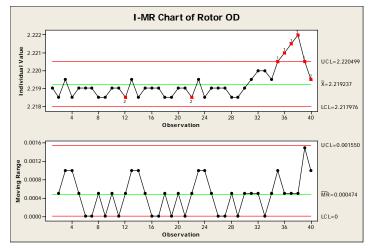
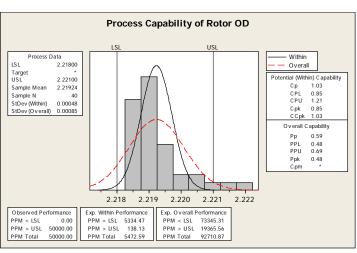
## **Pre/Post Assessment Response Sheet**

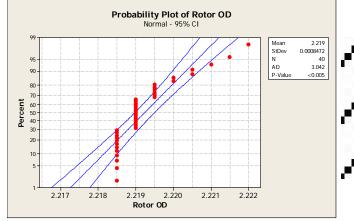

Name \_\_\_\_\_ Date \_\_\_\_


Directions: Circle the letter below that best completes each of the statements on the following pages. Record all responses on this sheet; do not write on the following pages.

|     |   | Pre |   |   |     |   | Post |   |   |
|-----|---|-----|---|---|-----|---|------|---|---|
| 1.  | a | b   | c | d | 1.  | a | b    | c | d |
| 2.  | a | b   | c | d | 2.  | a | b    | c | d |
| 3.  | a | b   | c | d | 3.  | a | b    | c | d |
| 4.  | a | b   | c | d | 4.  | a | b    | c | d |
| 5.  | a | b   | c | d | 5.  | a | b    | c | d |
| 6.  | a | b   | c | d | 6.  | a | b    | c | d |
| 7.  | a | b   | c | d | 7.  | a | b    | c | d |
| 8.  | a | b   | c | d | 8.  | a | b    | c | d |
| 9.  | a | b   | c | d | 9.  | a | b    | c | d |
| 10. | a | b   | c | d | 10. | a | b    | c | d |
| 11. | a | b   | c | d | 11. | a | b    | c | d |
| 12. | a | b   | c | d | 12. | a | b    | c | d |
| 13. | a | b   | c | d | 13. | a | b    | c | d |
| 14. | a | b   | c | d | 14. | a | b    | c | d |
| 15. | a | b   | c | d | 15. | a | b    | c | d |
| 16. | a | b   | c | d | 16. | a | b    | c | d |
| 17. | a | b   | c | d | 17. | a | b    | c | d |
| 18. | a | b   | c | d | 18. | a | b    | c | d |
| 19. | a | b   | c | d | 19. | a | b    | c | d |
| 20. | a | b   | c | d | 20. | a | b    | c | d |
| 21. | a | b   | c | d | 21. | a | b    | c | d |
| 22. | a | b   | c | d | 22. | a | b    | c | d |
| 23. | a | b   | c | d | 23. | a | b    | c | d |
| 24. | a | b   | c | d | 24. | a | b    | c | d |
| 25. | a | b   | c | d | 25. | a | b    | c | d |
| 26. | a | b   | c | d | 26. | a | b    | c | d |
| 27. | a | b   | c | d | 27. | a | b    | c | d |
| 28. | a | b   | c | d | 28. | a | b    | c | d |
| 29. | a | b   | c | d | 29. | a | b    | c | d |
| 30. | a | b   | c | d | 30. | a | b    | c | d |

