Math 2471 Calc III - Sample Test 3

1. Evaluate the following line integrals:
(i) $\int_{C} x y d s$ where C counter clockwise direction along the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$.
(ii) $\int_{C}(x+y) d x-2 x d y$ where C is the parabola $y=x^{2}$ from $(0,0)$ to $(2,4)$.
2. Is the following vector field conservative?

$$
\vec{F}=<2 x y, x^{2}+z^{2}, 2 y z>
$$

If so, determine the potential function f such that $\vec{F}=\vec{\nabla} f$ and use this to evaluate

$$
\int_{C} 2 x y d x+\left(x^{2}+z^{2}\right) d y+2 y z d z
$$

where C is any curve joining $(1,1,1)$ and $(2,3,4)$.
3. Evaluate the following line integral $\int_{C} 2 y d x+x d y+d z$ where C is the line joining the points $P(0,1,2)$ to $Q(1,-2,2)$.
4. Green's Theorem is

$$
\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Verify Green's Theorem where $\vec{F}=<y^{2}, x^{2}+2 x y>$ where R is the region bound by the curves $y=x^{2}, y=1$ and $x=0$ in $Q 1$.

