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Abstract: Sparse channels are typically encountered in 

many communication systems like underwater acoustic 

channels, communications in a hilly terrain etc. Conventional 

channel estimation techniques like the Least Squares approach 

and interpolation based methods do not work well in this case, 

because these techniques do not exploit the sparse structure of 

the channel. In this paper, we introduce the subspace based 
methods of Multiple Signal Classification (MUSIC) and 

Estimation of Signal Parameters via Rotational Invariance 

Techniques (ESPRIT) algorithm when the channel is constant 

for a few OFDM frames within the coherence time of the 

channel. We propose a new method for ESPRIT based channel 

estimation as calculation of the ESPRIT MMSE estimator 

proposed in the literature is prohibitively complex and 

involves two matrix inversions per iteration. Simulation 

results show that the proposed ESPRIT estimator slightly 

outperforms the ESPRIT MMSE estimator in terms of bit error 

rate over a wide range of SNR's and that too with a reduced 
computational complexity. Finally the performance of these 

subspace based estimators have been comprehensively 

quantified for many different test cases. 

  Keywords: Sparse channels, Subspace, MSE, BER, 

MUSIC, ESPRIT, MMSE, Cramer-Rao Lower bound. 

I.  INTRODUCTION 
If there is a wireless channel which exhibits a very large 

delay spread with only a few non-zero channel coefficients, 

then such a channel is regarded as a sparse channel. There are 

many communication systems which are regarded as sparse 

for e.g. terrestrial transmission channel of high definition 

television (HDTV) [1], a hilly terrain communication channel 

[2] and underwater acoustic channels [3] to name a few. An 

example of the sparse channel is shown in fig 1. The reason 

why these channels are sparse may be attributed as follows: In 

the underwater acoustic channels, few significant multipaths 
are relatively close to each other and have a delay spread of 

almost the same order as in conventional channels. But there 

may be one signal which is reflected from the sea bed. This 

signal will have a huge delay compared to the other signals, so 

overall delay spread of the system is now very high with the 

inclusion of this far away multipath. Therefore, when the 

receiver samples the received signal at baseband, all the 

channel coefficients after the closely spread significant 

multipaths will be zero, then finally the last coefficient (due to 

reflection from 

 
 
 
 

 
Fig. 1: A sparse channel with 5 non-zero multipaths 

the sea bed) will be non-zero. This will result in a sparse 
channel. If the conventional channel estimation techniques are 

applied for sparse channel estimation, then they do not take 

into account the sparsity of the channel. These techniques treat 

the channel as if it has all non-zero coefficients and will try to 

estimate the channel taps in all the positions. Needless to say, 

the mean squared error and bit error rate performance will be 

highly degraded under such a scheme. Moreover, in a sparse 

channel the multipath delays may not be at the sampling 

instants. Therefore, ordinary channel estimation schemes 

cannot capture this delay and thus channel estimation results 

are more erroneous. 

Sparse signal processing is in practice for quite a long time 
now. It was first reported in the literature for underwater 

acoustic channel measurements [3, 5]. Terrestrial broadcasting 

[1] for high definition (HD) television, communications near a 

hilly terrain [2] are also reported to be sparse. Besides this, 

sparse signal processing are predominant in many fields like 

spectral estimation, analysis of noisy images, coding of speech 

signals etc. A few application areas are listed in [1-5]. 

Subspace methods are markedly different from the 

compressive sensing methods discussed before when it comes 

to sparse channel estimation. If the channel is quasi-static for 

several OFDM frames within the coherence time of the 
channel, then the multipath delays for that many OFDM 

frames are the same and variations of the amplitudes are slow 

as well. Under this imposed constraint, the prevalent DoA 

estimation algorithms can be applied for sparse channel 

estimation as well [6-17]. Two of the most prominent methods 

for subspace based channel estimation are Multiple Signal 

Classification (MUSIC) [6] and Estimation of Signal 

Parameters via Rotational Invariance Techniques (ESPRIT) 

[11] respectively. Multiple Signal Classification or MUSIC 

algorithm [16, 17] was invented by Schmidt [6] in 1979. The 

principle on which MUSIC algorithm operates is the precise 
separation of signal subspace from the noise subspace. This is 
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done after performing an eigen decomposition of channel 

covariance matrix [8] and applying the orthogonality principle 

of signal and noise subspaces [9]. In a typical DoA estimation, 

MUSIC furnishes the information about number of incident 

signals, direction of arrival (DOA) of each signal strengths 

and cross correlation between incident signals and noise 
power. The implementation of the MUSIC algorithm to sparse 

channel estimation is discussed in [9]. The ESPRIT algorithm 

was invented by R. Roy and T. Kailath and initially developed 

for finding oil wells [11]. Ongoing researches have found that 

if the pilot symbols are evenly spaced, then the signal 

subspace remains invariant. Under this condition ESPRIT 

algorithm can be applied for estimating the locations (delays) 

of the taps of the channel impulse response. The 

implementation of the ESPRIT algorithm to sparse channel 

estimation is discussed in [12]. 

