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Abstract- The analysis of electric networks containing energy 

storage elements like a capacitor or an inductor or both a 

capacitor and an inductor is an essential course for most of the 

branches of the engineering. The response of such networks is 

generally obtained by adopting the classical method or by 

algebraic and analytic methods. This paper presents a 

convolution method for obtaining the complete response of a 

series electric network of two passive elements namely an 

inductor of inductance Ł and a resistor of resistance Ɍ (i.e. a 

series Ł-Ɍ network), connected to an excitation source of 

sinusoidal potential. The response obtained by solving the 

governing differential equation will provide an expression for 

the electric current which flows in the series Ł-Ɍ network 

connected to an excitation source of sinusoidal potential. This 

paper presents a new approach to demonstrate the use of the 

convolution in obtaining the complete response of a series ŁɌ 

network through the application of the convolution method. The 

response obtained by solving the governing differential equation 

by the application of the convolution method will provide an 

expression for the electric current. In this paper, the response of 

a series Ł-Ɍ network is provided as a demonstration of the 

application of the convolution method.   

  

Index Terms- Convolution; Current; Series Electric Network; 

Response.  

  

I. INTRODUCTION  

 

Active electric elements are defined as those which have the 

ability to deliver average electric power greater than zero to the 

external electric devices in an infinite time interval whereas, 

Passive electric elements are defined as those which do not have 

the ability to do so. The electric circuit of a series ŁɌ network 

consists of two passive electric elements namely an inductor Ł 

and a resistor Ɍ, connected in series to an active electric element 

namely an excitation source of sinusoidal potential. It is used as 

a tuning circuit, which is an example of band pass filtering, or 

resonant circuit in the radio and television sets to tune or 

resonate a particular frequency band from the wide range of 

radio frequency components, or in the chokes of luminescent 

tubes [1-4].  

  

  

  

 

II. LAPLACE TRANSFORMATION  

 

The Laplace transformation of a function g(y), where y ≥ 0, is 

denoted by 𝐺(𝑞)  or L {g(y)} and is defined as  L {g(y)} =

𝐺(𝑞) =  ∫ e−qy∞

0
g(y)dy , provided that the integral exists, 

where q is the parameter which may be a real or complex 

number and L is the Laplace transform operator. The Laplace 

Transformation of some elementary functions are written as [5-8]    

 𝐿 {1} =
1

𝑞
 ,   𝑞 > 0 

 𝐿 {𝑦𝑛} =
𝑛!

𝑞𝑛+1,    

 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,1,2,3 … … …. 

 𝐿 {𝑒𝑐𝑦} =
1

𝑞−𝑐
 ,   𝑞 > 𝑐 

 𝐿 {𝑠𝑖𝑛𝑐𝑦} =
𝑐

𝑞2+𝑐2  ,   𝑞 > 0 

 𝐿 {𝑠𝑖𝑛ℎ𝑐𝑦} =
𝑐

𝑞2−𝑐2  ,   𝑞 > |𝑐| 

 𝐿 {𝑐𝑜𝑠𝑐𝑦} =
𝑞

𝑞2+𝑐2  ,   𝑞 > 0 

 𝐿 {𝑐𝑜𝑠ℎ𝑐𝑦} =
𝑞

𝑞2−𝑐2  ,   𝑞 > |𝑐| 

 

A. Laplace Transformation of Derivative of a function 

 

If the function g(y), where y ≥ 0, is having an exponential order, 

that is if g(y) is a continuous function and is a piecewise 

continuous function on any interval, then the Laplace transform 

of derivative of g(y) i.e. 𝐿 {𝑔′(𝑦)} is given by [5-8]                                    

𝐿 {𝑔′(𝑦)} = ∫ 𝑒−𝑞𝑦
∞

0

𝑔′(𝑦)𝑑𝑦 

Integrating by parts, we get 

𝐿 {𝑔′(𝑦)}= [0 − 𝑔(0)] − ∫ −𝑞𝑒−𝑞𝑦∞

0
𝑔(𝑦)𝑑𝑦,                        

Or 𝐿 {𝑔′(𝑦)} = −𝑔(0) + 𝑞 ∫ 𝑒−𝑞𝑦∞

0
𝑔(𝑦)𝑑𝑦 

Or 𝐿 {𝑔′(𝑦)} =  𝑞𝐿{𝑔(𝑦)} − 𝑔(0) 

Or 𝐿 {𝑔′(𝑦)} =   𝑞𝐺(𝑞) − 𝑔(0) 

Now, since   𝐿 {𝑔′(𝑦)} = 𝑞𝐿{𝑔(𝑦)} − 𝑔(0), 
Therefore,  𝐿 {𝑔′′(𝑦)} = 𝑞𝐿{𝑔′(𝑦)} − 𝑔′(0) 

