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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Schedule

• 11/28, 11/30, 12/5: Machine learning (classification, regression, 

clustering, deep learning)

• 12/7: Project presentations and class project due

– Project code due Monday 12/4 at 2PM on Moodle.

• Final exam on 12/14
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Announcements

• HW4 out week of 11/14 (final homework assignment) 

due 12/1 (2:05pm in lecture or 2:00pm on Moodle)

– https://www.cs.cmu.edu/~sganzfri/HW4_AI.pdf

• HW3 is mostly graded and will be returned on this 

Thursday with solutions.

https://www.cs.cmu.edu/~sganzfri/HW4_AI.pdf
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Gambit

• http://gambit.sourceforge.net/gambit15/gui.html

http://gambit.sourceforge.net/gambit15/gui.html
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Class project

• For the class project students will implement an agent for 3-player 

Kuhn poker. This is a simple, yet interesting and nontrivial, variant 

of poker that has appeared in the AAAI Annual Computer Poker 

Competition. The grade will be partially based on performance 

against the other agents in a class-wide competition, as well as final 

reports and presentations describing the approaches used. Students 

can work alone or in groups of up to 3.

• Link to play against optimal strategy for one-card poker:

– http://www.cs.cmu.edu/~ggordon/poker/

• Paper on Nash equilibrium strategies for 3-player Kuhn poker

– http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf

• https://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801

http://www.computerpokercompetition.org/index.php/75-limit-games
http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf
https://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801
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Multiagent systems (game theory)

• Strategic multiagent interactions occur in all fields

– Economics and business: bidding in auctions, offers in 

negotiations

– Political science/law: fair division of resources, e.g., divorce 

settlements

– Biology/medicine: robust diabetes management (robustness 

against “adversarial” selection of parameters in MDP)

– Computer science: theory, AI, PL, systems; national security 

(e.g., deploying officers to protect ports), cybersecurity (e.g., 

determining optimal thresholds against phishing attacks), 

internet phenomena (e.g., ad auctions)
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Nash equilibria in two-player zero-

sum games

• Zero exploitability – “unbeatable”

• Exchangeable

– If (a,b) and (c,d) are NE, then (a,d) and (c,b) are too

• Can be computed in polynomial time by a linear 

programming (LP) formulation
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Nash equilibria in multiplayer and 

non-zero-sum games
• None of the two-player zero-sum results hold

• There can exist multiple equilibria, each with different 

payoffs to the players

• If one player follows one equilibrium while other 

players follow a different equilibrium, overall profile is 

not guaranteed to be an equilibrium

• If one player plays an equilibrium, he could do worse if 

the opponents deviate from that equilibrium

• Computing an equilibrium is PPAD-hard
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Imperfect information

• In many important games, there is information 

that is private to only some agents and not 

available to other agents

– In auctions, each bidder may know his own 

valuation and only know the distribution from which 

other agents’ valuations are drawn

– In poker, players may not know private cards held 

by other players
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Extensive-form representation
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Extensive-form games

• Two-player zero-sum EFGs can be solved in 

polynomial time by linear programming

– Scales to games with up to 108 states

• Iterative algorithms (CFR and EGT) have been 

developed for computing an ε-equilibrium that scale to 

games with 1017 states

– CFR also applies to multiplayer and general sum games, 

though no significant guarantees in those classes

– (MC)CFR is self-play algorithm that samples actions down 

tree and updates regrets and average strategies stored at 

every information set 
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WL/12 CC CF FC FF

00 0 0 0 0

01 -0.5 -0.5 1 1

02 -1 1 -1 1

10

11

12

20

21

22
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Extensive-form game

• A game in extensive form is given by a game tree, which 

consists of a directed graph in which the set of vertices 

represents positions in the game, and a distinguished vertex, 

called the root, represents the starting position of the game. A 

vertex with no outgoing edges represents a terminal position in 

which play ends. To each terminal vertex corresponds an 

outcome that is realized when the play terminates at that vertex. 

Any nonterminal vertex represents either a chance move (e.g., a 

toss of a die or a shuffle of a deck of cards) or a move of one of 

the players. To any chance-move vertex corresponds a 

probability distribution over edges emanating from that vertex, 

which correspond to the possible outcomes of the chance move.