| 1.         | The n    | najor difference between a run chart and a control chart is that a run chart does not have                         |  |  |  |  |  |  |  |
|------------|----------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1.         | a.       | spec limits                                                                                                        |  |  |  |  |  |  |  |
|            | b.       | sigma limits                                                                                                       |  |  |  |  |  |  |  |
|            | c.       | defect limits                                                                                                      |  |  |  |  |  |  |  |
|            | d.       | control limits                                                                                                     |  |  |  |  |  |  |  |
|            | u.       | Control mints                                                                                                      |  |  |  |  |  |  |  |
| 2.         | Of the   | e two types of data that can be collected is more valuable than                                                    |  |  |  |  |  |  |  |
|            | a.       | common; special                                                                                                    |  |  |  |  |  |  |  |
|            | b.       | tensile; torsion                                                                                                   |  |  |  |  |  |  |  |
|            | c.       | defects; defectives                                                                                                |  |  |  |  |  |  |  |
|            | d.       | variable; attribute                                                                                                |  |  |  |  |  |  |  |
| 3.         | A cor    | atrol chart will demonstrate statistical                                                                           |  |  |  |  |  |  |  |
|            | a.       | capability                                                                                                         |  |  |  |  |  |  |  |
|            | b.       | kurtosis                                                                                                           |  |  |  |  |  |  |  |
|            | c.       | significance                                                                                                       |  |  |  |  |  |  |  |
|            | d.       | stability                                                                                                          |  |  |  |  |  |  |  |
| 4.         | Ifan     | rocess has a standard deviation of 0.01, a mean of 86.06, and a specification of 86.0+/-0.1, the Cpk is            |  |  |  |  |  |  |  |
| т.         | a.       | 1.00                                                                                                               |  |  |  |  |  |  |  |
|            | b.       | 1.33                                                                                                               |  |  |  |  |  |  |  |
|            | c.       | 1.67                                                                                                               |  |  |  |  |  |  |  |
|            | d.       | 1.84                                                                                                               |  |  |  |  |  |  |  |
|            | u.       | 1.04                                                                                                               |  |  |  |  |  |  |  |
| 5.         | If the   | If the process in question 4 requires a Cpk of 2.0, by how much must the process mean be shifted toward the target |  |  |  |  |  |  |  |
|            |          |                                                                                                                    |  |  |  |  |  |  |  |
|            | a.       | 0.007                                                                                                              |  |  |  |  |  |  |  |
|            | b.       | 0.013                                                                                                              |  |  |  |  |  |  |  |
|            | c.       | 0.015                                                                                                              |  |  |  |  |  |  |  |
|            | d.       | 0.020                                                                                                              |  |  |  |  |  |  |  |
| 6.         | What     | What is referred to as "six sigma" quality is equivalent to a Cp of and a Cpk of                                   |  |  |  |  |  |  |  |
|            | a.       | 2; 1.5                                                                                                             |  |  |  |  |  |  |  |
|            | b.       | 6; 5                                                                                                               |  |  |  |  |  |  |  |
|            | c.       | 5.15; 4                                                                                                            |  |  |  |  |  |  |  |
|            | d.       | 6; 5.15                                                                                                            |  |  |  |  |  |  |  |
|            |          |                                                                                                                    |  |  |  |  |  |  |  |
| 7.         | In the   | series of data (6, 4, 5, 5, 7, 9), is the range and is the mean.                                                   |  |  |  |  |  |  |  |
|            | a.       | 5; 6                                                                                                               |  |  |  |  |  |  |  |
|            | b.       | 5.5; 6                                                                                                             |  |  |  |  |  |  |  |
|            | c.       | 6; 5                                                                                                               |  |  |  |  |  |  |  |
|            | d.       | 6.5; 6                                                                                                             |  |  |  |  |  |  |  |
| 8.         | In the   | series of data $(6, 4, 5, 5, 7, 9)$ , is the sample standard deviation.                                            |  |  |  |  |  |  |  |
|            | a.       | 1.63                                                                                                               |  |  |  |  |  |  |  |
|            | b.       | 1.71                                                                                                               |  |  |  |  |  |  |  |
|            | c.       | 1.79                                                                                                               |  |  |  |  |  |  |  |
|            | d.       | 1.80                                                                                                               |  |  |  |  |  |  |  |
| 9.         |          | distributions are typically bell shaped and symmetric around the mean.                                             |  |  |  |  |  |  |  |
| <i>)</i> . | <u> </u> | Loss function                                                                                                      |  |  |  |  |  |  |  |
|            | a.<br>b. | Lognormal                                                                                                          |  |  |  |  |  |  |  |
|            | c.       | Normal                                                                                                             |  |  |  |  |  |  |  |
|            | d.       | Truncated                                                                                                          |  |  |  |  |  |  |  |

