boolean verifyResponseSignature(String hash) throws 

KeyStoreException, 

NoSuchAlgorithmException,

CertificateException, 

IOException, 

InvalidKeyException, 

SignatureException


{


keyStore = KeyStore.getInstance(dtsprops.getPublicKeystoreType());

keyStoreStream = new FileInputStream(dtsprops.getPublicKeystore()); 

keyStore.load(keyStoreStream, dtsprops.getPublicKeystorePassword().toCharArray());

X509Certificate cert = (X509Certificate) keyStore.getCertificate(dtsprops.getPublicKeyAlias());
    

Signature verify = Signature.getInstance(dtsprops.getPublicKeystoreAlgo());

byte[] signature = Base64.decode(responsesignature.getValue());

verify.initVerify(cert.getPublicKey());

verify.update(hash.getBytes());

boolean verified = verify.verify(signature);

return verified


}
11. Response Processing:
Below is an example of how the DTS Core Client decodes and un-compresses the response from a DTS Core Service.  The zlib utility class is used to un-compress the payload.  The decoding is performed from the base64 object in the org.apache.axis.encoding package.

private String processResponse(String resp) throws IOException

{

start = new Date();

logString +=  ",ReturnTime," + sdf.format(start);

// Base64 decode the response

byte[] compressedresponse = Base64.decode(resp);

// Uncompress the response

byte[] uncompressedresponse = Zlib.decompress(compressedresponse);

// Convert the response to string

String response = new String(uncompressedresponse,"UTF-8");

logString +=  "," + response;

return response;

}

10 Java DTS Core Service Examples

1. Create container classes for header elements:
For the Java implementation, the container classes created for the DTS Core Client can be used with the DTS Core Service.  See the examples in the JAVA DTS CORE CLIENT EXAMPLES section for creating the DTS container classes.

2. Directives for serialization/de-serialization

The Java service directives for handling serialization and de-serialization are defined in the WSDD file for the service.  Each header object requiring serialization and de-serialization needs to have a <beanMapping> element definition in the WSDD file.  It’s very important that the qname and xmlns attributes match up to how the SOAP Header element is created so the header element can be found in the SOAP and then be serialized and de-serialized into something usable by the service.  See the SERVICE DEPLOYMENT SECTION of this document for more information on the WSDD file.




<beanMapping 



languageSpecificType="java:com.datatransportstandard.referenceimplementation.serializable.DTSRequestRouting" 








qname="ns2:DTSRequestRouting" xmlns:ns2="urn:org:pesc:datatransport"/>
3. Request Header processing:
Below is an example of one of the checks the RequestHeaderHandler object does.

AxisFault fault = new AxisFault();

headerElement = requestEnv.getHeaderByName(IDTSConstants.DTS_DEFAULT_NAMESPACE,"DTSRequestRouting");




if(headerElement != null)

{

requestrouting = (DTSRequestRouting) headerElement.getObjectValue();


if(requestrouting.getSourceID() != null)


{



if(requestrouting.getSourceID().length() == 0)



{




fault.setFaultCodeAsString("DTS.HEADER.001");




fault.setFaultString("DTS SOAP Header Error with DTS Routing Information");




fault.addFaultDetailString("DTS Request Routing Source Id value is missing.");



}



else




ctx.setProperty("SourceID", requestrouting.getSourceID());


}


else


{



fault.setFaultCodeAsString("DTS.HEADER.001");



fault.setFaultString("DTS SOAP Header Error with DTS Routing Information");



fault.addFaultDetailString("DTS Request Routing Source Id value is missing.");


}


ctx.setProperty("SourceIDSubCode", requestrouting.getSourceIDSubCode());


if(requestrouting.getRecipientID() != null)


{



if(requestrouting.getRecipientID().length() == 0)



{




fault.setFaultCodeAsString("DTS.HEADER.001");




fault.setFaultReason("DTS SOAP Header Error with DTS Routing Information");




fault.addFaultDetailString("DTS Request Routing Recipient Id value is missing.");



}



else




ctx.setProperty("RecipientID", requestrouting.getRecipientID());


}


else


{



fault.setFaultCodeAsString("DTS.HEADER.001");



fault.setFaultReason("DTS SOAP Header Error with DTS Routing Information");



fault.addFaultDetailString("DTS Request Routing Recipient Id value is missing.");


}


ctx.setProperty("RecipientIDSubCode", requestrouting.getRecipientIDSubCode());

if(requestrouting.getUUID() != null)


{



if(requestrouting.getUUID().length() == 0)



{




fault.setFaultCodeAsString("DTS.HEADER.001");




fault.setFaultReason("DTS SOAP Header Error with DTS Routing Information");




fault.addFaultDetailString("DTS Request Routing UUID value is missing.");



