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The ability to transport energy is a fundamental property of the two-dimensional Dirac fermions in

graphene. Electronic thermal transport in this system is relatively unexplored and is expected to show unique

fundamental properties and to play an important role in future applications of graphene, including

optoelectronics, plasmonics, and ultrasensitive bolometry. Here, we present measurements of bipolar thermal

conductances due to electron diffusion and electron-phonon coupling and infer the electronic specific heat,

with a minimum value of 10kB (10�22 J=K) per square micron. We test the validity of the Wiedemann-Franz

law and find that the Lorenz number equals 1:32� ð�2=3ÞðkB=eÞ2. The electron-phonon thermal conduc-

tance has a temperature power law T2 at high doping levels, and the coupling parameter is consistent with

recent theory, indicating its enhancement by impurity scattering. We demonstrate control of the thermal

conductance by electrical gating and by suppressing the diffusion channel using NbTiN superconducting

electrodes, which sets the stage for future graphene-based single-microwave photon detection.
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I. INTRODUCTION

Electrical transport in graphene has attracted much atten-
tion because of the pseudochiral and relativistic nature of the
band structure [1,2]. Since both electrons and holes carry
energy as well as charge, the thermal transport of Dirac
fermions in two dimensions is expected to be as fascinating
as its electrical counterpart. Theorists have suggested a num-
ber of intriguing possibilities: The relativistic hydrodynam-
ics of aCoulomb-interacting electron-hole plasmamay result
in deviations from the Fermi-liquid values of the Mott rela-
tion, the Wiedemann-Franz ratio [3,4], and electronic spe-
cific heat [5]. Thermal transport measurements may reveal
the physics of a neutral mode in the fractional quantum Hall
effect [6]. The thermal properties of the electron gas are also
critical to graphene-based device applications [7,8], as they
impact photodetector performance [9], place fundamental
limits on the mobility of charge carriers [10], and set the
sensitivity of terahertz andmicrowave-frequency bolometers
[11–13], which promise single-photon resolution due to the
expected minute specific heat [11,14].

We present measurements of the bipolar thermal
conductance over a temperature range of 300 mK to
100 K, using three different sample configurations

(described below). For temperatures below approximately
1 K, we identify the thermal transport due to electron
diffusion GWF, test the Wiedemann-Franz (WF) law, and
infer the electronic heat capacity, with a minimum value of
10�20 J=K at 300 mK, which is 9 times smaller than the
previous record [15]. For higher temperatures, we measure
the thermal conductance due to phonon emission Gep

while varying the charge density. There has been recent
theory [16] that explores the effects of electronic disorder
on the electron-phonon (ep) coupling mechanism and
predicts a substantial modification in comparison to earlier
theory in the clean limit [17–20]; the disordered limit is
defined by �p � le, where �p ¼ hs=ðkBTÞ is the dominant

thermal phonon wavelength, le is the electron mean-free
path, s is the sound velocity of graphene acoustic phonons,
and kB and h are Boltzmann’s and Planck’s constants,
respectively. We present measurements that confirm both
the effect of the disorder and the nature of the ep coupling
(scalar or vector, screened or unscreened).
Previous thermal studies of graphene have been limited

to measurements of thermoelectric power [21–23] or
to measurements of thermal conductance taken at tem-
peratures above the Bloch-Grüneisen (BG) temperature
[24,25], at the charge neutrality point (CNP) [11], or
without considering the effects of disorder [26]. Recent
measurements of the behavior of Josephson junctions have
provided insight into electron-phonon coupling at tempera-
tures below 1 K [27]. Significant discrepancies between the
theoretical [17–20] and measured values [26] of both the
ep coupling temperature power law and the coupling
constant are found in some of these experiments.
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II. EXPERIMENTS