II.  SYSTEM MODEL 
A frequency selective and Rayleigh fading sparse channel 

is described by 

 

                                     ℎ(𝜏) =  ∑ 𝑐𝑝 𝛿(𝜏 − 𝜏𝑝)                        (1)

𝛼−1

𝑝=0

 

where α is the number of non-zero channel coefficients 

(typical value is 5), cp's are the non-zero channel coefficients 

and τp's are the respective multipath delays associated with the 

channel coefficients cp's. We make the following assumptions 
here : 

 The channel is assumed to be wide sense 

stationary and it changes after every "D" OFDM 

frames. Here "D" is calculated from the knowledge of 

coherence time of the channel and the useful OFDM 

frame duration. 

 The different multipath gains are statistically 

uncorrelated  

 The average power gain of each path is 

normalized to unity. 

At the receiver side, the nth subcarrier output during the ith 
OFDM frame can be 

             ri[n] = Hi[n].di[n] + wi[n]   n = 0,1,2….(N - 1)          

(2) 

 

Here N is the number of active OFDM subcarriers. 

III.  ALGORITHMIC DESCRIPTION 
1. ESPRIT Algorithm 

A. Determination of channel order 

Minimum Descriptor Length(MDL) criterion is applied 

first to determine the number of non-zero multipaths in the 

channel. The pilot symbol assisted modulation (PSAM) 

technique can be employed to get the least squares (LS) 

estimates of the channel frequency response at the pilot 

subcarriers. Let us denote the set of pilot symbols by p with p 

taking the values 
  p= {0,1, 2,……….(Np-1)}                      (3) 

where Np is the total number of pilots. Therefore at the 

pilot positions we must have 

                                 Hi[𝑚] ≈
𝑟𝑖[𝑚]

𝑑𝑖[𝑚]  
,   𝑚 ∈ p                            

(4) 

Among some of the well-established techniques for 
estimating the number of superimposed sinusoids the foremost 

is based on MDL criterion [18]. Before applying the MDL 

criterion, HLS,i is arranged in the form of a snapshot matrix 

             G(𝑖) =  

[
 
 
 
 
𝐻𝑖,0             𝐻𝑖,1  …… ………  𝐻𝑖,(𝐴𝑠−1)

𝐻𝑖,1             𝐻𝑖,2  ……… … . . . . . 𝐻𝑖,(𝐴𝑠)

……
……

𝐻𝑖,(𝑁𝑝−𝐴𝑠)
   𝐻𝑖,(𝑁𝑝−𝐴𝑠+1)  ….  𝐻𝑖,(𝑁𝑝−1)]

 
 
 
 

        (5) 

Here NP is the total number of pilots and AS is the array 

factor. Typically AS maybe chosen as 1.5 times to 2 times the 

length of the non-zero channel taps. For a 5 non-zero channel 

tap for instance, AS is chosen as 8. Once we have the snapshot 

matrix, we can directly compute the sample autocorrelation 

matrix for the ith frame by applying the forward-backward 
(FB) approach 

 𝑅̂𝑐𝑜𝑟𝑟  (𝑖) =  
1

2𝐴𝑠

 (G(i)G(i)𝐻 + J. G(i). G(i)H̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. J)                   (6) 

where (.)H represents the complex hermitian and (-) 

denotes complex conjugate. J is the exchange matrix which 

has a special structure that 1’s are on its anti-diagonal and 0’s 

elsewhere. To reduce the effect of noise, it is further averaged 
over Q consecutive OFDM frames and a better estimate 

of 𝑅̂𝑐𝑜𝑟𝑟 is thus obtained. 