}



else




ctx.setProperty("UUID", requestrouting.getUUID());


}


else


{



fault.setFaultCodeAsString("DTS.HEADER.001");



fault.setFaultReason("DTS SOAP Header Error with DTS Routing Information");



fault.addFaultDetailString("DTS Request Routing UUID value is missing.");



}


if(requestrouting.getTransmissionDateTime() != null)


{



if(requestrouting.getTransmissionDateTime().length() == 0)



{




fault.setFaultCodeAsString("DTS.HEADER.001");




fault.setFaultReason("DTS SOAP Header Error with DTS Routing Information");




fault.addFaultDetailString("DTS Request Routing Transmission Date Time value is missing.");



}



else




ctx.setProperty("TransmissionDateTime", requestrouting.getTransmissionDateTime());


}


else


{



fault.setFaultCodeAsString("DTS.HEADER.001");



fault.setFaultReason("DTS SOAP Header Error with DTS Routing Information");



fault.addFaultDetailString("DTS Request Routing Transmission Date Time value is missing.");


}

}

else

{


fault.setFaultCodeAsString("DTS.HEADER.001");


fault.setFaultReason("DTS SOAP Header Error with DTS Routing Information");


fault.addFaultDetailString("DTS Request Routing Information is not set in the SOAP Packet");

}

if(fault.getFaultReason().length() > 0)


throw fault;

4. Instantiate the appropriate DTS Service Application:
The DTS Core Service gets that class name to instantiate from a User Defined property in the server-config.wsdd file.  The getProperty method on the MessageContext object is used to obtain the value.  Standard Java calls are made to instantiate the object.  
Note:  Any class name referenced in the user defined property MUST implement the IDTSServiceApplication interface.

Example from server-config.wsdd:

<parameter name="DTSServiceApplication" 

value="com.datatransportstandard.referenceimplementation.service.DTSServiceApplication"/>
Code to instantiate the DTS Service Application:

String dtsserviceapplication = (String) ctx.getProperty("DTSServiceApplication");

Class applClass = Class.forName(dtsserviceapplication);

IDTSServiceApplication dtsappl = (IDTSServiceApplication) applClass.newInstance();
5. Verifying the request signature:
The DTS Service Application instantiated in step 4 is required to implement the “getPublicKeyHandler” method that returns an object that meets the IPublicKeyHandler interface.  The DTS Core Service needs to make a call to get a reference to this object and then call the “getPublicKey” method to obtain the public key to verify the request signature.  If the signature does not verify, the DTS Core Service should throw a SOAP Fault back to the DTS Core Client according to the specification.  The following code example shows how the DTS Core Service would accomplish this.

Signature verify = Signature.getInstance(IDTSConstants.PUBLIC_KEYSTORE_ALGO)

byte[] signature = Base64.decode(requestSignature);

verify.initVerify(dtsappl.getPublicKeyHandler().getPublicKey((String) ctx.getProperty("SourceID"), (String) 

ctx.getProperty("SourceIDSubCode")));

verify.update(encodedpayload.getBytes());

boolean verified = verify.verify(signature);

if(!verified)

{

AxisFault fault = new AxisFault();


fault.setFaultCodeAsString("DTS.SECURITY.002");


fault.setFaultReason("DTS Security Error");


fault.addFaultDetailString("Could not validate digital signature");


throw fault;

}

6. Payload processing:
The following code show how the DTS Core Service base64 decodes and zlib uncompresses the payload and sets the result on the DTS Service Application.
try

{


compressedpayload = Base64.decode(encodedpayload);


uncompressedpayload = Zlib.decompress(compressedpayload);


payload = new String(uncompressedpayload,"UTF-8");

} 

catch (IOException e) 

{


AxisFault fault = new AxisFault();


fault.setFaultCodeAsString("DTS.PAYLOAD.003");


fault.setFaultReason("DTS Payload Error");


fault.addFaultDetailString("DTS Payload uncompress error");


throw fault;

}

catch (Exception e)

{

AxisFault fault = new AxisFault();


fault.setFaultCodeAsString("DTS.PAYLOAD.003");


fault.setFaultReason("DTS Payload Error");


fault.addFaultDetailString("DTS Payload decoding error");


throw fault;

