
IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 680 | P a g e

Simulated Circular Indexing Transform (SCIT)

Based Digital Image Watermarking

Gebremichael Girmay1, D.Lalitha Bhaskari2

1, 2Department of Computer Science & Systems Engineering, AUCE(A), Andhra University,

Visakhapatnam, India

1micgirmay@gmail.com
2 lalithabhaskari@yahoo.co.in

Abstract — Data compression is becoming more

essential because the world has entered into the big

IT and IOT technology which resulted in a big data

universe. Information hiding and secured data

communication are also serous issues in this big data

word. Cryptography, Steganography and

Watermarking are exemplary techniques broadly

used to secure and hide information. In this research

paper the focus will be to deal on implementing the

SCIT, to compress digital images. Specifically the

message to embed, as a watermark on a cover data is

compressed lossless and then embedded. Then the

embedded message is extracted and decompressed

which reveal and match exactly to the initial

message. By lossless compressing the secret

message, it is possible to increase the payload

(capacity), fidelity, robustness, and security

requirements of digital watermarking. Issues related

to compression and watermarking are covered in this

work. The SCIT algorithm can be combined with

other data compression methods to optimize the

compression efficiency. The performance of this

proposed algorithm is measured as compared to

other related compression algorithms, and it is found

that in some cases it can perform better than others.

Keywords — Cover, Compression, Info-table, LSB,

Message, Watermarking, Steganography, Transform

I. INTRODUCTION

The issues of security, privacy and data

encryption and data compression have been gained

high attention as the world is becoming more digital

and overwhelmed with big data generation and

transmission on a highly fast communication

network channels. As the data generated is huge in

volume which requires voluminous digital hardware

storage, data compression is used as a first step of

solution to minimize the cost wasted for storage

devices and speed up data processing operations as

well. Several compression and decompression

methods have been developed and implemented with

their best and week features. Lossless compression is

preferred basically for text and other critical media

files such medical images. Lossy compression can

be suitably applied with images and videos among

others.

A number of techniques have been practiced

deeply to deal with digital data security and privacy.

Cryptography, steganography, and watermarking are

a few well known techniques for data security and

information hiding.

As detailed in [1] and other literature texts and

articles, Steganography is the art of writing or

embedding and hiding secret information in a cover

data so that no one apart from the sender and

intended recipient can uncover and utilize that

hidden information. Here the most important thing is

the hidden data not the cover data. Watermarking on

the other hand is an art of embedding or inserting a

sort of message; visibly, semi visibly or invisibly in

a cover data which serves as a logo.

The main task of this research work is to

exclusively addressing on lossless compression

algorithms, by modeling and implementing a new

transform technique similar to MTF method and

then encoding using Huffman coding as a final step.

That is to test the proposed transform method with

images. Here using the proposed compression

technique it is to be applied on watermark image

before embedding it to a cover image.

The outline of this paper is as follows. Section I

contains the introduction part of this paper. The

basic concepts of compression, and algorithms

required for this work are covered in sections II.A to

II.D. A brief review of information hiding focusing

on watermarking is covered in section II.E. Section

III contains methodology within which modeling

and coding is covered. Section IV contains proposed

technique and its implementation. The experimental

result is discussed in section V, and section VI

presents the conclusion and summery of this paper

work.

II. RELATED WORK

The research works done in the

encoding/decoding or compression/decompression

area is wide, and is still continuing in several fields

as the data generated is vastly growing at high rate.

In this chapter some basic theoretical and practical

concepts and approaches of compression, privacy

mailto:micgirmay@gmail.com

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 681 | P a g e

and copyright assurance via watermarking and

related techniques are reviewed.

A. Encoding and Data Compression

The process of data compression deals with

techniques for reducing the storage required for

storing data, or the bandwidth required to transmit it

[2]. That is compression is the process of reducing or

eliminating redundant and/or irrelevant data.

The methods of compression can be lossless or

lossy. Lossless data compression methods can be

classified as Entropy type, Dictionary type, and

other types [3]. Lossy compression is useful when

compressing pictures (e.g., JPEG) or audio files (e.g.,

MP3), where small deviations from the original are

invisible (or inaudible) to the human senses.

Decompression methods are processed in a reverse

fashion of that compression steps and actions.

1) Text Compression: Text compression

should be lossless, i.e., 100% reversible, otherwise

the outcome leads to great loss of information. Most

text compression methods are either statistical or

dictionary based [7], [10]. Statistical method consists

of methods that develop statistical models of the text.

