

Control & Instrumentation – User's Perspective

Collaboration Respect

From Decade of Progress to Era of New Possibilities

Debabrata Guha Executive Vice President & Chief, Corporate Engineering, Tata Power

12th April, 2013

Introduction

_	requirements – Role of Automation Critical
	Production reliability, Operational efficiency and Bottom line profitability.
	Progress of Control System – Proprietary based to totally integrated
	Vastly increased computing power of controllers
	DCS an integral part of the corporate IT infrastructure
	Advanced Application Tools - Volumes of data to useful information

TATA POWER
Lighting up Lives!

POWAT - 2013

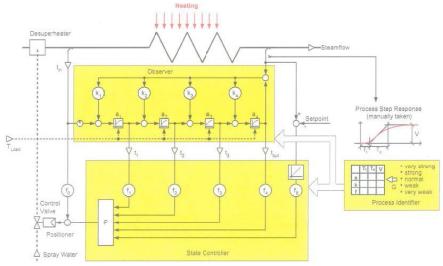
☐ Leveraging the capabilities of control system

Control & Instrumentation – The Journey

Possibilities

Progress Advanced Control Concepts Alarm Management System Unattended and Reduced Attendance Operation Cyber security of Plant Control Systems Control Loop Performance Monitoring software Power Plant Simulator

TATA POWER Lighting up Lives!


POWAT - 2013

Community of Experts

Advanced Control Concepts

- ☐ Limitation of PID Controllers Nonlinear process & Large Time Constants
- ☐ Superheater Steam temp Control Large temperature excursions Plant life reduction and creep life damage on boilers
- ☐ Process Model calculates the intermediate control states
- HP Bypass control Valve
 - Model Predictive Control
- Exploiting Margins
- □ Correction before Error

TATA POWER
Lighting up Lives!

POWAT - 2013

Λ

Alarm Management

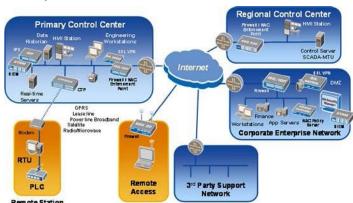
Alarm flood and nuisance alarms - Adverse effect on process efficiency
Alarm system - Operator's attention for timely assessment and action
Blocking of alarms from an out-of-service plant/equipment
Grouping of Multiple process alarms
Suppression of major event alarm – Fail safe action
Rationalization of all multiple alarms initiated directly to the root cause
Blocking of Downstream alarms
Rate of Rise philosophy or Some other concept for spurious alarms
Alarm Management System - Root Cause Analysis Tree

TATA POWER
Lighting up Lives!

Unattended and Reduced Attendance Operation

- □ Pocket pager by the roving operator for alarms & message
- ☐ Control Room physically unattended but fully in effective control
- ☐ Operator recall alarms and lights activate for physical presence
- ☐ Level of plant protection automatically raised in unattended mode
- ☐ Design Principle Single Pushbutton Operation, Advanced control
- ☐ Safety Integrity Level certified systems Boiler & Turbine Protection
- Operator actions largely interventions, rather than Control & Monitoring

TATA POWERLighting up Lives!


Cyber Security of Plant Industrial Control Systems

- ☐ Increased connectivity of control system network to corporate networks
- ☐ Normal disconnect I&C professionals not conversant with IT products
- ☐ Set of security policies and procedures by team of I&C and IT engineers
- ☐ Periodic comprehensive security audit by certified auditor
- Security features in specification

Cyber security requirements

- Culture not compliance

TATA POWER
Lighting up Lives!

Control Loop Performance Monitoring Software

- ☐ Software evaluates the control loops More targeted corrective action
- Diagnosing control problem Which Loops & Why
- Prioritized list of poorly performing loops based on the criticality
- ☐ Maintaining performance and tuning history
- ☐ Integration into on-line Heat Rate Calculation Software
- ☐ Useful to for less-experienced process control engineers

TATA POWER
Lighting up Lives!