}

7. Invoking a DTS Service Application:

dtsappl.setSourceId((String) ctx.getProperty("SourceID"));


dtsappl.setSourceIdSubCode((String) ctx.getProperty("SourceIDSubCode"));


dtsappl.setRecipientId((String) ctx.getProperty("RecipientID"));


dtsappl.setRecipientIdSubCode((String) ctx.getProperty("RecipientIDSubCode"));


dtsappl.setUUID((String) ctx.getProperty("UUID"));


dtsappl.setTransmissionDateTime((String) ctx.getProperty("TransmissionDateTime"));


dtsappl.setPayloadType((String) ctx.getProperty("RequestPayloadType"));


dtsappl.setServiceExpectation((String) ctx.getProperty("RequestServiceExpectation"));


dtsappl.setPayload(payload);


dtsappl.invoke();

8. DTS Service Application exception handling:
Below is an example of the DTS Core Service catching an exception thrown by the DTS Service Application and reformatting it in a SOAP fault as per the specification to be thrown to the DTS Core Client.

catch (Exception e)

{


AxisFault fault = new AxisFault();


fault.setFaultCodeAsString("DTS.APPLICATION");


fault.setFaultReason("DTS Service Application Error ");


fault.addFaultDetailString(e.getMessage());


throw fault;

}

9. Preparing the response:
Below is an example of the DTS Core Client zlib compressing and base64 Encoding the response in preparation for return to the DTS Core Client.

compressedresponse = Zlib.compress(response.getBytes());

encodedresponse = Base64.encode(compressedresponse);




The encoded response is what gets returned.
10. Signing the response:
Below is an example of how the DTS Core Service signs the response.  The private key for signing is obtained through the interface call to the DTS Service Application “getPrivateKey.”

Signature sign = Signature.getInstance(IDTSConstants.PRIVATE_KEYSTORE_ALGO);

sign.initSign(dtsappl.getPrivateKey());

sign.update(encodedresponse.getBytes());

byte[] signed = sign.sign();

String encodedSigned = Base64.encode(signed);

ctx.setProperty("EncodedSignature", encodedSigned);
11. Preparing the Response Headers:
The DTS Response Headers are prepared the ResponseHeaderHandler object.  This object has been placed in the response flow of the server-config.wsdd.  The DTS Core Service communicates the values to be placed in the headers through the setProperty method on the MessageContext object.  The ResponseHeaderHandler then reads the values and creates the appropriate header objects to be put in the SOAP.  Below are examples of the DTS Core Service setting the values and the ResponseHeaderHandler creating a SOAP Header to be sent back to the DTS Core Client.

// Inside DTS Core Service

ctx.setProperty("SourceID", dtsappl.getSourceId());

ctx.setProperty("SourceIDSubCode", dtsappl.getSourceIdSubCode());

ctx.setProperty("RecipientID", dtsappl.getRecipientId());

ctx.setProperty("RecipientIDSubCode", dtsappl.getRecipientIdSubCode());

ctx.setProperty("UUID", dtsappl.getUUID());

ctx.setProperty("TransmissionDateTime", "Some Trans Date Time From Service");

ctx.setProperty("ResponsePayloadType", dtsappl.getResponseType());

ctx.setProperty("ResponseAcknowledge", dtsappl.getResponseAcknowledge());

ctx.setProperty("ResponsePayloadBytes", (new Integer(response.length()).toString()));

// Inside ResponseHeaderHandler

DTSResponseRouting responserouting = new DTSResponseRouting();

responserouting.setSourceID((String) ctx.getProperty("SourceID"));

responserouting.setSourceIDSubCode((String) ctx.getProperty("SourceIDSubCode"));

responserouting.setRecipientID((String) ctx.getProperty("RecipientID"));

responserouting.setRecipientIDSubCode((String) ctx.getProperty("RecipientIDSubCode"));

responserouting.setUUID((String) ctx.getProperty("UUID"));

responserouting.setTransmissionDateTime((String) ctx.getProperty("TransmissionDateTime"));

headerElement = new 

SOAPHeaderElement(IDTSConstants.DTS_DEFAULT_NAMESPACE,"DTSResponseRouting");

headerElement.setObjectValue(responserouting);

responseEnv.addHeader(headerElement);

Note: The namespace and qualified name in the SOAPHeaderElement constructor needed to match exactly what the client is expecting.

Revision History

	DATE
	SECTION/
PAGE
	DESCRIPTION
	REQUESTED BY
	MADE BY

	5/24/05
	Whole Document
	Initial Version
	
	Mark Malinoski Nathan Chitty

	10/18/05
	Whole 
Document
	Format, grammar, and style review and changes.
	Gary Sandler
	Laura Damkoehler

	10/21/05
	Code Samples
	Font and indentation
	
	Mark Malinoski
Nathan Chitty

	02/06/06
	Whole Document
	Header/Footer updates
	Kim Shiflette
	Kim Shiflette

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	


[image: image1.png]






























































� EMBED Visio.Drawing.6  ���





�





















































[image: image3.jpg]_1167468646.vsd