The model can be static or dynamic (adaptive). A

static model uses fixed probabilities, whereas a

dynamic model modifies the probabilities on the fly

while text is being input and compressed. Most

models are based on one of two approaches:

Frequency and Context. In context-based model, the

modeller considers the context of a symbol when

assigning it a probability.

Some context-based text compression methods

perform a transformation on the input data and then

apply a statistical model to assign probabilities to the

transformed symbols.

Run length encoding (RLE) is an example of

transform and/or compression technique that works

well on documents that exhibit to contain repetitive

symbols. Burrows–Wheeler transform (BWT),

move-to-front (MTF), PPM, and Differencing are

some examples of predictive/transform techniques

used to rearrange characters or symbols within a

document after which it is possible to more reduce

the size of the document. Encoding methods such as

Huffman coding, Arithmetic coding, Elias gamma,

Shannon-Fano, Tunstall and other more methods are

those used to encode frequent symbols with fewer

bits.

2) Image Compression: Compression is

applicable for all types of formats of images (binary

images, gray scale images, color images, computer

graphics). In colored images, the number of bits

required to represent a colored pixel is typically

three to four times greater that the number of bits

used to represent of gray scale images. For example

RGB color image is an MxNx3 array of color pixels-

thus the data that are the object of compression are

the components of each color pixel (e.g., the Red,

the Green and the Blue components of the pixels). If

each color in an RGB pixel is represented by 8-bits

then each pixel in RGB image is represented by 24-

bits.

As interestingly explained in [2], image

compression is achieved by the removal of one or

more of three basic redundancies:

 Coding redundancy - some or most of the bits

that represent the code word in images may not

too much important.
 Spatial and Temporal redundancy – there is

inter-pixel redundancy; means information is

unnecessarily replicated in the representations of

the correlated pixels.
 Irrelevant information – which regards with

psycho-visual redundancy; that is images contain

information that is ignored by the human visual

system and/or extraneous to the intended use of

the image.
Some examples of modeling and coding

techniques, used for image compression include,

from lossless, RLE, M-T-F, BWT, Huffman coding,

predictive coding, TIFF, PNG standards; and from

lossy or sub-lossy, JPEG standards (JPEG, JPEG-LS,

JPEG-2000), and many others. Coding techniques

such as Huffman and predictive (mapping) operate

directly on the pixels of an image that is code

redundancy and spatial & temporal redundancy

respectively, and are classified under the spatial

domain methods, while the JPEG (Joint

Photographic Experts Group) compression standard

is working on modifying the transform of an image

and is classified under the transform coding methods

which is based on discrete cosine transform (DCT)

and/or discrete Fourier transform (DFT) image

processing options.

PNG, TIFF, and GIF uses lossless LZW (Lempel–

Ziv–Welch) compression algorithm among other

options such as RLE, and Huffman encodings.

JPEG-2000 uses wavelet –based coding [2].

B. Huffman Coding

Huffman coding is categorized under the entropy

coders. An entropy coder is a method that assigns to

every symbol from the alphabet a code depending on

the probability of symbol occurrence [5]. The

symbols that are more probable to occur get shorter

codes than the less probable ones. Huffman coding

is an optimal coding technique for compression

purpose and serves as the basis for several popular

programs run on various platforms [3]. The Huffman

method is somewhat similar to the Shannon-Fano

method.

Though the size of the code assigned to a symbol

ai basically depends on its probability of occurrences

pi it is also affected by the number of unique

symbols (the size of the alphabet) in the stream or

document. A small alphabet requires just a few

codes, so they can all be short; a large alphabet

requires many codes, so some must be long. Thus

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 682 | P a g e

one critical issue in Huffman coding is that, if those

unique symbols (whether they are few or more) that

constitute a given data file, do appear with equal

probabilities (or frequency of occurrence), it may not

considerably change the size of the document. For

example, if there are n unique symbols and n=2m,

where m is a common code length (e.g. for ASCII

code, m=7, n=128) supported by the system when

generating each alphanumeric characters and

symbols, applying Huffman coding will not affect

the size original of the document. Thus in such

related cases some transform or predictive

techniques are required either to:

 Reduce the number of unique symbols, or

 Vary the frequency of the representative

symbols, or

 Rearrange their position in the document so

that produce a repetitive form.

What it means is, the Huffman method cannot

assign to any symbol a code shorter than one bit, if

some form of predictive transform is not done ahead

to using Huffman coding. Therefore a need comes to

apply a multistep compression process, the last step

being Huffman or other statistical coding methods

such us Arithmetic, Elias, Golomb, and more others.