Power Plant Simulators

- ☐ Training platform for operators, engineers and plant management
- □ Operators trained for multitude of possible malfunctions
- ☐ Validation of Process equipment design & Control strategy
- ☐ Eliminate problems before implementation
- ☐ Optimize plants, already in operation.
- ☐ Experiment control design changes before implemented in "live" plant

.

TATA POWERLighting up Lives!

Community of Experts

- ☐ Automation systems Fast becoming communications channels
- ☐ Computers at Power plant Expertise and software elsewhere
- ☐ Performance Enhancing products and services through the portal
- ☐ Optimization of plant's processes as a whole rather than piecemeal
- ☐ Community of experts Collaborate towards the common objectives
- Automation system The Platform for community

TATA POWER
Lighting up Lives!

CONTROL TECH'13

10

Thank You

TATA POWER
Lighting up Lives!

POWAT - 2013

11

Controls and Automation in Solar Thermal Plants

Siddhartha Ghoshal, Director- SE Asia

AREVA Group offers one-stop solutions for carbon-free power generation

World leader in nuclear power and major player in renewable energy

Bioenergy Power Generation

More than 100 bioenergy plants built by AREVA worldwide

2800 MWe

Offshore Wind Power Generation

250 AREVA wind turbines chosen for use in offshore wind parks in Europe

1200 MWe

Concentrated Solar Thermal

Most cost-effective, utility-scale turnkey concentrated solar power (CSP) solution

300 MWe in operation/construction

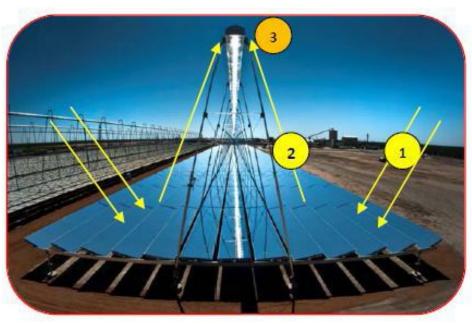
Hydrogen & Storage

Energy Storage solutions with GreenergyBoxTM and Myrte fuel cell system

100 kWe

Source: AREVA

AREVA Solar Projects track record


AREVA Solar currently has close to 550 MW of CSP projects in operation, under construction or in advanced development

First coal/solar booster prototype	Booster 3 MWe	Prototype
Construction of world's largest coal/solar booster	Booster 44 MWe	Construction
First CSP plant commissioned in the USA in 20 years	Stand-alone 5 MWe	Operation
High-temperature booster demo for additional applications	Booster 5 MWe	Construction
Delivery of a large-scale, high-temperature CSP plant	Stand-alone 2x125 MWe	Construction

AREVA, one the fastest-growing CSP technology providers

AREVA's solar technology of choice Compact Linear Fresnel Reflector

- Sunlight falls on the single-axis, sun tracking reflectors
- Sunlight gets reflected towards the fixed receiver
- In a once-through boiler, the water gets converted to steam directly

Each such module is called a Solar Steam Generator – SSG 1 SSG typically produces upto 20MWth or 5.5MW in India DNI conditions

AREVA

Specifications sheet Standard Solar Steam Generator

Solar Steam Generator Unit Performances depend on local conditions			
Temperature	Up to 485°C (905°F)		
Pressure	Up to 2,400 psia (165 bara)		
Thermal Output	Up to 22 MWth		
Electric Output	Up to 7.7 MWe		
Water Usage (dry cooling)	0.3 m ³ /MWhe 80 gal./MWhe		
Land Use (acres/hectares)	15.44 acres 6.2 hectares		
MWe per acre/hectare	0.5 MW/acre 1.24 MWe/hectare		
Grade	East – West = up to 1.6% North – South = <1%		

AREVA

Controls and Operational Excellence

AREVA Solar

- Controls Features and Architecture
- System Automation
- **▶** Solar Field Operations and Operational Modes