15

Perfect vs. imperfect information

• To describe games with imperfect information, in 

which players do not necessarily know the full board 

position (like poker), we introduce the notion of 

information sets. An information set of a player is a set 

of decision vertices of the player that are 

indistinguishable by him given his information at that 

stage of the game. A game of perfect information is a 

game in which all information sets consist of a single 

vertex. In such a game whenever a player is called to 

take an action, he knows the exact history of actions 

and chance moves that led to that position.
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• A strategy of a player is a function that assigns to each 

of his information sets an action available to him at that 

information set.  A path from the root to a terminal 

vertex is called a play of the game. When the game has 

no chance moves, any vector of strategies (one for each 

player) determines the play of the game, and hence the 

outcome. In a game with chance moves, any vector of 

strategies determines a probability distribution over the 

possible outcomes of the game.
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• Every extensive-form game can be converted to an equivalent 

strategic-form game, and therefore all the prior concepts and 

theoretical results (e.g., domination, security level, mixed 

strategies, Nash equilibrium, Minmax Theorem) will apply. 

However, this conversion produces a strategic-form game that 

has size that is exponential in the size of the original game tree, 

and is infeasible for large games. Therefore, we would like do 

develop algorithms that operate directly on extensive-form 

games and avoid the conversion to strategic form games.
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Gambit

• http://gambit.sourceforge.net/gambit15/gui.html

http://gambit.sourceforge.net/gambit15/gui.html
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Algorithms for game solving

• Two-player zero-sum games: there exists a linear programming 

formulation and it can be solved in polynomial time.

• For two player “general-sum” and games with more than two 

players, it is PPAD-hard (though not NP-hard), and widely 

conjectured no efficient algorithms exist.

• For two-player zero-sum extensive-form games, there also exists 

a linear-programming formulation, despite the fact that 

converting it to normal-form would involve an exponential 

blowup in size of the game tree.
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Computing Nash equilibria of two-

player zero-sum games

• Consider the game G = ({1,2}, A1 x A2, (u1, u2)).

• Let U*i be the expected utility for player i in equilibrium (the 

value of the game); since the game is zero-sum, U*1 = - U*2.

• Recall that the Minmax Theorem tells us that U*1 holds constant 

in all equilibria and that it is the same as the value that player 1 

achieves under a minmax strategy by player 2.

• Using this result, we can formulate the problem of computing a 

Nash equilibrium as the following optimization:

Minimize U*1

Subject to Σk in A2 u1,(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k
2  = 1

sk
2  >= 0 for all k in A2
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k
2  = 1

sk
2  >= 0 for all k in A2

• Note that all of the utility terms u1(*) are constants while the 

mixed strategy terms sk
2 and U*1 are variables. 
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k
2  = 1

sk
2  >= 0 for all k in A2

• First constraint states that for every pure strategy j of player 1, his expected 

utility for playing any action j in A1 given player 2’s mixed strategy s1 is at 

most U*1. Those pure strategies for which the expected utility is exactly U*1

will be in player 1’s best response set, while those pure strategies leading to 

lower expected utility will not.

• As mentioned earlier, U*1 is a variable; we are selecting player 2’s mixed 

strategy in order to minimize U*1 subject to the first constraint. Thus, player 

2 plays the mixed strategy that minimizes the utility player 1 can gain by 

playing his best response.  
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k
2  = 1

sk
2  >= 0 for all k in A2

• The final two constraints ensure that the variables sk
2 are 

consistent with their interpretation as probabilities. Thus, we 

ensure that they sum to 1 and are nonnegative. 
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Learning in games

• In game theory, fictitious play is a learning rule first 

introduced by George W. Brown. In it, each player 

presumes that the opponents are playing stationary 

(possibly mixed) strategies. At each round, each player 

thus best responds to the empirical frequency of play of 

their opponent. Such a method is of course adequate if 

the opponent indeed uses a stationary strategy, while it 

is flawed if the opponent's strategy is non-stationary. 

The opponent's strategy may for example be 

conditioned on the fictitious player's last move.
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Fictitious play

• Simple “learning” update rule

• Initially proposed as an iterative method for computing Nash 

equilibria in zero-sum games, not as a learning model!