Weprobe thermal transport of the electrons in graphene by
applying Joule heating and measuring the electron tempera-
ture utilizing ultrasensitive, microwave-frequency Johnson-

noise thermometry with a sensitivity of 2 mK=
ffiffiffiffiffiffi

Hz
p

[11,28].
[See Fig. 1(a) and the Supplemental Material (SM) [29] and
Refs. [30–33] therein.] Figure 1(b) shows the expected ther-
mal model of the electron gas. With a typical coupling
bandwidth of 80MHz to the graphene [11], one-dimensional
thermal transport [34] through blackbody radiation
Grad ð’ 10�15 pW=KÞ � ðGWF; GepÞ is expected to be neg-
ligible in this experiment.We assume both the electrodes and
lattice are in thermal equilibrium with the sample stage, as
the ep coupling in a normal metal [35] and the boundary
thermal conductance of the SiO2-graphene interface [36]
are large compared to the GWF and Gep thermal channels.

Three devices with different electrodes and gating materials
(see Table I and the SM) are measured in two cryostats to
cover the entire sample temperature range: 0.3–1.5 K and
T > 1:5 K. For all three samples, the device length is much
longer than the inelastic scattering length le, which avoids
any issues of electron shot noise [38–40]. For charge
densities that can be reached with our experiment
n ¼ 1011–1013 cm�2, the transition from ep to electron-
diffusion cooling is expected to occur at approximately 1 K
and should be apparent because of the difference in tempera-
ture dependence of the thermal conductance: Gep and GWF

are expected to depend on temperature as T��1 (with � � 3
typically) and T, respectively.

With Joule heating _Q applied to the electron gas,
the electron temperature Te is expected to follow the
two-dimensional heat transfer differential equation

_q ¼ �r � ð�WFrTeÞ þ�epðT�
e � T�

pÞ; (1)

where _q ¼ E2=� is the local Joule heating (such that
R

_qd2r ¼ _Q), E is the local electric field, � is the elec-

trical resistivity, �WF is the thermal conductivity due to
electronic diffusion, �ep is the ep coupling parameter,

and Tp is the local phonon temperature. On the right-

hand side, the first term describes diffusive cooling
through the electron gas, while the second term de-
scribes cooling by phonon emission. In a Fermi liquid,
the local Joule heating and diffusive cooling are con-
nected through the WF law �WF ¼ L0Te=�, where L0 is
the Lorenz number given by ð�2=3ÞðkB=eÞ2. Since the
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FIG. 1. (a) Experimental setup for simultaneously measuring the thermal and electrical transport of a graphene device: LC, inductor
capacitor matching network; LP, low-pass filter; LNA, low-noise amplifier; and BP, band-pass filter. (b) Graphene thermal model. Heat
from the graphene electrons can flow out through two different channels: electronic diffusion to the electrodes GWF and ep coupling
Gep. (c) Optical micrograph of deviceD2. (d) dc graphene resistances. (e) Electrical mean-free path calculated using le ¼ �EF=ne

2vF.

TABLE I. Sample information and measured quantities. � is
the electronic mobility from fitting [37]. le and kFle are quoted
for data nearest to n ¼ 3:5� 1012 cm�2, corresponding to a
Bloch-Grüneisen temperature TBG ¼ 2ðs=vFÞðEF=kBÞ ’ 101 K.
The disorder temperature is given by [16] Tdis ¼ hs=le. At this
density, Tdis < TBG and kFle > 1.

Devices D1 D2 D3

Gate Local top Global back Global back

Electrodes Ti/Au Ti/Au Ti/Au/NbTiN

Length ð�mÞ 15 15.4 4.6

Average width ð�mÞ 6.8 3.6 5.4

�ðcm2 V�1 s�1Þ 5800 200 5100

le (nm) 21 10 22

kFle 5.5 3.3 7.5

Tdis (K) 46 96 42

D (eV) 19 23 51
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temperature of the sample will not be uniform (the
middle will have a higher temperature than the leads)
and we measure the average electron-noise tem-
perature, the WF relationship will be modified to
GWF ¼ �L0Tp=R, where R is the graphene resistance

and � ¼ 12 (see the SM for discussion) [41].
By computing the ratio of _Q to the measured increase in