- 10. Mean, median, and mode are measures of \_\_\_\_\_\_
  - a. dispersion deviation
  - b. standard deviation
  - c. central tendency
  - d. arithmetic average
- 11. Range and standard deviation are measures of \_\_\_\_\_.
  - a. variety
  - b. frequency
  - c. estimation
  - d. dispersion
- 12. Before a Gage R&R study is performed it is assumed that the gage has acceptable and .
  - a. repeatability; reproducibility
  - b. bias; stability
  - c. linearity; popularity
  - d. discrimination; predictability
- 13. The one tail z value (or sigma) for a process with a Cpk of 1 is \_\_\_\_\_.
  - a. 2.8
  - b. 3.0
  - c. 4.5
  - d. 6.0






- 14. The control chart above show symptoms of \_\_\_\_\_\_ but the histogram is \_\_\_\_\_\_.
  - a. special cause variation; normal
  - b. inadequate discrimination; skewed
  - c. an out-of-control process; bell-shaped
  - d. variable data; in spec
- 15. The Ppk value in the graphic above is less than the Cpk value because it is based on \_\_\_\_\_\_.
  - a. a smaller standard deviation
  - b. a larger standard deviation
  - c. an incorrectly calculated standard deviation
  - d. an equal bilateral tolerance

| 16. | The c                                                                             | ontrol limits in the upper graphic of the control chart represent                                                     |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|     | a.                                                                                | +/- 3 sigma                                                                                                           |  |  |  |  |  |  |  |
|     | b.                                                                                | +/- tolerance limits                                                                                                  |  |  |  |  |  |  |  |
|     | c.                                                                                | +/- 3 standard deviations                                                                                             |  |  |  |  |  |  |  |
|     | d.                                                                                | both a. and c.                                                                                                        |  |  |  |  |  |  |  |
| 17. | The control chart above shows that the process does not have adequate statistical |                                                                                                                       |  |  |  |  |  |  |  |
|     | a.                                                                                | capability                                                                                                            |  |  |  |  |  |  |  |
|     | b.                                                                                | kurtosis                                                                                                              |  |  |  |  |  |  |  |
|     | c.                                                                                | proximity                                                                                                             |  |  |  |  |  |  |  |
|     | d.                                                                                | stability                                                                                                             |  |  |  |  |  |  |  |
| 18. | The c                                                                             | The control chart above shows evidence of cause variation.                                                            |  |  |  |  |  |  |  |
|     | a.                                                                                | special                                                                                                               |  |  |  |  |  |  |  |
|     | b.                                                                                | common                                                                                                                |  |  |  |  |  |  |  |
|     | c.                                                                                | root                                                                                                                  |  |  |  |  |  |  |  |
|     | d.                                                                                | both a. and b.                                                                                                        |  |  |  |  |  |  |  |
| 19. | If Cp                                                                             | If Cpk is calculated based on the data shown in the histogram above, the results will be                              |  |  |  |  |  |  |  |
|     | a.                                                                                | incapable                                                                                                             |  |  |  |  |  |  |  |
|     | b.                                                                                | valid                                                                                                                 |  |  |  |  |  |  |  |
|     | c.                                                                                | skewed                                                                                                                |  |  |  |  |  |  |  |
|     | d.                                                                                | inaccurate                                                                                                            |  |  |  |  |  |  |  |
| 20. | In add                                                                            | lition to the two charts above, a can be used to check for                                                            |  |  |  |  |  |  |  |
|     | a.                                                                                | histogram; consistency                                                                                                |  |  |  |  |  |  |  |
|     | b.                                                                                | control chart; validity                                                                                               |  |  |  |  |  |  |  |
|     | c.                                                                                | probability plot; normality                                                                                           |  |  |  |  |  |  |  |
|     | d.                                                                                | run chart; stability                                                                                                  |  |  |  |  |  |  |  |