Or 𝐿 {𝑔′′(𝑦)} = 𝑞 {𝑞𝐿{𝑔(𝑦)} − 𝑔(0)} − 𝑔′(0) 

Or 𝐿 {𝑔′′(𝑦)} = 𝑞2𝐿{𝑔(𝑦)} − q𝑔(0) − 𝑔′(0) 
Or 𝐿 {𝑔′′(𝑦)} = 𝑞2𝐺(𝑞) − q𝑔(0) − 𝑔′(0), and so on. 
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B. Inverse Laplace Transformation 

The inverse Laplace transform of the function 𝐺(𝑞) is denoted 

by L-1[𝐺(𝑞)] or g(y). If we write L [g(y)] = 𝐺(𝑞), then L-1[𝐺(𝑞)] 

= g(y), where L-1 is called the inverse Laplace transform 

operator. The Inverse Laplace Transformations of some 

functions are written as [5-8] 

 L-1{
1

𝑞
} = 1 

 L-1{
1

(𝑞−𝑐)
} = 𝑒𝑐𝑦 

 L-1{
1

𝑞2+𝑐2}= 
1

𝑐
 sin 𝑐𝑦 

 L-1{
𝑞

𝑞2+𝑐2} = cos 𝑐𝑦 

 L-1{
𝑞

𝑞2−𝑐2} = cos ℎ𝑐𝑦 

 L-1{
1

𝑞2−𝑐2} = 
1

𝑐
 sin ℎ𝑐𝑦 

 L-1{
1

𝑞𝑛} =    
𝑦𝑛−1

(𝑛−1)!
  , n > 0. 

I. CONVOLUTION AND CONVOLUTION 

THEOREM 

 

The convolution of two functions 𝜑(𝛾) and ∅(𝛾)  which are 

defined and piecewise continuous in  [0, ∞), is denoted by (𝜑 ∗
∅)(𝛾)  and is defined as [5-8] 

(𝜑 ∗ ∅)(𝛾)  =  ∫ 𝜑(𝑟) ∅(𝛾 − 𝑟)
𝛾

0
 𝑑𝑟, where 𝛾 ≥ 0. 

If these functions 𝜑(𝛾) and ∅(𝛾)  are of exponential order, then 

the Laplace transform of [(𝜑 ∗ ∅)(𝛾)] is given by 

Ɫ[ (𝜑 ∗ ∅)(𝛾)] =   Ɫ[ 𝜑(𝛾) ] Ɫ[ ∅(𝛾)] =  �̅�(𝑞) ∅̅(𝑞) , 

where   �̅�(𝑞) 𝑎𝑛𝑑 ∅̅(𝑞)  are Laplace transforms of 𝜑(𝛾) and 

∅(𝛾) and Ɫ is Laplace transform operator. 

A. Proof of convolution theorem 

We can write 

 Ɫ[ 𝜑(𝛾) ] Ɫ[ ∅(𝛾)] =  �̅�(𝑞) ∅̅(𝑞)

=  ∫ 𝑒−𝑞𝑟
∞

0

𝜑(𝑟)𝑑𝑟 ∫ 𝑒−𝑞𝛿
∞

0

∅(𝛿)𝑑𝛿 

                                                                              

=      ∫ ∫ 𝑒−𝑞(𝑟+𝛿)𝜑(𝑟)∅(𝛿)𝑑𝑟 𝑑𝛿
∞

𝟎

∞

𝟎
 

=  ∫ 𝜑(𝑟)𝑑𝑟
∞

0

∫ 𝑒−𝑞(𝑟+𝛿)∅(𝛿)𝑑𝛿
∞

0

 

Let us put 𝑟 + 𝛿 = 𝛾, where 𝑟 is fixed, then  𝛿 = 𝛾 – 𝑟 and the 

value of 𝛾 vary from  𝑟 to  ∞. 

Hence we write 

Ɫ[ 𝜑(𝛾) ] Ɫ[ ∅(𝛾)] =  �̅�(𝑞) ∅̅(𝑞) =  ∫ 𝜑(𝑟)𝑑𝑟
∞

0
∫ 𝑒−𝑞𝛾∅(𝛾 −

∞

𝑟

𝑟)𝑑𝛾. 