                                    𝑅̂𝑐𝑜𝑟𝑟 = 
1

𝑄
 ∑ 𝑅̂𝑐𝑜𝑟𝑟 (𝑖)

𝑄−1

𝑖=0

                          (7) 

Q is typically determined from the coherence time of the 

channel and the useful OFDM frame duration. Then we 

perform an SVD on to obtain: 

                                    𝑅̂𝑐𝑜𝑟𝑟 = ∑ 𝜆̂𝑘𝑣𝑘𝑣𝑘
𝐻

𝑁𝑝−𝐴𝑠+1

𝑘=1

                        (8) 

Now the minimum descriptor length criterion can be 

readily applied [58] for the forward backward method by 

MDL(𝜉) =  −𝑄(𝑁𝑝 − 𝐴𝑠 + 1 − 𝜉)

∗ log
∏ 𝜆̂𝑘

𝑁𝑝−𝐴𝑠+1

𝑘=𝜉+1

1 (𝑁𝑝−𝐴𝑠+1−𝜉)⁄

1
𝑁𝑝 − 𝐴𝑠 + 1 − 𝜉 ∑ 𝜆̂𝑘

𝑁𝑝−𝐴𝑠+1

𝑘=𝜉+1

+
1

4
[2(𝑁𝑝 − 𝐴𝑠 + 1) − 𝜉 + 1] log(𝑄)    (9) 

with ζ taking the values 0,1,……(Np-As). When the 

operation have been performed over all such ζ, we can 

estimate the number of paths by 

 𝛼̂ =  argmin
𝜉 ∈ {0,1,…..(𝑁𝑝−𝐴𝑠)}

MDL(𝜉)                                                 (10) 

 

B.  Acquisition of multipath channel delays 

The MMSE estimator of the channel ℎ̂𝑀𝑀𝑆𝐸 is a significant 

improvement from the Least Squares Estimator. Following the 
standard compressive sensing model, we know 

r = (GsW)c + w                                       (11) 
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where r is the received symbol vector after FFT of 

dimension N -1, (GsW) is the maintained dictionary of 

dimension N-Nt, c is the channel impulse response of 

dimension Nt - 1 and w is the additive white gaussian noise 

vector of dimension N -1. Since we have used pilot symbol 

assisted modulation, and have extracted the pilot positions 
only, so the above system model for pilot positions may be 

restated as rp = (GsW)pc + wp where the subscript p denotes 

pilot positions only. We define a vector h as one which 

constitutes of non-zero channel coefficients only with a span 

of  𝛼̂ where 𝛼̂ << Nt. Thus h now is of dimension 𝛼̂*1. Then 

we can define Wp as follows: 

 

W𝑝 =

[
 
 
 
 
 
 exp (−𝑗. 2𝜋.

𝑝(0)

𝑁

𝜏̂0

𝑇𝑠

) … . .   exp (−𝑗. 2𝜋.
𝑝(0)

𝑁

𝜏̂𝛼−1

𝑇𝑠

)  

…… .
…… .
…… . .

exp (−𝑗. 2𝜋.
𝑝(𝑁𝑝 − 1)

𝑁

𝜏̂0

𝑇𝑠

) … exp (−𝑗. 2𝜋.
𝑝(𝑁𝑝 − 1)

𝑁

𝜏̂𝛼−1

𝑇𝑠

)
]
 
 
 
 
 
 

    (12) 

 

Equation 12 can be put as  

                          rp= Wp.h + wp                                           

(13) 

The cross-correlation matrix of h and rp related by above 

equation is given by 

Rh,rp
= 𝐸[h. r𝑝

𝐻] 

 

                                                    =  KhW𝑝
𝐻                                    (14) 

Where Kℎ = 𝑑𝑖𝑎𝑔([𝜎ℎ1   
2 , 𝜎ℎ2   

2 …… . . 𝜎ℎ𝛼   
2  ]𝑇) is the 

covariance matrix of h. We also note that 

 

Rrp,rp
= 𝐸[r𝑝r𝑝

𝐻] 

 

                                                                                                   

= W𝑝KℎW𝑝
𝐻 + 

𝜎2

𝑃
I𝑁𝑝

                               (15) 

 Then the MMSE estimator for ĥ is 

 

 ĥ =  Rh,rp
(Rrp,rp

)
−1

r𝑝  

                                     =  (
𝛽

SNR
Kℎ

−1 + Wp
𝐻Wp)

−1

Wp
𝐻r𝑝   (16) 

 

Where   𝛽 =
𝐸[|𝑑𝑖[𝑛]|2]

𝑃
⁄   is the ratio of average signal 

power to pilot power and 𝑆𝑁𝑅 = 
𝐸[|𝑑𝑖[𝑛]|2]

𝜎2⁄  is the 

average signal-to-noise ratio. 
Hence the MMSE estimator of channel frequency response 

is       Ĥ  =  W𝐻h ̂ 
 

                                     =  W𝐻 (
𝛽

SNR
Kℎ

−1 + Wp
𝐻Wp)

−1

W𝑝
𝐻r𝑝 

(17) 

 

We note that WH is nothing but the N *𝛼̂  discrete Fourier 

transform matrix. 