average electron temperature with �Te=Tp � 1, we deter-

mine the thermal conductance Gth. Figure 2(a) shows the
results from device D1 (gold leads, top gated) at various
charge-carrier densities. There is a clear transition from a
quadratic to a linear temperature dependence at approxi-
mately 1 K, which is expected and can be understood as
GWF dominating at low temperatures [Fig. 2(b)].We test the
Wiedemann-Franz law for two-dimensional Dirac fermions
by plottingGWF versusT=R [Fig. 2(c)] such that the slope is
�L0. We also note that this GWF is not equal to zero at
T=R ¼ 0, which at this point is not understood. Figure 2(d)
shows the measured Lorenz number at different densities.
The averaged Lorenz-number values for electron and hole
doping are 1:34L0 and 1:26L0, respectively.

Our measured Lorenz number is 35% higher than the
Fermi-liquid value, 17% higher than the measured value in
graphite [42], and comparable to values obtained in other
materials [43]. While the electron-electron (e-e) interac-
tion may modify the Lorenz number in a material [3,4,43],
other effects such as contact resistance and contributions
due to graphene under the contacts could contribute to
errors in our calculation of the Lorenz number. Four-point
probe measurements of the thermal conductance may solve
this problem in the future. We also observe an increase of
the Lorenz number near the CNP [Fig. 2(d)]. At the Dirac
point and at high temperatures where EF � kBT (where
EF is the Fermi energy), theory predicts that the system
becomes quantum critical and the interaction between
massless electrons and holes enhances the Lorenz number
[3,4]. The same theory also expects that a deviation from
the Fermi-liquid value is possible in the case where EF �
kBT, as is true for our impurity-limited samples, but only if
the screening is weak [3]. Further experiments in cleaner
samples are needed to understand this anomalous behavior
in the Lorenz number as well as the offset in Fig. 2(c).
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FIG. 2. Data from device D1 with normal metallic electrodes. (a) The bipolar GWF as a function of charge-carrier density at
various sample temperatures. (b) Gth data as a function of temperature at n ¼ �2:2� 1012 cm�2. The solid line is the power-law
fit to the ep thermal conductance above 1.5 K, while the dashed line is the best linear T fit to the WF thermal conductance. The
size of the data points represents the measurement error. (c) Wiedemann-Franz law in graphene. Each data point represents
a measurement at a different temperature and charge-carrier density. The fitted line is GWF ¼ �LmeasT=R with a y offset; Lmeas ¼
3:25� 0:02� 10�8 W�K�2. (d) The measured Lorenz number Lmeas as a function of density from fitting of
the Wiedemann-Franz law. For electrons with n � �0:18� 1012 cm�2, averaged Lmeas=L ¼ 1:34� 0:06, while for holes with
n � þ0:18� 1012 cm�2, averaged Lmeas=L ¼ 1:26� 0:07.
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The electronic specific heat capacity ce in graphene can
be determined by applying a two-dimensional kinetic
model: �WF ¼ ð1=2ÞcevFle, where Ce ¼ Ace is the total
electronic heat capacity, vF is the Fermi velocity, and A is
the device area. Using le ¼ 32 nm [Fig. 1(e)], we plot Ce

on the right-hand side of the y axis in Fig. 2(a). Since
GWF / T, and le does not depend on temperature signifi-
cantly because of impurity scattering, the measured specific
heat is linear in T for all densities. This measured linear
behavior agrees with theories for jEFj � kBT, as the mini-
mum jEFj of our samples is limited by impurity doping. For
jEFj � kBT, which is not accessible in this experiment, the
specific heat is expected to be proportional to T2 in the case
of massless Dirac fermions [44]. The smallest specific heat
attained near the CNP is merely 10kB=�m2 or 1000kB for
the whole sample, a factor of 9 smaller than the inferred
value in state-of-the-art nanowires used for bolometry [15].
This value is also consistent with our earlier result at 5 K
estimated using a bolometric mixing effect [11].