• Brown, G.W. (1951) “Iterative Solutions of Games by Fictitious 

Play”

• Algorithm:

Initialize beliefs about the opponent’s strategy

Repeat:

1) Play a best response to the assessed strategy of 

the opponent

2) Observe the opponent’s actual play and update 

beliefs accordingly
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• In fictitious play, the agent believes that his opponent 

is playing the mixed strategy given by the empirical 

distribution of the opponent’s previous actions. That is, 

if A is the set of the opponent’s actions, and for every a 

in A we let w(a) be the number of times that the 

opponent has played action a, then the agent assess the 

probability of a in the opponent’s mixed strategy as

– P(a) = w(a) / ∑a’ in Aw(a’)
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• For example, in a repeated Prisoner’s Dilemma game, if the 

opponent has played C, C, D, C, D in the first five games, before 

the sixth game he is assumed to be playing the mixed strategy 

(0.6, 0.4). 

• In general the tie-breaking rule chosen has little effect on the 

results of fictitious play.

• On the other hand, fictitious play is very sensitive to the players’ 

initial beliefs. This choice, which can be interpreted as action 

counts that were observed before the start of the game, can have 

a radical impact on the learning process. Note that one must pick 

some nonempty prior belief for each agent; the prior beliefs 

cannot be (0,…0), since this does not define a meaningful mixed 

strategy.
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Heads Tails

Heads 1, -1 -1, 1

Tails -1, 1 1, -1
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• As the number of rounds tends to infinity, the empirical 

distribution of the play of each player will converge to 

(0.5,0.5). If we take this distribution to be the mixed 

strategy of each player, the play converges to the 

unique Nash equilibrium of the normal form stage 

game, that in which each player plays the mixed 

strategy (0.5,0.5).
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Machine learning

• An agent is learning if it improves its performance on 

future tasks after making observations about the world. 

Learning can range from the trivial, as exhibited by 

jotting down a phone number, to the profound, as 

exhibited by Albert Einstein, who inferred a new 

theory of the universe. 

• We will start by concentrating on one class of learning 

problem, which seems restricted but actually has vast 

applicability: from a collection of input-output pairs, 

learn a function that predicts the output for new inputs.
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Machine learning

• Why would we want an agent to learn? If the design of 

the agent can be improved, why wouldn’t the designers 

just program in that improvement to begin with? There 

are three main reasons. 
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• First, the designers cannot anticipate all possible 

situations that the agent might find itself in. For 

example, a robot designed to navigate mazes must 

learn the layout of each new maze it encounters. 
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• Second, the designers cannot anticipate all changes 

over time; a program designed to predict tomorrow’s 

stock market prices must learn to adapt when 

conditions change from boom to bust. 
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• Third, sometimes human programmers have no idea 

how to program a solution themselves. For example, 

most people are good at recognizing the faces of family 

members, but even the best programmers are unable to 

program a computer to accomplish that task, except by 

using learning algorithms.
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Supervised learning

• The task of supervised learning is this: Given a training set of 

N example input-output pairs (x1, y1),(x2, y2),…,(xN, yN),

• Where each yj was generated by an unknown function y = f(x), 

discover a function h that approximates the true function f. 

• Example: xi, can be True/False for whether email says “Prize” in 

it, and yi can be True/False for whether or not it is Spam.

• x and y can be any value, they need not be numbers.

– E.g., x can be {red, green, blue} for jacket color, and y can be price.

• The function h is a hypothesis. Learning is a search through the 

space of possible hypotheses for one that will perform well, 

even on new examples beyond the training set. 
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Supervised learning

• To measure the accuracy of a hypothesis we give it a test 

set of examples that are distinct from the training set. 

– What would happen if we tested on the examples that were 

trained on?

• We say a hypothesis generalizes well if it correctly 

predicts the value of y for novel examples. Sometimes 

the function f is stochastic—it is not strictly a function of 

x, and what we have to learn is a conditional probability 

distribution, P(Y|x).
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Supervised learning

• When the output y is one of a finite set of values (such as 

sunny, cloudy, or rainy), the learning problem is called 

classification, and is called Boolean or binary 

classification if there are only two values. When y is a 

number (such as tomorrow’s temperature), the learning 

problem is called regression. (Technically, solving a 

regression problem is finding a conditional expectation or 

average value of y, because the probability that we have 

found exactly the right real-valued number for y is 0). 
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Supervised learning
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Supervised learning

• The figure shows a familiar example: fitting a function of a single variable to 

some data points. The examples are points in the (x,y) plane, where y = f(x). 