CONTROLS FEATURES AND ARCHITECTURE

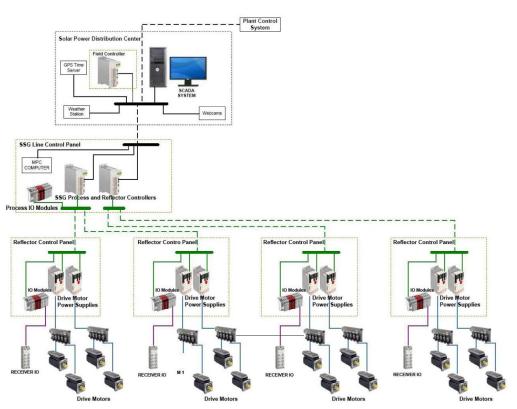
SSG Safety and Protections

- ► SSG controls will begin to roll off reflectors when steam conditions approach pressure and temperature limits
- ► SSG controls will trip (roll off all reflectors) when steam conditions exceed pressure or temperature limits
- Temperature limits
 - **◆ Tube Maximum Mean Wall Temperature**
 - **♦** Thermal expansion
- Pressure limits
 - **♦** Pressure safety relief pressures
 - Set below Maximum Allowable Working Pressure
- SSG controls will trip when flow rates are too low to ensure that temperatures can be managed

- Exit steam pressure and temperature conditions are controlled by a Model Predictive Controller (MPC) that determines flow rates into and out of the SSG
- ► Target flow rates are also adjusted based on an estimate of available thermal input power from the sun
- ► The MPC provides tight steam conditions that account for the challenging process dynamics of direct steam generation
- Control valves manage flow rates into and out of the SSG

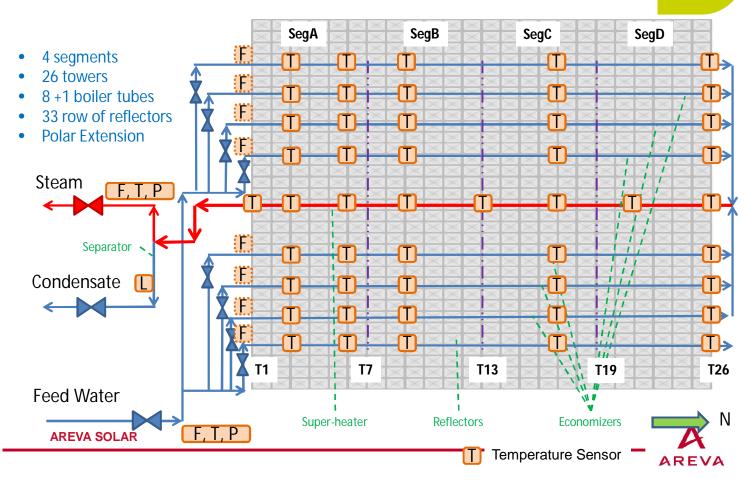
SSG Reflector Controls

- Reflectors controls focus the solar power on the receiver
- Reflector angle determined based on solar position and SSG design geometry
 - Solar position calculated based on time and location on earth using industry standard algorithms
- ► Reflector angle accurate to within +/-0.05 degrees
- Reflector angle calibrated with optical field measurement at installation to ensure tracking is correct