Huffman coding is useful in digital image and

video compression standards as well. As the

elements in digital image are dots or pixels, applying

Huffman encoding technique on an image assumes

the probability occurrence of the pixel intensities.

Huffman Decoding: During compressing some

basic information must be collected in the form of

Information Table (Info-table). These points (info)

may include: list of the unique symbols and their

probability (or frequency); and if required, their

variable-size codeword, the size of the original and

compressed file. Then the Huffman decoder must

first construct (map) the Huffman tree as was

constructed by the encoder. Only then it can read

and decode the compressed stream.

C. Move-to-Front Transform

Move-to-Front (MTF) is an adaptive scheme and

works on the principle that the appearance of a

symbol or pixels in the input data makes that symbol

more likely to appear in the near future. As detailed

in [7] the basic idea of this method is to maintain the

alphabet A of symbols or pixels as a list where

frequently-occurring symbols are located near the

front. A symbol s is encoded as the number of

symbols that precede it in this list. The move-to-

front method is locally adaptive, since it adapts itself

to the frequencies of symbols in local areas of the

input stream. The main idea is to move to front the

symbols that mostly occur, so those symbols will

have smaller output number or results in to more

repetitiveness and thus will be coded with short

codeword bits. Example, as the input document is

processed, each symbol (or word, when used at

world level) is looked up in the alphabet list and if it

happens to occur as the ith entry, it is coded by the
index number i. Then the symbol is moved to the

front of the list so that if it occurs soon afterwards, it

will be coded by a number smaller than i.

After a stream is transformed using MTF, then

follows encoding it using either of the variable

length entropy encoders such as Golomb, Huffman,

arithmetic, etc.

There are several possible variants to this

method:-

 Move-ahead-k -The element of A matched by

the current symbol is moved ahead k positions

instead of all the way to the front of A.

 Wait-c-and-move - An element of A is moved to

the front only after it has been matched c times to

symbols from the input stream (not necessarily c

consecutive times).

A critical issue in using MTF is - it gives poor

performance if request sequence is in reverse order

of the alphabet list [8], [14]. That is if the

distribution of the symbols in the stream appears in

reverse order at seemingly equal interval, then using

MTF will not achieve good compression

performance.

D. Entropy

In information theory an entropy encoding is

a lossless data compression scheme that is

independent of the specific characteristics of the

medium. One of the main types of entropy coding

creates and assigns a unique prefix-free code to each

unique symbol that occurs in the input. Thus

Entropy is a theoretical measure of quantity of

information [5]–[7], [9]. Theoretically, as

demonstrated by Shannon, for a set of possible

events with known probabilities, p1, p2, p3, …, pn,

that sum to 1, the Entropy of these events is given as

From this it is clear that more likely symbols or

messages having greater probabilities contain less

information.

E. Information Hiding and Data Security

In this big data word the information generated

using IT and smart devices is huge and structured or

unstructured data, which is actively transmitted to or

shared among millions of users using internet

network or disk devices. Outlaw data beneficiaries,

i.e., unauthorized data copiers, and hackers are the

obvious threats for privacy of legal user’s data and

information. Thus, security and privacy of

potentially sensitive data, information and IT

infrastructure as a whole is always a challenging

concern in all level and type of IT and related

enterprise systems. Privacy is considered a purely

legal issue. Security is the process of actions to make

practical the privacy laws and legislations planned to

protect user’s data and information.

https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Prefix-free_code
https://en.wikipedia.org/wiki/Symbol_(data)

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 683 | P a g e

Some of the basic elements of security are

availability, utility, integrity, authenticity, and

confidentiality. Information or data hiding deals

embedding some sort of message or code which

protects data from illegally direct use or

modification by other parts.

In image processing, as researched and reviewed

in [11] and many other articles, the techniques used

for hiding information are mainly based on

steganography, Cryptography and watermarking.

The core issues considered while hiding

information are:

 Robustness: - The level of immunity against all

forms of manipulation, obstruction and hackings or

attacks.
 Fidelity: The degree of perceptual degradation due

to embedding operation.
 Payload: The amount of message signal that can

be reliably embedded to a given host signal and then

extracted from (subject to perceptual constraints at

the designated level of robustness).
 Security: how securely is communicated, which

takes into consideration the issues of

cryptographically encryption, authentication and

authorization rules and techniques.