At higher sample temperatures or for large Joule heat-
ing, the thermal conductance changes its temperature
power-law behavior [Fig. 2(b)] as the dominant cooling

mechanism switches from GWF to Gep; the crossover tem-

perature is given by ð�L0=�RA�epÞ1=ð��2Þ. In this regime,

Eq. (1) reduces to [16,19,20]

_Q ¼ A�epðT�
e � T�

pÞ: (2)

Using a dc current bias, Fig. 3(a) plots the measured
Te versus the applied Joule heating power. For large
heating powers, the electron temperature converges to

ð _Q=A�epÞ1=�, independent of the initial temperature. The

solid lines in Fig. 3(a) are the best fit to Te ¼ ð _Q=A�ep þ
T3
pÞ1=3, establishing � ¼ 3. In light of recent theory [16], our

experimental data suggest that the ep heat transfer in the
disordered limit is primarily due to a weakly screened de-
formation potential, consistent with recent electrical trans-
port measurements [45]. The simplified physical scenario is
that impurity scattering in disordered graphene prolongs the
ep interaction time and thus enhances the emission rates.
Recent investigations [24,25,46] suggest that the same power
law � ¼ 3 may also govern the disorder-assisted cooling
rate of hot electrons for T > TBG, but through a different
mechanism.
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FIG. 3. (a) The measured electron temperature versus dc heating power applied to the graphene devices at different phonon
temperatures with n ¼ 28� 1012 cm�2 for device D2 and n ¼ �2:2� 1012 cm�2 for device D3. The solid lines are fits to Eq. (2).
The power law T3 persists down to 420 mK for device D3with NbTiN electrodes. (b),(c) Data from deviceD3with NbTiN electrodes:
(b) the bipolar electron-phonon thermal conductance as a function of charge-carrier density at various temperatures and (c) Gth data as
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For the three devices we fabricate and measure, all show
� ’ 3 except for device D2 (gold leads, back gated) at
temperatures above 50 K and device D1 near the CNP [see
Fig. 4(b)]. In both circumstances, the temperature power
law increases from � ¼ 3 to 4. This behavior of D1 near
the CNP, where transport is expected to be dominated by
disorder and charge puddles, is surprisingly consistent with
theoretical expectations [17–20] in the clean limit, as
reported in Ref. [11]. In this device, as the charge-carrier
density decreases to 1011 cm�2 near the CNP, the screen-
ing length grows to 50 nm, which is comparable to the
distance to the nearby metallic top gate (100 nm, dielectric
constant of 4). We speculate that this screening of the
metallic gate may impact the ep coupling. Moreover,
near the CNP, the impurity scattering is long range in
nature and kFle < 1, which is outside the regime of validity
of the existing ep coupling theory for disordered graphene
[16]. More experiments and theory are required to under-
stand the nature of the ep coupling at low charge-carrier
density, which is of particular importance to graphene-
based bolometry, as the ultimate sensitivity is expected to

be limited by the ep coupling at the lowest carrier
densities [11,14].
We can further explore Eq. (2) by measuring the

differential thermal conductance at different temperatures
and carrier densities using a small ac current bias. If Te �
Tp � Tp, the ep thermal conductance is �A�epT

��1
p .

Figure 3(b) shows Gep as function of carrier density

for device D3 (superconducting leads, back gated).
Figures 2(b) and 3(c) for devices D1 and D3, respectively,
show that Gth is limited by the ep thermal conductance at
T > 1:5 K with a power law � ’ 3 for both devices.
However, since the electrons in a superconductor have
negligible entropy and do not conduct thermally, Gth of
device D3 with NbTiN electrodes is not limited by GWF at
low temperatures. The dashed line in Fig. 3(c) is the
calculated GWF, similar to the dashed line in Fig. 2(b).
NbTiN is used because of its higher transition temperature
(14 K) to avoid e-e interaction that may promote hot
electrons over the superconducting band gap [47]. The
ep data at 0.4 K demonstrate the suppression of heat
diffusion by roughly 80%. Recent experiments have also
shown Pb to be very effective at suppressing electron
diffusion down to temperatures below 100 mK [27].
We can obtain �ep and � by fitting Gep as function of