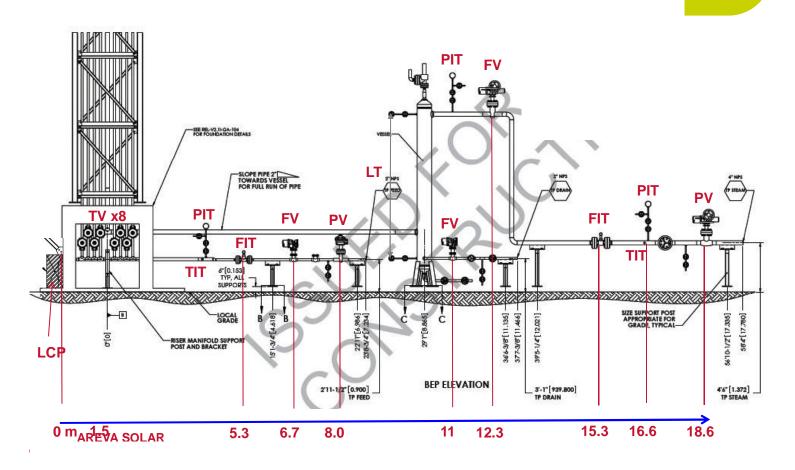


Operator Interface and SCADA

- Solar Field SCADA provides alarm and trip protection notification to operators
- Solar Field SCADA screens provide detailed information for all Solar Field equipment
 - ♦ Flow, pressure, temperature, level indications
 - **♦** Motors, pumps, and valves
 - **♦** Weather station
- Screens allow operators to run systems in manual or automatic control
- Historian included with Solar Field SCADA


A

Controls Hardware Architecture



SSG Simplified P&ID

Solar Field Distribution P&ID SSG Atmospheric Drain Tank A (A-I) D-007 STEAM DRAMS FROM SSG#1-12 / 15 8 26 / 27 Condensate Header **FW Header** (IT) (H) (1635) (H) Steam Condensate Outlet Drain STEAM HEADER BRANCH CONNECTION PER SPEC. Steam SOL — SEE SPEC. (TYP. 2) Interconnect Sump, with Condensate 8 Transfer Pump To Tie Point A 5 This dripleg section repeats Ş NIPPLE, P.B.E. SEE SPEC. (TYP. 2) GATE VALVE SEE SPEC. (TYP. 2) NOTE 3 A every 100m, till tie point FIGURE 2 STEAM MAIN DRIPLEG STANDARD ARRANGEMENT AREVA SOLAR

BEP Valves & Instrumentation

CONTROLS SYSTEM AUTOMATION

Automation Capabilities

- Goal of automation is to reduce the need for operators to run the SSGs
- Automation is implemented as a supervisory control system that coordinates reflector tracking and steam process management
- ► Automation includes all phases of daily system operation, from start-up through normal operation and then shutdown

Normal automated start-up

- **♦** Reflectors roll on in anticipation of sunrise
- ♦ SSG exit steam valve manages pressure build and superheat
- ♦ Feedwater valves add flow to bring steam conditions to steady state
- **♦** BOP coordination

Start-up after extended lay-up

- ♦ Same as above, except
 - Not automated; start-up requires operator attention
 - Nitrogen may need to be vented out the drain system
 - Water inventory in the SSG may need to be added prior to start

AREVA SOLAR

AREVA

SOLAR FIELD OPERATIONS

Solar Field Coordination of SSG Controls

- In normal operation, all available SSGs operate
 - ♦ When host is at maximum steam capacity, roll off reflectors in SSGs
 - ◆ Operating more SSGs improves energy capture during start-up and shutdown when host is not at maximum steam capacity
 - ◆ Operating more SSGs provides faster response and more flexibility to roll reflectors on to compensate for clouds
- ► The Solar Field control system provides setpoint ranges for steam pressure and temperature conditions for each SSG
- ▶ SSG pressure setpoints are chosen to be above steam header pressure to prevent interactions between SSGs

Impact of Clouds at a Power Project

- ► Economic optimization of power project favors overbuild of solar field
 - ◆ Peak solar field steam production is typically ~2x turbine rated capacity
- Mid-day operation is typically clipped, especially in summer
- ▶ Mid-day clouds can be compensated by reducing clipping
 - ♦ In these circumstances, small clouds do not change turbine load
- ► When available optical power is not enough to fill the turbine, steam header pressure will slide
- **SSGs** will deliver all available power
 - ♦ Some will have lower flow rates than others depending on the clouds
- SSG pressures will drop to maintain flow to the turbine
 - Control system will manage pressure reduction to maintain acceptable temperatures