1) Steganography and Digital Watermarking:

a) Steganography: As detailed in [1] an

important sub-discipline of information hiding is

steganography usually interpreted to mean hiding

information in other information. The word

steganography is of Greek origin and means

"covered writing" or "concealed writing".

Steganography masks the sensitive data in any cover

media (host signal) like images, audio, video, text,

over the communicating channels, example internet

websites.

b) Digital Watermarking: Watermarks are

usually used to verify and protect or preserve the

copyrights [12], [13] from unauthorized copying and

distribution of digital content. That is the host data

are protected by inserting an additional, usually,

small data, namely, ‘watermark’ into the original

data. This watermark identifies the host data and

makes it unique.

Digital watermarking is classified based on

several concerns: example, it is classified as, Visible

or Invisible based on perceptivity; Transform

domain or Spatial domain based on domain insertion;

Robust or Fragile based on type; public or private

considering method of detection; blind [15] or in-

blind based on target recovery.

Blind watermark recovery needs the original

cover media for detection. Semi-blind need some

information from the insertion, but not the whole

cover media. If the watermark is private then needs

the original cover data later for the purpose of

extraction and detection. Otherwise if the watermark

is public the original document it is not required for

the aim of detection.

Digital watermarking is broadly applied to digital

images. The requirement of digital image

watermarking concerns with variety of applications

which includes copyright protection, tamper

detection, distribution control, authentication,

ownership assertion, privacy annotation, forensics,

fingerprinting, web content filtering. Medical field

and internet crimes can also benefit from digital

image watermarking.

Researches done on digital image watermarking

have shown many proposed techniques in the spatial

domain or transform domain. With respect to the

spatial or pixel domain watermarking, among the

broadly used methods are modification of Least

Significant bits (LSB), and spread spectrum

modulation (SSM) [1].

In this paper it is focused on images as cover

media. Fig.1 and 2, shows the generalized structure

and steps activated in watermark embedding and

watermark extracting operations, respectively. The

security key can be generated using any appropriate

encryption methods when required. The output of

the Embedder and Extractor in watermarking

process can be formulated as shown on the figures,

respectively as:

Embedder: d = EK(d, m)

Extractor: R = DK(d), and DK (d, d, m) = {0, 1}

Fig.1. A generalized simple watermarking model

Fig. 2. Generalized simple watermark extractor model

F. Data Embedding Using LSB Method

 The spatial domain based digital watermarking

method enables simple form of data embedding by

directly manipulating the LSBs of the cover-image,

EK (d, m) = d

Cover Data

Watermarked

Cover Data

Embedder

 E

Secret Key K

Watermark

m

d

d

DK (d, d, m) = {0, 1}

DK (d) = R

Cover Data, d

Watermarked

Cover Data d

Extractor

 D

Secret Key K

 Yes

 No

Watermark, m

Match
 ?

Watermark, R

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 684 | P a g e

though due to the possible attacks LSB embedding is

relatively insecure, at least in its primitive form [1],

[16].

A LSB refers to the last or the right-most bit in a

binary number. The noise error sensed due to

distortion of this single LSB is the minimal error that

can be recorded and which may not serous with

regard to the selected application. The advantageous

of using LSB technique for data hiding is, it achieves

invisibility and thus the perceivability of the cover

image is preserved as if it is original, because a bit or

few bits those having low weight of pixel intensity

are replaced.

LSB implies embedding a message signal into the

list significant bit(s) of the cover media (image,

video, etc.). Logical or arithmetic operations can be

used, or simply replace that bit and then extracting it

later.

In this paper, LSB based watermark embedding is

implemented in a sequential approach.

III. METHODOLOGY

A. Modeling and Coding

The task of finding a suitable model for text and

image compression is an extremely important

problem. As shown in Fig.3, some basic steps are

conducted to reach the final compression step. The

input message can be transformed first ahead to

applying prediction. The separation into modeller

and encoder is valuable because modeling and

coding are very different sorts of activity [4]. The

modeller determines the probability of the unique

symbols in the case of text compression and supplies

to the encoder. Once prediction is applied, the

encoder receives the predicted probability or

frequency of occurrences together with the actual

input stream and turns them into sequence of bits

(binary digits) to be transmitted or saved.

There are three ways that the encoder and the

decoder can maintain the same model: static, semi-

adaptive, adaptive modeling. In general in statistical

compression process the stream can be first

transformed so by doing that the size of the stream

and/or the number of unique symbols can be

minimized or their frequency can be more skewed as

is observed in RLE, BWT, MTF, etc.

