
Ontario Math Circles

Third Annual ARML Team Selection Test

Solutions

1. Evaluate the sum 0 + 1 + 2 − 3 − 4 − 5 + 6 + 7 + 8 − · · · − 2019.
In every block of 6 the total is −9. Thus, the answer is 336 × (−9) + 2016 + 2017+ 2018 −2019 = 1008.

2. What is the smallest prime divisor of 20172017 + 20192019?
The sum of the two numbers is even. Therefore, the answer is 2.

3. Determine the number of ways to assign 3 red and 3 blue to the integers 1, 2, 3, 4, 5, 6 such that no two
consecutive integers have the same colour.
This is only possible if 1, 3, 5 are one color and 2, 4, 6 are another. There are 2 ways to do this.

4. Let l be the line that passes through the origin and (1, 2). Find the shortest distance from the point
(0, 10) to l.
The equation of line l is y = 2x. The perpendicular line to l through (0, 10) is y = − 1

2 x + 10. The

intersection of these two lines is (4, 8). The distance from (4, 8) to (0, 10) is 2
√

5.

5. Define the operation ∗ with a ∗ b = a2 − 2b. Solve the following inequality for all real solutions

t ∗ t < t ∗ 1 ≤ t

For the first inequality,

t ∗ t < t ∗ 1

t2 − 2t < t2 − 2

2 < 2t

1 < t

For the second inequality,

t ∗ 1 ≤ t

t2 − 2 ≤ t

t2 − t − 2 ≤ 0

(t − 2)(t + 1) ≤ 0

−1 ≤ t ≤ 2

Combining these two inequalities yields 1 < t ≤ 2.

6. Find the unit’s digit of 333

.
The pattern for power of 3 is 3, 9, 7, 1. Therefore, the unit’s digit of 333

= 327 is 7.

7. How many positive integers less than 2018 is divisible by 2 or 3?
It suffice to evaluate

⌊

2017

2

⌋

+

⌊

2017

3

⌋

−
⌊

2017

6

⌋

= 1344

8. The system of equations
{

x2 + y2 = 100

x2 + y2 + 180 = 20(x + y)

intersect at two distinct points A and B. Determine the equation of the line that passes through A
and B.
Substituting the first equation into the second yields x + y = 14, which is the equation of the line.

1



9. Let f(x) = ax2 + bx + c with a 6= 0. If f(f(0)) = f(0), find the smallest possible value of the
discriminant of f(x).
First,

f(f(0)) = f(0)

f(c) = c

ac2 + bc + c = c

ac2 + bc = 0

c(ac + b) = 0

Therefore, c = 0 or ac + b = 0. The discriminant of f(x) is b2 − 4ac. Using the result of part (c), if
c = 0 then

b2 − 4ac = b2 ≥ 0

If ac + b = 0 then
b2 − 4ac = b2 − 4(−b) = b2 + 4b = b(b + 4) ≥ −4

Therefore, the smallest possible value of the discriminant of f(x) is −4.

10. Consider the list of 2019 numbers 111, 1011, 10011, 100011, 1000011, . . .. How many of these numbers
are divisible by 33?
Note that none of the numbers are divisible by 11, which implies that the answer is 0.

11. Determine the number of ways to assign red, blue, and green to the integers 1, 2, 3, 4, 5, 6 such that no
two consecutive integers have the same colour.
There are 3 choices for 1 and for each after there are 2 choices. Therefore, the answer is 3 × 25 = 96.

12. Find all ordered pairs of real numbers (x, y) which satisfy

2 log x = log x2 + 2 log y

2 log x = log x2 + 2 log y

log x2 = log x2y2

x2 = x2y2

0 = x2(y + 1)(y − 1)

Since x, y > 0 then the only solutions are when y = 1 and x > 0.

13. Consider the following system of inequalities

{

−5 < y ≤ ⌊x⌋
0 ≤ x < 10

Find the area of the region.
Let n be a non-negative integer then for n ≤ x < n + 1, the area of this region with −5 < y ≤ ⌊x⌋ is
5 + n. Therefore, the answer is

9
∑

n=0

(5 + n) =
9

∑

n=0

5 +
9

∑

n=0

n = 50 + 45 = 95

14. Find the minimum value of x6
1

x + 1
x 6x for x > 0.