On changing the order of integration, we can write the order of 

integration as 0 ≤ 𝛾 ≤ ∞ and  0 ≤ 𝑟 ≤  𝛾. Therefore,  

Ɫ[ 𝜑(𝛾) ] Ɫ[ ∅(𝛾)] =  �̅�(𝑞) ∅̅(𝑞) =  ∫ 𝑒−𝑞𝛾𝑑𝑟
∞

0
∫ 𝜑(𝑟)∅(𝛾 −

𝛾

0

𝑟)𝑑𝑟 

= ∫ 𝑒−𝑞𝛾[
∞

0
∫ 𝜑(𝑟)∅(𝛾 − 𝑟)𝑑𝑟]

𝛾

0
𝑑𝛾 

=∫ 𝑒−𝑞𝛾[
∞

0
(𝜑 ∗ ∅)(𝑦) ]𝑑𝛾 

= Ɫ[ (𝜑 ∗ ∅)(𝑦)] 
Hence we can write 

�̅�(𝑞) ∅̅(𝑞) = Ɫ[ (𝜑 ∗ ∅)(𝛾)] 
Applying inverse Laplace Transform, we can write 

 Ɫ−1[�̅�(𝑞) ∅̅(𝑞)] = [ (𝜑 ∗ ∅)(𝛾)] 
 

II. FORMULATION 

 

A. Governing differential equation 

We will take a series Ł- Ɍ  network to which a sinusoidal 

excitation voltage source of potential V = V0 sin 𝜔𝑡 is applied 

through a key K as shown in figure 1.  

 

 
 

As the switch is closed at t = 0, the potential drops across the 

network elements are given by [1-2]  

 VɌ (t) =  I(t)Ɍ,  VL (t) = ŁĐt[I(t)]. 
Therefore, the application of Kirchhoff’s loop law to the loop 

shown in figure 2 provides 

VɌ(t) +  VŁ (t) = V  

Or 

Ɍ I (t) + ŁĐt[I(t)] = V0 sin 𝜔𝑡….. (1)     Đt ≡
d

dt
  .                                                                           

Differentiate equation (1), we get a linear homogeneous 

differential equation of order 2 as given below:  
ɌĐt[𝛪(𝑡)] + ŁĐt

2[𝛪(𝑡)] =  V0 ω cos 𝜔𝑡  

Or 

 ŁĐt
2[𝛪(𝑡)] + ɌĐt[𝛪(𝑡)] = V0 ω cos 𝜔𝑡 

Or 

 Đt
2[𝛪(𝑡)] +  

Ɍ

Ł
Đt[𝛪(𝑡)] = 

V0ω

Ł
 cos 𝜔𝑡 …. (2) 

 

B. Solution of governing differential equation 

 

To solve equation (2), we first write the relevant boundary 

conditions [1-4] as follows: 

 Since the current through the inductor and the electric 

potential across the capacitor cannot be changed 

instantaneously, therefore, as the switch is closed at the 

instant t = 0, then I (0) = 0. 

 Since at the instant t = 0, I (0) = 0, therefore, equation 

(1) provides ŁĐt[I(0)] = 0 or Đt[I(0)] = 0. 
The Laplace transform of equation (2) provides 
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𝑞2𝐼(̅q) – 𝑞𝐼(0) -𝐷𝑡[𝐼(0)] +   
Ɍ

Ł
{𝑞 𝐼(̅q) – 𝐼(0)}  

=  
V0ω

Ł
 cos 𝜔𝑡....... (3) 

Applying boundary conditions: 𝐼(0) = 0 and   Đt[I(0)] =  0  , 

equation (3) becomes,   

 

𝑞2𝐼(̅q)   +  
Ɍ

Ł
𝑞 𝐼(̅q)  = 

V0ω

Ł
 

𝑞

𝑞2+ω2 

Or 

  𝐼(̅q) [𝑞2 +   
Ɍ

Ł
𝑞 ] = 

V0ω

Ł
 

𝑞

𝑞2+ω2 

Or 

 𝐼(̅q) = 
V0

Ł
 

ω

𝑞2+ω2 [ 
1

𝑞+  
Ɍ

Ł

 ]………… (4) 

 

Let F (q) = 
ω

𝑞2+ω2 and G (q) = 
1

𝑞+  
Ɍ

Ł

  , 

Then the inverse Laplace transforms of these functions are given 

by f (t) = sin 𝜔𝑡  and g (t) = 𝑒−
Ɍ

Ł
 𝑡

. 

Equation (4) can be rewritten as  

𝐼(̅q) = 
V0

Ł
 [F (q) x G (q) ] ………… (5) 

Taking inverse Laplace transform of equation (5), we can write 

 

𝛪(𝑡)=  
V0

Ł
𝐿−1[F (q) x G (q) ] …….. (6) 

Now applying convolution theorem, we can write  

𝐿−1[F (q) x G (q) ] = (f * g) (t) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)
𝑡

0
 𝑑𝜏 

Or 𝐿−1[F (q) x G (q) ] = ∫ sin 𝜔𝜏   𝑒−(
Ɍ

Ł
 )(𝑡−𝜏)𝑡

0
 𝑑𝜏 

Or 𝐿−1[F (q) x G (q) ]  = 𝑒−(
Ɍ

Ł
 )𝑡

 ∫ 𝑒
Ɍ

Ł
 𝜏  sin 𝜔𝜏 

𝑡

0
 𝑑𝜏         

                                                                  …….. (7) 