This paper work is also focusing on the

transforming (reshuffling) part of the statistical

encoding of digital image. Here the digital water

mark is specifically to be compressed before

embedding it to the cover digital image. For this to

happen, first we have to convert the watermark

image (colored or gray scale) into binary form of

document. Then the digital (bytes) textual document

obtained from the message digital image is to be

rearranged (transformed) using the proposed SCIT

technique, and then it is to be encoded (compressed)

using Huffman coding method.

Fig.3. Outline of Basic Steps in Lossless Compression

The reason why is required to apply compression

to the watermark is to increase the requirement of

payload or capacity in digital image watermarking.

Usually the message to be embedded should be

smaller than the cover image, especially in visible

watermarking, in order to avoid distortion of the

main image. The watermarking and extraction

processes are diagrammatically shown in Fig.4 and 5

respectively.

Fig. 4. A proposed watermarking model

Steps: Watermark Embedding using LSB

1. Choose the intended cover image and

watermark of m-D array size.

2. Convert the watermark image into binary

digits form of document.

3. Transform and compress the binary

document form of the message (watermark)

image.

4. Organize the compressed version of the

watermark in n-D array and format it as that

of the cover image

5. Embed the outcome of step 4 into the

intended cover image using LSB method.

6. Save or communicate the watermarked

image.

Output

Stream(S’)

Prediction

modeler

Input

stream(S)

Encoder

Transform:

BWT, MTF,
SCIT,

EK (d, m) = d

m =T(M)

Compress

M

Message
Text or image

 SCIT

 T

W
aterm

ark

Watermarked

Cover Image, d

d

Cover Image
Embedder

 E

Secret Key K

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 685 | P a g e

Fig. 5. A proposed watermark extractor model

Steps: Watermark Extraction

1. Get some information if required (e.g., blind

watermark) from cover image or watermark.

2. Extract the watermark from the watermarked

image.

3. Convert it to binary digits form of document

and decompress it.

4. Organize it in m-D array of pixel intensity

and convert it to similar image format of the

initial watermark.

5. Compare for their exactness or similarity; the

recovered watermark with the initial

watermark before compressing and

embedding.

IV. PROPOSED METHOD

If the probabilities of the symbols or pixel

intensities in a document are more skewed, then

applying statistical coding methods directly can

achieve good results.

The proposed method, Simulated Circular

Indexing Transform (SCIT) [14], aims at filling

some specific gab observed in the compression or

data transforming techniques reviewed above (RLE,

MTF, and Huffman) and others, for example BWT.

The approach is similar to the Move-to-Front

transforming techniques. But instead of moving the

symbol to any location in the list of alphabets, is just

to play with index , moving or stepping next or back

circularly if a different symbol is coming otherwise

don’t move if the current symbol happens to occur

repetitively. Conceptually all the moves (next/back

or up/down) are mapped or simulated circularly to

the position index value of the symbols in the

alphabet, except that don’t move or ‘stay there’ case

is given a 0 index value for a repetitive symbol.

In move-to-front and some other transforming

methods, the transformed data is represented by the

indexes (numerical values). In the proposed SCIT

method, the index is translated to the symbol or pixel

currently indexed, thus the transformed data is

represented by the digit or pixel value themselves

though it can also be represented by the

corresponding indexes as it is usually done. As this

translated (virtual) indexing works right, for

comparison and compatibility purpose, the MTF is

also implemented using this concept in this paper.

For example take a row scan line of an input image

with pixel intensity value of 8-bits:

I: 12 33 45 24 56 56 75 99 85 85 45 24 33 56
Here, I=14 pixels and the unique pixel elements are

n=8 which to be listed and saved in the info-table for

later use in the reconstructing and decompression

operation:

Info-table basically contains unique symbols or

pixels in I, and may include their codeword and

some additional information, such as frequencies of

each unique symbol.

Let us use these variables: n, Ia, Pv, P0. Where,

 n - total number of unique pixels in I.

 Ia - holds the index value of a next symbol/pixel

to be accessed, in the info-table.

 Pv - virtual(simulated) index, in terms of numeric or the

 pixel intensity themselves

 P0 -actual index value of immediate previously accessed

symbol/pixel.

Now, let’s formulate the proposed method as follows.

Initially Ia, Pv, and P0 are assigned to a specific

value, example 0 index values.

Steps: During encoding: For each byte or pixel in

the image find corresponding Pv as follows. Let,

initially, P0=Ia=0.