 

 

     WH =

[
 
 
 
 
 
 exp (−𝑗. 2𝜋.

0

𝑁

𝜏̂0

𝑇𝑠

)  … . .   exp (−𝑗. 2𝜋.
0

𝑁

𝜏̂𝛼−1

𝑇𝑠

)  

… … .

… … .

… … . .

exp (−𝑗. 2𝜋.
𝑁 − 1

𝑁

𝜏̂0

𝑇𝑠

)  …  exp (−𝑗. 2𝜋.
𝑁 − 1

𝑁

𝜏̂𝛼−1

𝑇𝑠

)
]
 
 
 
 
 
 

       (18) 

 

 
2. Proposed ESPRIT algorithm 

A. Acquisition of multipath delays  
The multipath delays are captured in exactly the same way 

as described in the ESPRIT MMSE estimation. These detected 

multipath delays are denoted by 𝜏𝑙  

                                  𝜏𝑙 = {𝜏0, 𝜏1, … . 𝜏(𝑁−1)}                             (19) 

B. Formulation of a reduced Least Squares Problem 

We had maintained the dictionary of vectors (GsW) which 

is given by the equation 

 

     Gs.W =

[
 
 
 
 
 
 exp (−𝑗. 2𝜋.

0

𝑁

𝜏̂0

𝑇𝑠

)  … . .   exp (−𝑗. 2𝜋.
0

𝑁

𝜏̂𝛼−1

𝑇𝑠

)  

… … .

… … .

… … . .

exp (−𝑗. 2𝜋.
𝑁 − 1

𝑁

𝜏̂0

𝑇𝑠

)  …  exp (−𝑗. 2𝜋.
𝑁 − 1

𝑁

𝜏̂𝛼−1

𝑇𝑠

)
]
 
 
 
 
 
 

   (20) 

where Nt is estimated from the maximum possible delay 

spread. The dictionary can be computed offline beforehand 

and prior to channel estimation. Therefore the proposed 

method is more suitable for real-time applications. We choose 

those columns from the dictionary that correspond to the 
multipath delays τl. obtained from the previous step. So, 

(GsW)p,Red at the pilot locations is given by 

(Gs.W)p,Red =

[
 
 
 
 
 
 exp (−𝑗. 2𝜋.

𝑝(0)

𝑁

𝜏̂0

𝑇𝑠
) … ..   exp (−𝑗. 2𝜋.

𝑝(0)

𝑁

𝜏̂𝛼−1

𝑇𝑠
)  

…… .
…… .
… … . .

exp (−𝑗. 2𝜋.
𝑝(𝑁𝑝 − 1)

𝑁

𝜏̂0

𝑇𝑠

) … exp (−𝑗. 2𝜋.
𝑝(𝑁𝑝 − 1)

𝑁

𝜏̂𝛼−1

𝑇𝑠

)
]
 
 
 
 
 
 

(21) 

 

Then we solve a reduced Least Square problem by 

 

               ĥ𝐸𝑆𝑃𝑅𝐼𝑇 = arg min
h

‖rp − (GsW)p,Redh‖
2
            

(22) 

Then the estimated channel coefficients are placed in the 

channel impulse response vector c at the respective locations. 

The frequency response is determined by  
 

                       Ĥ𝐸𝑆𝑃𝑅𝐼𝑇 = ∑ h(p)𝛼̂−1
𝑝=0 (Gs.W)Red(p)             

(23) 
where (GsW)Red(p) is the pth column of the matrix (GsW)Red  

and 𝛼̂ is the estimated number of non-zero multipaths. It is 

evident that the proposed ESPRIT estimator has a reduced 

complexity by a factor of O(n3) than the ESPRIT MMSE 
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estimator proposed in literature. As evident from the 

simulation results below, it slightly outperforms the 

conventional MMSE estimator over a wide range of SNR's. 