By AM-GM,

x6
1

x +
1

x
6x ≥ 2

√

6
1

x 6x = 2
√

6x+ 1

x ≥ 2
√

62 = 12

The minimum is achievable when x = 1.
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15. Find all positive integers n such that 7n + 147 is a perfect square.
Clearly fails for n = 1 so for n > 1 note that 7n + 147 = 49

(

7n−2 + 3
)

. Here, we want 7n−2 + 3 to be
a perfect square, which works when n = 2. Otherwise, since 7k + 3 ≡ 3 mod 7 for k ∈ N, it follows this
cannot be a perfect square (which must be 0,1,2,4 mod 7). Hence, n = 2 is the only such integer.

16. In △ABC, ∠B = 90◦, ∠A = 60◦, and AB = 1. Let ∠B be trisected to create three smaller triangles.
If r1, r2, r3 are the inradii of these three triangles, find r1 + r2 + r3.
Let the trisectors of ∠B be S and T in the order of A, S, T, C. The measurements of length are

as follow: AS = 1
2 , BS =

√
3

2 , BT = T C = 1, ST = 1
2 . The measurements of area are as follows:

[ABS] = [BST ] =
√

3
8 and [BT C] =

√
3

4 . Since A = sr then

r1 + r2 + r3 =

√
3

8

3
4 +

√
3

4

+

√
3

8

3
4 +

√
3

4

+

√
3

4

1 +
√

3
2

=
3
√

3

2
− 2

17. Compute
∑∞

k=1
kπ
πk .

∞
∑

k=1

kπ

πk
= π

∞
∑

k=1

k

πk
= π

1/π

(1 − 1/π)2 =
π2

π2 − 2π + 1

18. How many ways are there to choose 3 numbers from 1, 2, 3, . . . , 10 such that no 2 of the 3 numbers are
consecutive?
Let f(n) be the number of ways to solve the problem with 1, 2, . . . , n. Observe that f(5) = 1 and
f(n) = f(n − 1) +

(

n−2
2

)

− (n − 3). Following this pattern yields f(10) = 56.

19. Find the sum of all positive integers n for which f(n) = n4 − 360n2 + 400 is a prime number.
First,

f(x) = n4 − 360n2 + 400 = (n2 − 20n + 20)(n2 + 20n + 20)

For f(x) to not be prime, the first term must be 1, which occurs when x = 1 or x = 19. Therefore,
1 + 19 = 20.

20. If x > y > 0 and 2 log10(x − y) = log10 x + log10 y, what is the value of x
y .

2 log10(x − y) = log10 x + log10 y

(x − y)2 = xy

x2 − 2xy + y2 = xy

x2 − 3xy + y2 = 0
(

x

y

)2

− 3

(

x

y

)

+ 1 = 0

x

y
=

3 ±
√

9 − 4(1)

2
=

3 ±
√

5

2

Since x > y > 0, x
y = 3+

√
5

2 .

21. Find the tens digit of the sum
1! + 2! + 3! + · · · + 2019!

The tens digit of n! is 0 for n ≥ 10. Thus, it suffice to compute the tens digit of

1! + 2! + 3! + · · · + 9!

which is 1.

22. In △ABC, D is a point on BC such that ∠BAD = 30◦ and ∠DAC = 15◦. If AB = 3
√

2 and AC = 6,
find the length of AD.
Since [ABD] + [ADC] = [ABC] then

3
√

2AD sin 30◦ + 6AD sin 15◦ = 18
√

2 sin 45◦

3
√

2AD
1

2
+ 6AD

√
6 −

√
2

4
= 18

√
2

1√
2

AD = 2
√

6
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23. Find positive integers a, b if for every x, y ∈ [a, b] then 1
x + 1

y ∈ [a, b].