1. Scan the next pixel ‘p’ from the image, I.

2. Ia index of ‘P’ as is in the Info-Table,

 if Ia ≥ P0, then Pv = Ia – P0,

 else, Pv = (n + Ia) - P0
 P0 = (Pv + P0)mod(n)

3. Save the value Pv in sequence as a transformed

list of pixels, I’, and repeat from step (1) until

the intended pixels are finished.

4. Compress I’ using Huffman or other encoding

methods.

5. Embed as a watermarking into a proposed cover

image.

Example,
 I : 12 33 45 24 56 56 75 99 85 85 45 24 33 56 = 14(8)

Ia → 0 1 2 3 4 4 5 6 7 7 2 3 1 4

Pv: 0 1 1 1 1 0 1 1 1 0 3 1 6 3 = 14(4)

P0: 0 1 2 3 4 4 5 6 7 7 2 3 1 4

DK (d, d , m) = {0, 1}

DK (d) = r

Cover Image d

Watermarked

 Image d

Extractor

 D

Secret Key K

 R =T’(r)

Decompress, r

SCIT decoded

message

Watermark

T’

Message

Yes

 R
eject

Match

 R=M ?

M

No
 Accept

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 686 | P a g e

Or, Pv is represented by the name of the pixel value

themselves instead of using the index values.

Pv: 12 33 33 33 33 12 33 33 33 12 24 33 99 24 = 14(4)

The successive list of Pv gives the transformed

variant of that I. The value 0 in the Pv list is to mean

don’t move, that means take the current pixel, rather.

Since, a pointer at starting time, in most cases, points

to the first byte/word in an input stream or document,

the first 0 in Pv tells to consider the first pixel

intensity in I which in this illustration is, pixel value

12.

Now, as a last step is to, code Pv list (transformed

image, I’) using either Huffman or other statistical

coding techniques.

Note that the number inside the parenthesis, e.g.,

8 in 14(8), and 4 in 14(4) represent the number of

unique symbols/pixels in the original and

transformed images respectively.

Steps: During decoding: Huffman or other coded

image is decoded or decompressed to obtain I’ back.

Then retransform Pv list from I’, to get back I, as

follows.

1. Scan the next pv value from I’; and translate

to corresponding numeric (index) value in the

Info-Table.

2. Determine the corresponding actual index,

 P0 = (Pv + P0)mod(n), IaP0

3. Copy the pixel/symbol at location P0 or Ia in

the info-table, I Info-Table[Ia].

Example: (if the second optional list of Pv is taken),
Pv: 12 33 33 33 33 12 33 33 33 12 24 33 99 24 = 14(4)

Pv: 0 1 1 …

P0: 0 1 2 …

Ia→

I: 12 33 45 24 56 56 75 99 85 85 45 24 33 56 = 14(8)

For the above transforming and retransforming example,

Move-to-Front, will do as follows.

Ia →

I : 12 33 45 24 56 56 75 99 85 85 45 24 33 56 = 14(8)

Pv: 0 1 2 3 4 0 5 6 7 0 5 5 6 6 = 14(8)

i.e., using the symbols or pixels instead,

Pv: 12 33 45 24 56 12 75 99 85 12 75 75 99 99 = 14(8)

It is clear that the number of unique

symbols/pixels after transforming using the SCIT

method is 4 while after using MTF is 8, same as in

the original document (image) for this arbitrary

example.

As is observed in the info-table, Table 1, the

transformed string may have less number of unique

symbols (Pxl.) as compared to the original string.

This phenomenon holds true also for MTF in other

examples. That is some of the symbols will gain

highest frequency (Freq.) though in some cases, the

SCIT technique propagates and equalizes the

frequency for many pixels in which case the

performance will decrease.
Now, if a statistical encoding technique, Huffman

coding, for example, is applied further, then,

 I → 41 bits ≈ 6 bytes/14 ; if Huffman is solely used.

MTF: I’→ 40 bits = 5 bytes/14 ; if MTF→Huffman

multistep is used.

SCIT: I’→ 23 bits ≈ 3 bytes/14 ; if SCIT→Huffman

multistep is used.

TABLE 1. COMBINED INFO-TABLE OF HM, MTF AND SCIT

P0 Input MTF SCIT

Ia Pxl. Freq. Pxl. Freq. Pxl. Freq.