SSG Start-up when Field is Already Operating

Option 1: Pressurize SSG

- ◆ Bypass valve around non-return valve at SSG exit allows steam from the header to pressurize the SSG
- ◆ Roll on reflectors during start-up provided receiver temperatures are acceptable
- ♦ Begin normal operation once SSG is at operating pressure

Option 2: Vent SSG through drain

- ◆ Start-up as normal, except SSG exit pressure and temperature are managed by flowing steam into the drain system or by rolling off reflectors
- ◆ SSG steam introduced into common header once correct pressure and temperature conditions achieved

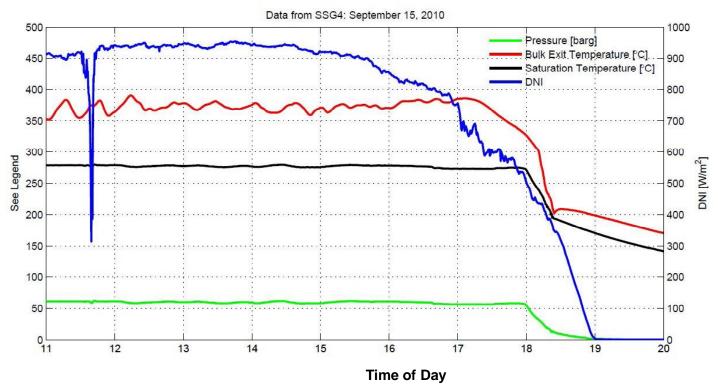
AREVA

Normal, Clipped, and Cloud Interrupted Operation

Normal Operation

- **♦** Begins when start-up is complete
- Controls manages exit steam conditions within an allowable range of pressures and temperatures
 - Valves at inlet regulate feedwater flow into the SSG
 - Valve at exit regulates steam flow into the steam header

Clipped Operation


- ◆ Flow out of the SSG can be reduced by rolling off reflectors
- ♦ Steam conditions maintained by matching optical power to desired flow

Cloud Interruption

- ♦ If SSG is clipped, additional reflectors can be rolled on to increase power
- ◆ If optical power is still not sufficient, flow is reduced
- ◆ Steam flow can be maintained by allowing SSG pressure to drop

AREVA SOLAR

Solar Field System Controls - CONFIDENTIAL

SSG Shutdown

- Flow from SSGs reduces with loss of optical power
- Pressure allowed to drop while maintaining temperature
 - ♦ Pressure reduction for boosters limited by host process conditions
- ► When steam flow drops below minimum level, SSG inlet and exit are isolated
- Reflectors move to stowed position for overnight storage

Power Block Faults

Loss of feedwater pressure

- ◆ If feedwater flow drops below the desired flow rate, the SSG will roll off reflectors in proportion with the available feedwater flow rate
- Solar steam rejection
 - ♦ If the host rejects the solar steam, the solar field will trip offline
 - Option 1: Host can send a trip signal to the solar field
 - Option 2: SSGs see rising exit pressure, trip offline on high pressure
 - ♦ Steam production by the field can be reduced to 0 within 30 seconds
 - 30 seconds is the time required to adjust each reflector just enough to take optical power off the receiver

Solar Field System Controls - CONFIDENTIAL

C&I for Nuclear Power Plants

M Bharath Kumar
Associate Director
NPCIL

Present NPP Scenario in India

PHWR Program

- 19 operating NPPs (capacity 4680 MWe)
- 4 plants under construction (capacity 2800 MWe)
- 6 plants (4200 MWe capacity) under launch