| 21. | An es                                                                             | An essential companion tool to the control chart that might help identify the root cause of the instability is a      |  |  |  |  |  |  |  |
|     | a.                                                                                | branch                                                                                                                |  |  |  |  |  |  |  |
|     | b.                                                                                | tree                                                                                                                  |  |  |  |  |  |  |  |
|     | c.                                                                                | leaf                                                                                                                  |  |  |  |  |  |  |  |
|     | d.                                                                                | log                                                                                                                   |  |  |  |  |  |  |  |
| 22. | If the                                                                            | special cause for the out-of-control points can be identified and corrected, the should be recalculate after          |  |  |  |  |  |  |  |
|     | elimii                                                                            | nating the out-of-control points.                                                                                     |  |  |  |  |  |  |  |
|     | a.                                                                                | control limits                                                                                                        |  |  |  |  |  |  |  |
|     | b.                                                                                | mean and standard deviation                                                                                           |  |  |  |  |  |  |  |
|     | c.                                                                                | capability indices                                                                                                    |  |  |  |  |  |  |  |
|     | d.                                                                                | all of the above                                                                                                      |  |  |  |  |  |  |  |
| 23. | 10 co                                                                             | nsecutive points within +/- 1 sigma of the centerline may mean                                                        |  |  |  |  |  |  |  |
|     | a.                                                                                | the process has improved                                                                                              |  |  |  |  |  |  |  |
|     | b.                                                                                | the process is statistically out of control                                                                           |  |  |  |  |  |  |  |
|     | c.                                                                                | the data has been tampered with                                                                                       |  |  |  |  |  |  |  |
|     | d.                                                                                | all of the above                                                                                                      |  |  |  |  |  |  |  |
| 24. | For o                                                                             | ne-sided specification such as flatness, runout, and perpendicularity where the target specification is zero, the Cpk |  |  |  |  |  |  |  |
|     | shoul                                                                             | d be equivalent to the                                                                                                |  |  |  |  |  |  |  |
|     | a.                                                                                | Cpl                                                                                                                   |  |  |  |  |  |  |  |
|     | b.                                                                                | Cpu                                                                                                                   |  |  |  |  |  |  |  |
|     | c.                                                                                | Ср                                                                                                                    |  |  |  |  |  |  |  |
|     | d.                                                                                | Pp                                                                                                                    |  |  |  |  |  |  |  |
|     |                                                                                   |                                                                                                                       |  |  |  |  |  |  |  |

- 25. Sampling strategies should be based on the ability to detect \_\_\_\_\_
  - a. special cause variation
  - b. mean averages
  - c. standard deviation
  - d. standard process variation
- 26. Sampling strategies should be based on \_\_\_\_\_\_ as appropriate based on their potential risk for causing and likelihood of detecting abnormal variation.
  - a. events (startup, shutdown, changeover)
  - b. periods of time (hours or days of operation)
  - c. production volume (number of parts made, number of machine cycles)
  - d. all of the above
- 27. The Gage R&R should ideally be \_\_\_\_\_\_ of the \_\_\_\_\_.
  - a. 10%; tolerance
  - b. 5%; study error
  - c. <10%; 6 sigma process variation
  - d. both a. and b.
- 28. A high Gage R&R percentage may be acceptable if the overall process \_\_\_\_\_\_ is \_\_\_\_\_\_
  - a. average; centered
  - b. standard deviation; within tolerance
  - c. stability; normal
  - d. capability; high





- 29. In the probability plot above the pattern of points shows that the distribution is \_\_\_\_\_\_.
  - a. normal
  - b. in control
  - c. skewed
  - d. both a. and b.
- 30. The average chart above from a Gage R&R study shows that \_\_\_\_\_.
  - a. the process is "out of control"
  - b. the "noise" of the measurement system error is less than the "signal" of the part-to-part variation
  - c. the operators require additional training on the measurement system
  - d. both a. and c.