We don’t know what f is, but we will approximate it with a function h 

selected from a hypothesis space, H, which for this example we will take to 

be the set of polynomials such as x5 + 3x2 + 2. Figure a shows some data with 

an  exact fit by a straight line (the polynomial 0.4x + 3). The line is called a 

consistent hypothesis because it agrees with all the data. Figure b shows a 

high-degree polynomial that is also consistent with all the data. This 

illustrates a fundamental problem in inductive learning: how do we choose 

from among multiple consistent hypotheses? The answer is to prefer the 

simplest hypothesis consistent with the data. This principle is called 

Ockham’s razor, after the 14th-century English philosopher William of 

Ockham, who used it to argue sharply against all sorts of complications. 

Defining simplicity is not easy, but it seems clear that a degree-1 polynomial 

is simpler than a degree-7 polynomial, and thus (a) should be preferred to (b). 

We will make this intuition more precise later.
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Supervised learning

• Figure c shows a second data set. There is no consistent straight 

line for this data set; in fact, it requires a degree-6 polynomial for 

an exact fit. There are just 7 data points, so a polynomial with 7 

parameters does not seem to be finding any pattern in the data and 

we do not expect it to generalize well. A straight line that is not 

consistent with any of the data points, but might generalize fairly 

well for unseen values of x, is also shown in c. In general, there is 

a tradeoff between complex hypotheses that fit the training data 

well and simpler hypotheses that may generalize better. In figure 

d we expand the hypothesis space H to allow polynomials over 

both x and sin(x), and find that the data in c can be fitted exactly 

by a simple function of the form ax + b + csin(x). This shows the 

importance of the hypothesis space.
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Supervised learning

• In some cases, an analyst looking at a problem is willing to make 

more fine-grained distinctions about the hypothesis space, to say—

even before seeing any data—not just that a hypothesis is possible 

or impossible, but rather how probable it is. Supervised learning 

can be done by choosing the hypothesis h* that is most probable

given the data:

– h* = argmaxh in H P(h|data)

– By Bayes’ rule, this is equivalent to h* = argmaxh in H P(data|h) P(h)

• Then we can say that the prior probability P(h) is high for a degree-

1 or -2 polynomial, lower for a degree-7 polynomial, and 

especially low for degree-7 polynomials with large, sharp spikes as 

in Figure 18.1(b). We allow unusual-looking functions when the 

data say we really need them, but we discourage them by giving 

them a low prior probability. 
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Supervised learning
• Why not let H be the class of all Java programs, or Turing 

machines? After all, every computable function can be 

represented y some Turing machine, and that is the best we can 

do. One problem with this idea is that it does not take into 

account the computational complexity of learning. There is a 

tradeoff between the expressiveness of a hypothesis space and 

the complexity of finding a good hypothesis within that space. 

For example, fitting a straight line to data is an easy 

computation; fitting high-degree polynomials is somewhat 

harder; and fitting Turing machines is in general undecidable. A 

second reason to prefer simple hypothesis spaces is that 

presumably we will want to use h after we have learned it, and 

computing h(x) when h is a linear function is guaranteed to be 

fast, while computing an arbitrary Turing machine program is 

not even guaranteed to terminate. For these reasons, most work 

on learning has focused on simple representations.
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Learning decision trees

• A decision tree represents a function that takes as 

input a vector of attribute values and returns a 

“decision”—a single output value. The input and 

output values can be discrete or continuous. For now 

we will concentrate on problems where the inputs have 

discrete values and the output has exactly two possible 

values; this is Boolean classification, where each 

example input will be classified as true (a positive

example) or false (a negative example). 
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Decision trees

• A decision tree reaches its decision by performing a 

sequence of tests. Each internal node in the tree 

corresponds to a test of the value of one of the input 

attributes, Ai, and the branches from the node are 

labeled with the possible values of the attribute, Ai = 

vik. Each leaf node in the tree specifies a value to be 

returned by the function. The decision tree 

representation is natural for humans; indeed, many 

“How To” manuals (e.g., for car repair) are written 

entirely as a single decision tree stretching over 

hundreds of pages.
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Decision tree
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Decision trees
• As an example, we will build a decision tree to decide whether 

to wait for a table at a restaurant. The aim here is to learn a 

definition for the goal predicate WillWait. First we list the 

attributes that we will consider as part of the input:

– Alternate: whether there is a suitable alternative restaurant nearby. 

