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Introduction and Purpose

Magnetic nanoparticles composed of magnetite (Fe;0,) with a diameter of
10nm are studied.

Similar particles are used in in vivo medical imaging, magnetic sensors,
drug delivery, cancer research, and microscopic diffraction gratings
(Crawford Group), etc.

In practically all of these applications, the particles interact with
fluctuating magnetic fields.

Large amounts of frequency-domain research has been done on magnetic
nanoparticles, however almost no time-domain data exists due to the
smallness of the particles and the high speed of the process (~2ns).

Having an idea of how they behave in the time domain yields a better
understanding of how to employ them in practice.

It also serves the field of scientific inquiry.
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Experimental Objectives

To determine if collections of magnetic nanoparticles undergo the
precession dynamics predicted by the Landau-Lifshitz (LL) theory and if
these time-domain dynamics can be measured by a magnetic induction
technique to be described.

To fit the time-domain data to a damped sinusoidal solution to the LL
equation.

To calculate the frequency-domain response by employing a Fast Fourier
Transform to the time-domain data.

To understand the progression of the frequency as a function of the
applied magnetic bias field.

To estimate the phenomenological damping parameter of the magnetite
particles as a function of applied field and the spectroscopic splitting
factor (or g-factor), of the particles.
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Larmor Equation

M o M x B = yu ¥ x H

The Larmor equation predicts
magnetization will precess about an
external field indefinitely in a plane
orthogonal to the field.
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Landau-Lifshitz Theory

dm

L —1+a2M0mX[H+C{(ﬁ)XH)]

Due to losses with the surrounding
medium, the magnetization vector
follows the path of a decaying
spiral as it undergoes dynamic

precession. (Larmor + damping)
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Inductive Technique Overwew
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Superparamagnetism

Small magnetic particles have moments that fluctuate their orientation due to
thermal excitations.

For single particles above a certain temperature (the “blocking” temperature) the
net magnetization over an extended time is zero.

T = 1,eKV/ksT

* The magnetization is a nonlinear function of the
external magnetic field.

k> k k k * This effect causes the M-H curve of the particles to

k k close, exhibiting no remanence or coercivity.

* For dense collections of interacting particles however, the effective blocking
temperature can be raised, inducing a mixed-state of ferrimagnetism and

superparamagnetism. v
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Superparamagnetism

In dense collections of interacting particles, the curve may not completely close
nor cross identically at zero.

The maximum value of magnetization M. is found to be 532kA/m, which is roughly
10% higher than the tabulated value. Error in Fe;O, concentration or volumetric
measurements of ferrofluid could be the cause.

Particles have also been found to have a higher M. due to surface effects, but the
converse has also been found.

VSM Magnetization Curve
600

400

Magnetization (kA/m)
g

-600
Applied Field (kA/m)
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Two Sample Geometries

* Two types of nanoparticle sample geometries were prepared.
» Of these, half were dried in a directed magnetic field (2.5kA/m) and half were
not.

Circular sample on waveguide.

Strip sample on waveguide.
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Experiment Layout
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Temporal Drift Error Correction

To extract the inductive signal from the step voltage waveform subtractive
synthesis is employed. A step signal without precession is subtracted from one
that has precession, leaving only the desired inductive signal.

Step Signal
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Tlme X 10‘
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Volts

\Volts

Temporal Drift Error Correction

Signal Coincidence Comparison

—Zeroing Signal
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“Zeroing” step signal is not aligned in time
with “Precession” step signal due to a
slight drift in trigger signal.

This introduces relatively large voltage
spikes and an apparently noisy signal
(red). Signals must be time shifted to
correlate them between OV and -2.5V.

This yields the actual signal (blue).
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Time-Domain Results

Inductive Voltage Signals

Induced Voltage (V)
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Example of a typical corrected measurement. Note the measured voltage

signal is still not exactly a damped sine wave as predicted. Why?
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FFT Results
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Two main resonance peaks are seen when an FFT is done on time-domain
results. They must both be accounted for in a time domain data fit. The low
frequency mode is the known resonant frequency of magnetite from FMR

experiments. The definite origin of the higher mode is presently unknown.
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Inductive Signal (V)
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Time-Domain Data Fit
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Time-Domain Data Fit
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Circular field-dried data, results typical.
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Time-Domain Data Fits

Inductive Signal (
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Circular field-dried data, results typical.
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Low Frequency Mode
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Circular field-dried data, results typical.
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High Frequency Mode
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Circular field-dried data, results typical.
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Frequency Domain Analysis

* The general Kittle equation of ferromagnetic resonance was modified to allow for
the magnetization to be a function of the bias field (superparamagnetism).

fp= g% [((KHp, + Hy) + (W = N )M(H)][(KHy + Hp) + (V) — N, )M (H)]

* Hj,isdeterminedfrom the frequency at Hy, = 0.