LWR Program

- 2 plants under construction (capacity 2000 MWe)
- more to follow

Present NPP Scenario in India

I-Stage progress PHWR Programme

Future projects 700 MWe & above

TAPS-3&4 2005-2006

540 MWe

ECONOMY OF SCALE

220 MWe

1990s CONSOLIDATION COMMERCIALISATION

1980s STANDARDISATION

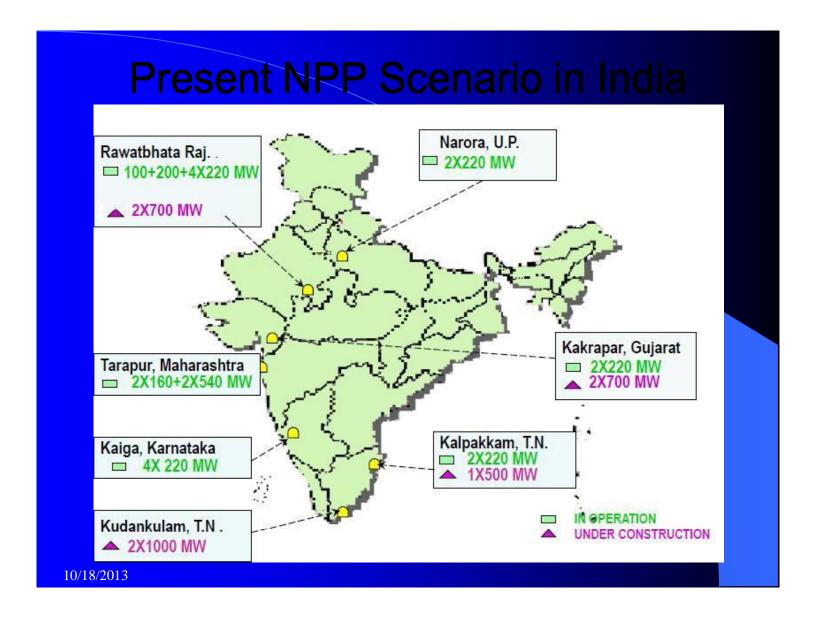
1980s INDIGENISATION TECHNOLOGY

KAIGA-3&4 RAPP-3&4

DEMONSTRATION

RAPS-182

1970s



RAPP-5&6 KGS-1&2

Codes and Guides

- Safety Codes and Guides --- protection of site personnel, public and the environment from undue radiological hazards.
- These structures, systems, and components shall assure that activities or circumstances that the prescribed limit must not be exceeded.

Structure Systems & Components

- The integrity of the pressure boundary
- shutdown the reactor and maintain it in a safe shutdown state
- Prevent the accident or to mitigate the consequences of accidents
- Remove residual heat

10/18/2013

C&I Activities

- Design and Engineering
- Development of Systems
- Production of Systems
- Installation & Commissioning
- Operation & Maintenance

10/18/2013

C&I Systems – Functions

- Monitoring
- HMI
- Protection
- Control
 - Shutdown
 - Operations

10/18/2013

C&I Systems – Requirements

- High reliability
- Redundancy
- o CCF
- o Fault Tolerant....(FMEA)
- On-line Testability
- Structural Integrity
- Environmental qualification
- o Ageing

10/18/2013

C&I Systems - Challenges

- Limited life
 - Obsolescence
 - Changing Technology
 - Refurbishment
 - User interface

10/18/2013

C&I Systems –Issues

- Steady introduction of solid state components with higher levels of integration
- Components HMC, SMD
- PCBs- Multilayer
- Introduction of computers / microcontrollers/ PLDs / CPLDs/ FPGAs.
- Qualification of Digital C&I
- Cyber security

Computer Based Systems in Indian NPPs

- Use in safety related applications increased steadily
- Awareness of V&V issues
- Engineering Procedures defined
- Support issues
- Nuclear industry is a conservative industry

C&I -- Impact of evolution

- Infrastructural & new competency demands lead to outsourcing
- Requirement of providing long term support to electronics systems lead to development being steadily 'in-sourced'

C&I – in Severe Accident

- Instrumentation for Monitoring:-
 - The start of severe accident
 - Various stages of core states
 - Arrest the accident progression
 - Hydrogen management

C&I – in Severe Accident

- Instruments Required :-
 - Pressure Transmitters
 - Temperature detectors
 - Radiation Monitors
 - Hydrogen Detectors
 - Battery operated loop powered indicators

PV Technologies & Solutions

Dr Tariq Alam
PL Delta Technologies Ltd