– Bar: whether the restaurant has a comfortable bar area to wait in.

– Fri/Sat: true on Fridays and Saturdays.

– Hungry: whether we are hungry.

– Patrons: how many people are in the restaurant (values are None, Some, 

and Full).

– Price: the restaurant’s price range ($, $$, $$$).

– Raining: whether it is raining outside.

– Reservation: whether we made a reservation.

– Type: the kind of restaurant (French, Italian, Thai, or burger).

– WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, 

or >60).
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Decision trees

• Note that every variable has a small set of possible 

values; the value of WaitEstimate, for example, is not 

an integer, rather it is one of the four discrete values 0-

10, 10-30, 30-60, or >60. The decision tree usually 

used by one of us for this domain is shown in Figure 

18.2. Notice that the tree ignores the Price and Type 

attributes. Examples are processed by the tree starting 

at the root and following the appropriate branch until a 

leaf is reached. For instance, an example with Patrons

= Full and WaitEstimate = 0-10 will be classified as 

positive (i.e., yes, we will wait for a table). 
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Decision trees

• An example for a Boolean decision tree consists of an 

(x,y) pair, where x is a vector of values for the input 

attributes, and y is a single Boolean output value. A 

training set of 12 examples is shown in Figure 18.3. 

The positive examples are the ones in which the goal 

WillWait is true (x1, x3,…); the negative examples are 

the ones in which it is false (x2, x5,…).
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Decision tree
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Decision trees

• We want a tree that is consistent with the examples and is as 

small as possible. Unfortunately, no matter how we measure 

size, it is an intractable problem to find the smallest consistent 

tree; there is no way to efficiently search through the 22^n trees. 

With some simple heuristics, however, we can find a good 

approximate solution: a small (but not smallest) consistent tree. 

The DECISION-TREE-LEARNING ALGORITHM adopts a 

greedy divide-and-conquer strategy; always test the most 

important attribute first. This test divides the problem up into 

smaller subproblems that can then be solved recursively. By 

“most important attribute,” we mean the one that makes the 

most difference to the classification of an example. That way, 

we hope to get to the correct classification with a small number 

of tests, meaning that all paths in the tree will be short and the 

tree as a whole will be shallow.  
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Decision trees

• Figure 18.4(a) shows that Type is a poor attribute, because it 

leaves us with four possible outcomes, each of which has the 

same number of positive as negative examples. On the other 

hand, in (b) we see that Patrons is a fairly important attribute, 

because if the value is None or Some, then we are left with 

example sets for which we can answer definitively (No and Yes, 

respectively). If the value is Full, we are left with a mixed set of 

examples. In general, after the first attribute test splits up the 

examples, each outcome is a new decision tree problem in itself, 

with fewer examples and one less attribute. There are four cases 

to consider for these recursive problems:
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Decision trees

1. If the remaining examples are all positive (or all negative), then we are 

done: we can answer Yes or No. Figure 18.4(b) shows examples of this 

happening in the None and Some branches.

2. If there are some positive and some negative examples, then choose the best 

attribute to split them. Figure 18.4(b) shows Hungry being used to split the 

remaining examples.

3. If there are no examples left, it means that no example has been observed 

for this combination of attribute values, and we return a default value 

calculated from the plurality classification of all the examples that were 

used in constructing the node’s parent. These are passed along in the 

variable parent_examples.

4. If there are no attributes left, but both positive and negative examples, it 

means that these examples have exactly the same description., but different 

classifications. This can happen because there is an error or noise in the 

data; because the domain is nondeterministic; or because we can’t observe 

an attribute that would distinguish the examples. The best we can do is 

return the plurality classification of the remaining examples.
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Decision tree learning algorithm

• Note that the set of examples is crucial for constructing

the tree, but nowhere do the examples appear in the 

tree itself. A tree consists of just tests on attributes in 

the interior nodes, values of attributes on the branches, 

and output values on the leaf nodes. 
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Decision tree
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Decision tree algorithm



58

Decision tree from 12-example 

training set
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Learning curve
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Homework for next class

• Chapter 18 from Russel/Norvig

• HW4 out week of 11/14 due 12/1

• Next lecture: Continue machine learning (regression 

and clustering)