The bias field requires scaling to account for sample-wide demagnetization.

The value of g is found by fitting the FFT resultsto this equation.

The demagnetizing factors V; determine the shape of the body that is resonating.

Film (flat plane): Ny=1, N, =N,=0. Then: f, = ,uoy\/[H’O + M(H)]H’O

Sphere: N, =N, =N, =1/3.Then: f, = ugyH,
It was unknown what a film composed of individual interacting spheres would do.
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Circular Field-Dried Sample FFT

10

Frequency Domain Fit
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* N,=0.355%+0.003, V,=0.30910.003, and V' ,=0.335.

* Demagnetizing factors indicate nearly spherical behavior, not a collective behavior
(e.g. film), but still slightly dependent on M(H), which is nonlinear.

* g=2.10£0.003. Within 1% error of a commonly cited value for single crystal
magnetite particles (g=2.1). K=0.0974+0.013 and H,=38.5kA/m
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Frequency Domain Fit

Strip Field-Dried Data

Strip Field-Dried Sample FFT Strip Field-Dried Sample FFT
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* N,=0.3584+0.001, V,=0.3061+0.001, and V' ,=0.335.

* Demagnetizing factors indicate nearly spherical behavior, not a collective behavior
(e.g. film), but still slightly dependent on M(H), which is nonlinear.

* g=2.095+0.004. Less than 1% of the previously reported value for single crystal
magnetite particles. K=0.095+0.002 and H,=38.42kA/m
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Frequency Domain Fit

Circular Non Field-Dried Data
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* WN,=0.36710.001, V,=0.2981+0.001, and V' ,=0.3338.

* Demagnetizing factors indicate nearly spherical behavior, not a collective behavior
(e.g. film), but still slightly dependent on M(H), which is nonlinear.

« g=2.2440.014, which is approximately 7% error. K=0.14744+0.0008 and
H 4,=38.2kA/m.
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Frequency Domain Fit

Strip Non Field-Dried Data
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* N,=0.351%+0.001, V,=0.3134+0.001, and ,=0.335.
 Demagnetizing factors indicate nearly spherical behavior, not a collective behavior
(e.g. film), but still slightly dependent on M(H), which is nonlinear.

* beg=2.118+0.004, which is within 1% error of previously reported value for single
crystal magnetite particles. K=0.079+0.004 and HA=38.8kA/m.
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Frequency Domain Discussion

The data are well fitted to the Kittle equation of ferromagnetic resonance where
the demagnetizing factors are seen to describe spheres, not the overall sample.
The scale factor K is found to be proportional to the H field, not the
magnetization M(H) as was expected for a demagnetization field. This is not
presently understood.

The quantity H, may be attributed to the slight remanent field found earlier or
possibly to the magnetocrystalline anisotropy field given by

g 2
4 .L‘OMS

Putting the values K, = 13kJ/m3and M, = 480kA/m yields H, = 43kA/m, which is
within 10% of all values of H, found from precession data at H,= 0.

If the largest value of M= 532kA/m found from the VSM is used, the error is less
than 1%, however this measurement has 2 potential volumetric errors

mentioned earlier. y
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Field-Dried Damping

Landau-Lifshitz Damping
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Circular field-dried damping.

 The low mode damping has a nearly monotonic decrease as bias field increases.
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Strip field-dried damping.

* The high mode reaches a minimum at different points and increases

dramatically.
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N4t (MHz)

Non Field-Dried Damping
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Circular non field-dried damping. Strip non field-dried damping.

The low mode damping for the strip has a nearly monotonic decrease as bias field
increases but the circle increases (as does the error).

The high mode reaches a minimum at different points and increases much less than
for the field-dried case.
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Conclusions

The time-domain signals are well fitted to two exponentially damped sinusoids.

The low frequency is the resonant frequency of magnetite, the origin of the higher
mode has not been definitively identified.

The samples all display behavior of nearly spherical objects for both frequencies.

Field drying versus non field-drying the samples has little effect on the precession
frequencies as does sample shape.

The g-factors were found to agree well with the previously reported value.
The bias field reduction was not found to be a function of the magnetization.

Low frequency damping generally decreases with increasing bias field, a result
similar (qualitatively) to impulse induction experiments on thin films.

High frequency damping is largely affected by field drying. It increases
dramatically at high bias fields.

Due to damping almost all of the dynamics have dissipated within 2ns.
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Questions?
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