Using identity: 

 

∫ 𝑒𝑏𝑥 sin 𝑎𝑥  𝑑𝑥 =  𝑒𝑏𝑥 [
𝑏 sin 𝑎𝑥−𝑎 cos 𝑞𝑥

𝑎2+𝑏2 ], we can write equation 

(7) as 

 

𝐿−1[F (q) x G (q)]  =   
 

𝑒−(
Ɍ

Ł
 )𝑡

 { 𝑒
Ɍ

Ł
 𝜏 [

Ɍ

Ł
 sin 𝜔𝜏−𝜔 cos 𝜔𝜏

(𝜔)2+(
Ɍ

Ł
 )2

]}
0

𝑡

 

Or 

 

𝐿−1[F (q) x G (q) ] = 

 

𝑒−(
Ɍ

Ł
 )𝑡

 {𝑒
Ɍ

Ł
 𝑡 [

Ɍ

Ł
 sin 𝜔𝑡−𝜔 cos 𝜔𝑡

(𝜔)2+(
Ɍ

Ł
 )2

] − [
−𝜔

(𝜔)2+(
Ɍ

Ł
 )2

]} 

Or 

 

𝐿−1[F (q) x G (q) ]  =  

 

{[

Ɍ
Ł

 sin 𝜔𝑡 − 𝜔 cos 𝜔𝑡

(𝜔)2 + (
Ɍ
Ł

 )2
] + [

𝜔

(𝜔)2 + (
Ɍ
Ł

 )2
𝑒−(

Ɍ
Ł

 )𝑡]} 

Or 

𝐿−1[F (q) x G (q) ]  =  

 

{[
Ł 

(𝜔Ł)2+Ɍ2 Ɍsin 𝜔𝑡 − 𝜔Ł cos 𝜔𝑡] + [
𝜔Ł2

(𝜔Ł)2+Ɍ2 𝑒−(
Ɍ

Ł
 )𝑡]}….. (8) 

 

Using equation (8) in equation (6), we get 

 

𝛪(𝑡) =  

V0

Ł
{[

Ł 

(𝜔Ł)2 + Ɍ2
(Ɍsin 𝜔𝑡 − 𝜔Ł cos 𝜔𝑡)]

+ [
𝜔Ł2

(𝜔Ł)2 + Ɍ2
𝑒−(

Ɍ
Ł

 )𝑡]} 

 

Or 

 𝛪(𝑡) =  

{[
V0 

(𝜔Ł)2 + Ɍ2
(Ɍsin 𝜔𝑡 − 𝜔Ł cos 𝜔𝑡)]

+ [
V0𝜔Ł

(𝜔Ł)2 + Ɍ2
𝑒−(

Ɍ
Ł

 )𝑡]} 

 

Or  

𝛪(𝑡) = 

 
V0

√(𝜔Ł)2+Ɍ2
 {[(

Ɍ

√(𝜔Ł)2+Ɍ2
sin 𝜔𝑡 −

𝜔Ł

√(𝜔Ł)2+Ɍ2
cos 𝜔𝑡)] +

[
𝜔Ł

√(𝜔Ł)2+Ɍ2
𝑒−(

Ɍ

Ł
 )𝑡]} …….. (9) 

Let us put 
𝜔Ł

√(𝜔Ł)2+Ɍ2
=  sin ∅  and   

Ɍ

√(𝜔Ł)2+Ɍ2
= cos ∅  such 

that   tan ∅ =  
𝜔Ł

Ɍ
 , then we can rewrite equation (9) as 

𝛪(𝑡) = 
V0

√(𝜔Ł)2+Ɍ2
 {[(cos ∅ sin 𝜔𝑡 − sin ∅ cos 𝜔𝑡)] +

[sin ∅ 𝑒−(
Ɍ

Ł
 )𝑡]} 

Or 

 𝛪(𝑡) = 
V0

√(𝜔Ł)2+Ɍ2
 {sin(𝜔𝑡 − ∅) + sin ∅ 𝑒−(

Ɍ

Ł
 )𝑡} 

…… (10) 

This equation (10) provides an expression for the complete 

response (electric current flowing through a series Ł − Ɍ 

network) a series Ł − Ɍ  network connected to an excitation 

source of sinusoidal potential V= V0 sin 𝜔𝑡. 

 

V. CONCLUSION  

In this paper, an attempt is made to exemplify the convolution 

approach for determining the complete response (electric 

current) of a series Ł-Ɍ network connected to an excitation 

source of sinusoidal potential through the application of the 

convolution method. This approach brings up the convolution 
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approach as a powerful technique for determining the response 

of electronic circuits by solving their governing differential 

equations via the convolution method.   
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