3. MUSIC algorithm 

It is claimed in earlier researches [39] that the process of 

channel estimation by using interleaved pilots in a comb 
fashion presents itself as a linear array. Furthur more, if pilot 

positions are hardcoded or fixed, then it defines an invariant 

signal subspace. With this marvelous advantage at hand, we 

are in a position to use the prominent Direction-Of-Arrival 

estimation algorithm (MUSIC algorithm) for our pertinent 

problem of capturing the multipath delays at precise locations 

for channel estimation as well. As was the case in ESPRIT 

algorithm, we insert Np pilot subcarriers uniformly interleaved 

among N data subcarriers in a comb pattern. The detailed 

detection procedure is described is described in [9]. 

IV. SIMULATION RESULTS 
The following parameters have been fixed for simulations 

 
Simulation parameters of 

OFDM 

Values with respective units 

Number of OFDM Subcarriers 1024 

Sampling time period 0.1 µs 

Length of Cyclic Prefix 128 

Modulation Type 4 QAM 

Physical Channel Length 128 

Number of OFDM frames for 

which the channel is constant 

20 

Range of SNR 5 to 25 dB in steps of 4 

PDP of the Channel Uniform 

Table (i) : Input parameters for simulation 

 

 
Fig. 2   Generation of a 4 tap sparse channel 

 

 
Fig. 3: BER vs SNR plot for subspace methods with 4 

multipaths and uniform pdp. 
 

The plots shown above correspond to four different non-

zero multipaths. Since the subspace based algorithms are very 

sensitive to SNR, so at low SNR all of them give a poor 

performance. This is because the computation of 

autocorrelation matrix RHH is far from perfect at low SNR. At 

high SNR's around 20 dB, the ESPRIT algorithms present a 

bit error level of about 10-2. This is because of the precise 

calculation of RHH at high SNR's and subsequent exact capture 

of the multipath delays. It is evident that the proposed 

ESPRIT estimator slightly outperforms the ESPRIT MMSE 

estimator in all SNR range. In addition, the proposed ESPRIT 
estimator has a reduced computational complexity. The 

estimator based on MUSIC algorithm is inferior in bit error 

rate performance to that of both types of ESPRIT algorithm. 

 
Fig. 4:   Generation of a 6 tap sparse channel 
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Fig. 5: BER vs SNR plot for subspace methods with 6 

multipaths and uniform pdp. 

 
As we increase the number of non-zero channel taps, (from 

α = 4 to α = 6 ) then the probability of correct detection of the 

number of farthest multipaths goes on decreasing. The effect 

is most pronounced for the sixth multipath in this case. Once 

there is slight error in detection of multipaths, this reflects 
itself in bit error rate performance, because the wrong columns 

of the dictionary are chosen as the one corresponding to signal 

in case of our proposed ESPRIT and MUSIC algorithm. For 

ESPRIT estimate by MMSE method, the covariance of the 

channel coefficient matrix is in error when the number of 

multipaths increase, and that also results in a degraded bit 

error rate performance. From the above figure, it is evident 

that even with increased non-zero channel order the proposed 

ESPRIT estimator slightly outperforms the ESPRIT MMSE 

estimator. Performance of MUSIC estimator slightly lags that 

of the ESPRIT estimators. 

 
Fig. 6:  Sparse channel with 4 non-zero adjacent multi 

paths. 

 
 
 

 

 
Fig.  7: BER vs SNR plot for subspace methods with 4 

adjacent multipaths 

V. CONCLUSION 
In this paper, we have proved that evaluation of the MMSE 

Estimate by ESPRIT algorithm proposed in literature is 

prohibitively complex and involves 2 matrix inversions of the 

order of α*α in each iteration ( where α is the actual number of 

non-zero multipaths). So the MMSE estimate can pose a 

serious problem of computational complexity if the order of 

non-zero channel coefficients increase. On the other hand, our 

proposed ESPRIT estimator involves only one matrix 

inversion per iteration. Hence this proposed method reduces 
the computational complexity by a factor of O(n3) and 

outperforms the conventional ESPRIT MMSE estimate over a 

wide range of SNR's. Finally, the performances of these 

subspace based estimators (MUSIC and ESPRIT) have been 

comprehensively quantified for many different test cases. The 

performance of the proposed estimator is also presented 

alongside the conventional techniques and demonstrated to be 

superior. 
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