0 12 1 12 3 12 3

1 33 2 33 1 33 8

2 45 2 45 1

3 24 2 24 1 24 2

4 56 3 56 1

5 75 1 75 3

6 99 1 99 3 99 1

7 85 2 85 1

 n=8, I =14 n=8, I’ =14 n=4, I’ =14

V. EXPERIMENTAL RESULTS AND DISCUSSION

Table 2, summarizes the compression

performance of the SCIT technique, comparing with

respect to Huffman alone, and with MTF; that means,

Huffman; MTF then Huffman; and SCIT then

Huffman.

Commonly used benchmark test image files can

be found from the net to evaluate lossless

compression methods. Thus using some of this files

and additional files, more than 60 images have been

tested, out of which very few indicated that using

either of MTF or SCIT is not effective. The rest

showed improved compression result if either MTF

or SCIT transforms and then Huffman coding is

performed.

It is demonstrated that the SCIT techniques work

better for some special arrangement or distribution

of symbols or pixel intensities in particular files.

For this multistep compression process, C

program has been implemented for the compression

task and MATLAB for the watermarking purpose.

Table 3 shows compression ratio (CR) and

compression factor (CF) for each the three

techniques.

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 687 | P a g e

TABLE 2. IMAGE COMPRESSION RESULTS AND COMPARISON

Color

Image
Size, Bytes

After compression, in Bytes

Huffman MTF SCIT

Lena 786,432 764,865 675,355 671,081

Pepers 547,344 509,841 390,483 385,402

Img49 1,125,000 1,113,759 999,352 874,907

Img60 1,125,000 1,054,180 960,315 939,179

Img26 1,125,000 1,103,558 882,214 901,763

Img65 1,000,500 930,167 781,285 808,629

Img25 1,000,500 835,268 883,791 947,431

Img56 421,500 398,621 403,343 417,634

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

HM

MTF

SCIT

Pixels

Fig. 6. Comparing Compression results graphically

TABLE 3. COMPRESSION PERFORMANCE MEASURING METRICS

CR CF

HM MTF SCIT HM MTF SCIT

0.97 0.86 0.85 1.03 1.16 1.17

0.93 0.71 0.70 1.07 1.40 1.42

0.99 0.89 0.78 1.01 1.13 1.29

0.94 0.85 0.83 1.07 1.17 1.20

0.98 0.78 0.80 1.02 1.28 1.25

0.93 0.78 0.81 1.08 1.28l 1.24

0.83 0.88 0.95 1.20 1.13 1.07

0.95 0.97 0.99 1.06 1.05 1.01

0

0.2

0.4

0.6

0.8

1

1.2

HM

MTF

SCIT

CR

File

Fig.7. Performance Comparisons based on Compression Ratio

(CR).

From Table 2 and 3, it is clear that the highlighted

results of compression and the performance for the

addressed methods, suggest that all or most

compression algorithms have their own positive and

weak sides although there are superior techniques, of

course.

Fig. 6 and 7 shows charts that demonstrate

graphically the compression performance of the

Huffman (HM), MTF, and SCIT methods.

TABLE 4. INPUT MESSAGE AND COVER DATA DETAILS

Images Size, bytes

SCITHuffman

encoding

W.mark

170x154x3

= 78,540

70,722

153x155x3=71,145

Cover

512x512x3

= 786,432

Figure 8. Screenshot of watermarking process

Fig. 9. Screenshot of Watermark Extraction Process

SCIT is preferable for streams that repeat

periodically or sub-periodically in a reverse fashion.

That is, the SCIT method performs best for media

Compress

Embed using LSB

W
aterm

ark
ed

 Im
g

.

C
o

m
p

ressed

W
aterm

ark

Decompress

W
aterm

ark
ed

 Im
g

.

Extract watermark

Does it

match with

original?

 ?

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 688 | P a g e

files that are composed in reversed and equally well

distributed manner at several intervals.

Table 4, contains information regarding digital

watermarking. As stated above, the message is first

transformed using SCIT and then encoded using

Huffman code. By doing so, it is observed that high

payload and embedding capacity are achieved. Here

only the message to be embedded is compressed. If

only least single bit (LSB) is to be used, then a total

of 170x154x3=78,540 pixels cannot fully inserted

into a cover data whose size is less than or equal to

this value or otherwise it has to be compressed prior

to embedding it. So, in this example, it is safe to

embed the compressed version of the message i.e.,

71,145 pixels into 512x512x3=786,432 pixels cover

data. The outcomes for watermark embedding and

extraction processes are shown in Fig.8 and 9. In this

work, the main concentration is on data compression

rather than security aspects. Visually there is no

difference between the original message and the

extracted one as observed from the experimental

values which is given in the figures showed. The

same is quantitatively depicted in Table 4, after

extracting the watermark.