We need a ≤ b and it’s necessary that 1
x + 1

y ≥ a,then let x = y = a,we have a2 ≤ 2 i.e.a = 1. Let

x = y = b,we have b ≤ 2 and we get b = 1 or b = 2. When b = 1, we take x = y = 1, 1
x + 1

y = 2 > 1 = b,

contradiction. When b = 2, x, y ∈ [1, 2] then 1
x + 1

y ≥ 1
2 + 1

2 = 1 and 1
x + 1

y ≤ 2 works. Thus,

(a, b) = (1, 2).

24. Let an = n2 + 2n + 50, n = 1, 2, . . .. Let dn be the largest positive integer that is a divisor of both an

and an+1. Find the maximum possible value of dn for n = 1, 2, . . ..
First, dn must also divide an+1−an = 2n+3, and since 4an = 4n2+8n+200 = (2n+3)2−2(2n+3)+197,
dn must divide 197. Hence, the largest value of dn is 197, which is obtained for n = 97.

25. Tom writes down the integers from 1 to 100, inclusive, on a chalkboard and then erases every number
that contains a prime digit. Compute the sum of the digits that remain on the chalkboard.
This was ARML 2018 Tiebreaker P3. You went back to study the problems right? Answer was 337.

26. Let the tangent line passing through a point A outside the circle with center O touches the circle at B
and C. Let BD be the diameter of the circle. Let the lines CD and AB meet at E. If the lines AD
and OE meet at F , find |AF |/|FD|.
Let FK be the perpendicular from F to EB. Because ∠BDC = ∠BOC/2 = ∠BOA, we conclude
that the right triangles △ABO, △EBD are similar and that AO ‖ ED. Thus, EA = AB. Therefore,
in △EBD, EO and DA are medians and thus EF/FO = 2 = EK/KB. (1) If we set AK = y and
AB = x, we find from (1) that (x+y)/(x−y) = 2 and thus y = x/3. Therefore, AF/FD = AK/KB =
y/(x − y) = 1/2.

27. Let A = {z : z(5

2) = 1} and B = {w : w(10

2 ) = 1}. Determine the number of distinct elements in
{zw : z ∈ A, w ∈ B}.
It suffices to compute lcm

((

5
2

)

,
(

10
2

))

= 90.

28. Determine the number of ways to assign each of the integers 1 to 8 to a1, a2, . . . , a8 such that |an−n| ≤ 1
for n = 1, 2, . . . , 8.
Let Fn be the number of ways to assign the integers 1 to n to a1, a2, . . . , an such that |an − n| ≤ 1.
Note that F1 = 1 and F2 = 2 (1, 2 and 2, 1 are the only two possible assignments). Observe that there
are two possible values for an, n and n − 1. If an = n then it remains to determine the number of ways
to assign the integers 1 to n − 1 to a1, a2, . . . , an−1 such that |an − n| ≤ 1, which is Fn−1. If an = n − 1
then an−1 = n because every number must be to assigned to one of the terms in the sequence and
an−1 is the only remaining term to assign n. It remains to determine the number of ways to assign 1
to n − 2 to a1, a2, . . . , an−2 such that |an − n| ≤ 1, which is Fn−2. Therefore, Fn is a recursive relation
Fn = Fn−1 + Fn−2 and F1 = 1 and F2 = 2. Therefore, there are F8 = 34 possible ways.

29. Find the number of positive integer pairs (m, n) with m, n ≤ 50 such that m + n + 1 is prime and
divides 2

(

m2 + n2
)

− 1.
Note 2m2 + 2n2 − 1 = 2(m + n)(m + n + 1) − (2m + 1)(2n + 1) so m + n + 1 divides 2m + 1 or 2n + 1
since its prime. WLOG assume m + n + 1 divides 2m + 1 so there exists a positive integer k such that
k(m + n + 1) = 2m + 1. This condition rearranges to kn + (k − 1) = (2 − k)m. Note the left side is
positive so the right side must be too, implying 2 − k > 0 so k = 1. Hence, m + n + 1 = 2m + 1 so
m = n. Therefore we wish to find the pairs (m, n) with 1 ≤ m, n ≤ 100 such that 2m + 1 is prime.
Since there are 25 odd primes at most 101, it follows there are 25 such pairs.