lattice temperature at a constant carrier density. Results are
plotted in Fig. 4. For devices D2 and D3, we find � values
of approximately 3.0 and 2.8, respectively. Near the CNP,
�ep has a minimum but is not vanishing. Furthermore, the

fitted �ep values vary by an order of magnitude across all

three devices. This variation and also the discrete jump in
measured Gth after thermal cycling in Fig. 3(c) indicate
that the underlying ep coupling mechanism is strongly
modified by disorder. Although it is difficult to compare
precisely, our results for �ep and � are in reasonable

agreement with the recent measurements of the ep cou-
pling using the trapping dynamics of graphene-lead
Josephson junctions at temperatures spanning 50 to
700 mK [27].
We compare the theory of ep coupling in disordered

graphene to both the measured electrical and ep thermal
transport data using [16]

�ep ¼ 2	ð3Þ
�2

EF

v3
F�M

D2k3B
@
4les

2
; (3)

where D is the deformation potential and �M is the mass
density of the graphene sheet. This theory assumes a short-
range scattering impurity potential and kFle > 1. The esti-
mated values ofD for devicesD1, D2, and D3, at a charge
density of n ’ 3:5� 1012 cm�2, are 19, 23, and 51 eV,
respectively (Table I). The considerable scatter in the inferred
values of D is consistent with the range of values obtained
from electrical transport measurements [37,45,48,49]. The
inset of Fig. 4(b) shows the inferred deformation potential
values in both the thermal and electrical experiments

[24, 26]

[11, this work]
[25]

[37]
[42]

[40]
[41]

806040200
 (eV)

(a)

(b)

4.0

3.5

3.0

2.5

δ

302520151050-5

Density (10
12

cm
-2

)

ac heating
 D1
 D2
 D3

dc heating
 D2
 D3

0.5

0.4

0.3

0.2

0.1

0.0

Σ e
-p

h 
(W

 K
-δ

 m
-2

)

2.0

1.5

1.0

0.5

0.0

Σ
e- ph  (W

 K
-δ m

-2)

FIG. 4. (a) The electron-phonon coupling parameter �ep and
(b) the temperature power law � extracted from the thermal
conductance data above 1.5 K as a function of charge-carrier
density in three measured devices. Inset: The values of the
deformation potential D in graphene from the literature: Blue
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reported in the literature [11,24–26,37,45,48,49]. The wide
scatter suggests that some factors may not be captured in the
ep coupling theory for disordered graphene, such as long-
range impurity scattering, substrate-induced effects, or
surface-acoustic phonons [50].

III. CONCLUSIONS

In this report, we investigate the bipolar thermal con-
ductance of graphene in both the electron-diffusion and
electron-phonon regimes. We find that the ep coupling is
strongly modified by electronic disorder and is consistent
with scalar coupling in the weak screening limit [16]. ep
coupling in the disordered limit is especially relevant for
ultrasensitive device applications at low temperatures,
since even the cleanest samples [37,49] yet reported
(le > 1 �m) would cross into the disordered limit for
temperatures below 1 K. This experiment has validated
the WF law for two-dimensional Dirac fermions. It may be
possible to study many-body physics in this system
through more precise measurements of the Lorenz ratio
and with cleaner samples near the CNP. The electronic
specific heat inferred through the electron-diffusion mea-
surement is merely 10kB=�m2. Our estimates suggest
that a single terahertz photon should be detectable at
300 mK using a 1-�m2-size sample and a SQUID amplifier
[11,14,51]. We have also demonstrated the control of
heat flow in graphene by both using the field effect and
employing superconducting NbTiN to suppress the thermal
diffusion channel. These findings point the way to future
experiments to probe both the fundamental and practical
electronic thermal properties of this unique atomically thin
material.
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