VI. CONCLUSION

As data is generated at large volume and data

transfer rate is becoming essential in this digital and

IOT world, some means of mechanism is required to

solve the storage, latency, speed, bandwidth, security

and energy problems. Data compression is becoming

an integral part of the modern

information storage and retrieval systems and

researches on data compression methods are still

continuing as there are gaps to be covered. The need

for data hiding is even more essential than

compression. Watermarking is one example of data

hiding mechanism which mainly useful to protect

data from illegal use. In this paper, using the

proposed SCIT technique, it has been tried to fill

some gaps identified in data compression

transforming techniques for some special cases at

byte/character/pixel level and implemented in image

watermarking as well. As a conclusion, future works

can be carried on an efficient and optimal coding

technique (though difficult to avoid the multistep

coding techniques approach) for all file types

(structured, unstructured) so that it can solve one or

all of the Big Data issues (speed, volume, variety

and security).

REFERENCES

[1] Stefan Katzenbeisser, Fabien A.P. Petitcolas,

“Information Hiding Techniques for Steganography

and Digital Watermarking”, Artech House publishers,

Boston.London, pp. 1-149, 2000.

[2] Rafael C.Gonzalez, Rechard E. Woods,”Digital

Image processing, 3rd Edition”, Pearson Prentice

Hall, USA, pp.548-563, 2008.

[3] David Salmon, “Data compression, The Complete

Reference, 4th Edition”, Springer, Verlag London

Limited, pp.74-89, 2007.

[4] Timothy C. Bell, John G. Cleary, Ian H. Witten,

“Text Compression”, Prentice Hall, Englewood cliffs

new jersey, pp.12-22, 1990.

[5] Sebastian Deorowicz, “Universal lossless data

compression algorithms”, Doctor of Philosophy

Dissertation, pp.12-15, 2003.

[6] Colton McAnlis, Aleks Haecky, “Understanding

Compression, Data Compression for Modern

Developers”, O’Reilly Media, USA, pp.19-21, 2016.

[7] David Salomon, Giovanni Motta, “Handbook of Data

Compression, 5th Edition”, Springer, Verlag London

Limited, pp.45-48, 2010.

[8] Rakesh Mohanty, Sasmita Tripathy, “An Improved

Move-To-Front (IMTF) Off-line Algorithm for the

List Accessing Problem”, RsearchGate ,2011.

[9] Khalid Sayood, “Introduction to Data Compression,

3rd Edition”, Elsevier, USA, pp.16-17, 2006.

[10] Arup Kumar Bhattacharjee, Tanumon Bej, Saheb

Agarwal, “Comparison Study of Lossless Data

Compression Algorithms for Text Data”, IOSR

Journal of Computer Engineering (IOSR-JCE),

Vol.11, Issue 6, pp.16-19, 2013.

[11] Aditi Kurapa, Mahendra Sahare, Umesh Lilhore, “A

Robust Fractal Code and LSB based Image

Watermarking”, International Journal of Computer

Applications (IJCA), vol.160, No.9, 2017.

[12] Kapil Kumar Kaswan, Dr. Roshan Lal, “Data

Protection Using Digital Watermarking”,

International Journal Of Engineering And Computer

Science(ijecs), vol.2, Issue 12, pp.3405-3410, 2013.

[13] Mehmet Utku Celik, Gaurav Sharma, A. Murat Tekalp,
“Lossless Watermarking for Image Authentication: A New

Framework and an Implementation”, IEEE

TRANSACTIONS ON IMAGE PROCESSING, vol.15,
no.4,pp.1042-1049, 2006

[14] G. Gebremichael Girmay, D. Lalitha Bhaskari, “Data

Compression Using Simulated Circular Indexing

Transform(SCIT)”, International Journal of Computer

Application(IJCA), vol.179, no.43, pp.1-9, 2018.

[15] Stefanos Zafeiriou, Anastasios Tefas, Ioannis Pitas, “Blind

robust watermarking schemes for copyright protection of 3D
mesh objects”, IEEE TRANSACTIONS ON

VISUALIZATION AND COMPUTER GRAPHICS, VOL.

11, NO. 5, pp.596-607, 2005.

[16] Sherin Sugathan, “An improved LSB embedding

technique for image steganography”, 2nd

International Conference, IEEE 2016.