30. Let AB and CD be two segments length 1. If they intersect at O such that ∠AOC = 60◦, find the
minimum of AC + BD.
Connect AC, BD and introduce CB1 ‖ AB, where CB1 = AB. Then ABB1C is a parallelogram, so
BB1 = AC. Connect B1D then △CDB1 is equilateral. Applying the triangle inequality,

AC + BD = BB1 + BD > DB1 = CD = 1

Note that equality occurs when A = C.

31. How many 6-digit numbers whose leftmost digit is 1 have exactly two pairs of identical digits (and no
digit occurs three or more times)?
There are

(

9
2

)(

5
2

)(

3
2

)

7 ways in which the 1 is not paired. There are 5 × 9 ×
(

4
2

)

× 8 × 7 ways in which 1
is one of the paired digits. The total is 22680.
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32. Given that G is the centroid of △ABC, GA = 2
√

3, GB = 2
√

2, GC = 2. Find the area of △ABC.
First, extend AG to G′ such that GG′ = AG. Second, show that BGCG′ is a parallelogram. Third,
show that △GBP is right and compute the area of [GBC]. Therefore, [ABC] = 3[GBC] = 6

√
2.

33. Find the number of positive integers n such that n2 ≤ 2019 is the product of all positive proper divisors
of n.
Note n = 1 works. Otherwise, we have

∏

d|n d = nτ(n)/2 so τ(n) = 6. This implies the prime

factorization of n must be n = p5 or n = p2q for distinct primes p, q. If n2 = p10 ≤ 2019 then p = 2.
If n = p2q then p4 ≤ 2019 so p < 7. If p = 2 then q2 < 127 and hence, q ≤ 11 yielding five solutions.
If p = 3, then q2 < 25 so two solutions. Finally, if p = 5 the there are two solutions as well. In total,
we have found 10 solutions.

34. Let f(x) be a rational coefficient polynomial with (1 + i)
√

6
4 + (1 − i)

√
2

4 as a root. Find the minimum
possible positive degree of f(x).
The complex number given is the 24th root of unity. The minimum possible rational coefficient poly-
nomial is the cyclotomic polynomial, which has degree ϕ(24) = 8.

35. Find all real numbers x ∈
[

0, π
2

]

, such that (2 − sin 2x) sin(x + π
4 ) = 1.

Let a = sin(x+ π
4 ). If x ∈ [0, π

2 ], then
√

2
2 ≤ a ≤ 1 and 2− sin 2x = 3−2a2. Therefore 2a3 −3a+1 = 0.

One root is a = 1 or x = π
4 . Other roots are 2a2 + 2a − 1 = 0 → a = −1±

√
3

2 . But
√

3−1
2 <

√
2

2 .

36. An integer n ≥ 2 is called friendly if there exists a family A1, A2, . . . , An of subsets of the set {1, 2, . . . , n}
such that:
(1) i 6∈ Ai for every i = 1, 2, . . . , n;
(2) i ∈ Aj if and only if j 6∈ Ai, for every distinct i, j ∈ {1, 2, . . . , n};
(3) Ai ∩ Aj is non-empty, for every i, j ∈ {1, 2, . . . , n}.
Determine the smallest friendly number.
We claim the smallest friendly number is n = 7. For n = 7, let Ai = {i + 1, i + 2, i + 4} (mod 7); it
satisfies (1), (2), and we note that Ai ∩Ai+3 = i+4, Ai ∩Ai+5 = i+2, Ai ∩Ai+6 = i+1, satisfying (3).
For n < 7, condition (2) implies that

∑n
i=1 |Ai| =

(

n
2

)

. Then (
∑n

i=1 |Ai|) /n =
(

n
2

)

/n = n−1
2 < 3, so

there exists some $ A_i$ which contains only two elements (say Ai = {j, k}). But then by condition
(2), we have that k cannot belong to Aj and j belong to Ak simultaneously, so either Ai ∪Aj or Ai ∪Aj

is the empty set, contradiction.

37. On the Cartesian plane the curve (C) has equation x2 = y3. A line d varies on the plane such that d
always cut (C) at three distinct points with x-coordinates x1, x2, x3. Determine the maximum possible

value of 3

√

x1x2

x2

3

+ 3

√

x2x3

x2

1

+ 3

√

x3x1

x2

2

.

Let d be the line y = ax+b. Then, x1, x2, x3 are the roots of the following equation: 0 = (ax+b)3−x2 =
a3x3 + (3a2b − 1)x2 + 3ab2x + b3. Since x1, x2, x3 are distinct, we have a 6= 0. We can simplify

the desired expression as S = 3

√

x1x2

x2

3

+ 3

√

x2x3

x2

1

+ 3

√

x3x1

x2

2

= 3
√

x1x2x3

(

1
x1

+ 1
x2

+ 1
x3

)

. By Vieta,

S = x2x3+x1x3+x1x2

3
√

(x1x2x3)2
= 3b2/a2

3

√

(

− b3

a3

)

2

= 3. Therefore, the maximum possible value of our expression is3.

38. Let f(x, y) = x+y
(x2+1)(y2+1) . Find the maximum value of f(x, y) for all x, y ∈ R.

Let x = tan θ, y = tan φ and then f = tan θ+tan φ
sec2θsec2φ = cos θ cos φ(sin θ cos φ+sin φ cos θ) = cos θ cos φ sin(θ+

φ) By AM-GM Inequality, we have f ≤
(

cos θ+cos φ+sin(θ+φ)
3

)3

. Let P = cos θ + cos φ + sin(θ + φ),

and from product to sum, we have P = 2 cos( θ+φ
2 )

[

cos( θ−φ
2 ) + sin( θ+φ

2 )
]

≤ 2 cos( θ+φ
2 )

[

1 + sin( θ+φ
2 )

]

.

Letting z = sin( θ+φ
2 ), we get the cleaner expression P 2 ≤ 4(1 − z2)(1 + z)2. Again by AM-GM,

P 2 ≤ 4 · 27(1 − z)

(

1 + z

3

)3

≤ 4 × 27

44

[

1 − z + 3 · 1 + z

3

]4

=
27

4

or P ≤ 3
√

3
2 . Note equality occurs when cos θ = cos φ = sin(θ + φ) and sin( θ+φ

2 ) = 1
2 . That is, when

θ = φ = π
6 which yields fmax =

( √
3

2

)3

= 3
√

3
8 attained when x = y = 1√

3
.
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39. For any xi ≥ 0, i = 1, 2, . . . , 2018, if let x2019 = x1, find the minimum value of

2018
∑

k=1

√

1

(xk + 1)2
+

x2
k+1

(xk+1 + 1)2

Let xk = tan2 θk for k = 1, 2, . . . , 2018, where θk ∈
[

0, π
2

)

, and take θn+1 = θ1, then

√

1

(xk + 1)2
+

x2
k+1

(xk+1 + 1)2
=

√

cos4 θk + sin4 θk+1 ≥
√

1

2

(

cos2 θk + sin2 θk+1

)2
=

cos2 θk + sin2 θk+1√
2

Thus,
2018
∑

k=1

√

1

(xk + 1)2
+

x2
k+1

(xk+1 + 1)2
≥

2018
∑

k=1

cos2 θk + sin2 θk+1√
2

=
2018√

2
= 1009

√
2

40. Find the maximum number of edges of a 4 dimensional cube that are cut by a hyperplane.
Without loss of generality, assume that the cube is an unit cube with vertices (a, b, c, d) where a, b, c, d ∈
{0, 1}. Consider the hyperplanes

Hk : x1 + x2 + · · · + x4 = k +
1

2
, 0 ≤ k ≤ 3

Then Hk crosses every edge joining one of the
(

4
k

)

points with k nonzero coordinates to its 4 − k

neighbors with k + 1 nonzero coordinates and only these edges. Thus, such a plane crosses (n − k)
(

n
k

)

.
This is maximized when k = 2, which implies that the answer is 12.
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