
Control-based Graph Embeddings with Data Augmentation
for Contrastive Learning

Obaid Ullah Ahmad, Anwar Said, Mudassir Shabbir, Xenofon Koutsoukos, and Waseem Abbas

Abstract— In this paper, we study the problem of unsuper-
vised graph representation learning by harnessing the control
properties of dynamical networks defined on graphs. Our ap-
proach introduces a novel framework for contrastive learning,
a widely prevalent technique for unsupervised representation
learning. A crucial step in contrastive learning is the creation
of ‘augmented’ graphs from the input graphs. Though different
from the original graphs, these augmented graphs retain the
original graph’s structural characteristics. Here, we propose
a unique method for generating these augmented graphs by
leveraging the control properties of networks. The core concept
revolves around perturbing the original graph to create a
new one while preserving the controllability properties specific
to networks and graphs. Compared to the existing methods,
we demonstrate that this innovative approach enhances the
effectiveness of contrastive learning frameworks, leading to
superior results regarding the accuracy of the classification
tasks. The key innovation lies in our ability to decode the
network structure using these control properties, opening new
avenues for unsupervised graph representation learning.

I. INTRODUCTION

Networks serve as fundamental data structures for rep-
resenting relationships, connectivity, and interactions across
various domains, such as social networks, biology, trans-
portation, brain connectivity, and recommendation sys-
tems [1]. Network representation learning plays a pivotal
role in acquiring meaningful network representations, which
find applications in tasks like node classification, link pre-
diction, and community detection [2]. Traditional network
representation learning heavily relies on supervised learning,
necessitating substantial labeled data for effective train-
ing [2]. However, obtaining labeled network data is often
challenging, expensive, and limited in availability.

Contrarily, contrastive learning (CL) has emerged as a
prominent self-supervised learning (SSL) technique in un-
supervised network representation learning [3]. CL methods
operate by comparing augmented positive and negative sam-
ples with the original graph. The positive samples exhibit
similarity, while the negative samples manifest dissimilarity.
This framework empowers CL methods to acquire represen-
tations that capture the inherent network structure, even when
labeled data is absent [4]. Graph Contrastive Representation

This material is based upon work supported by the National Science
Foundation under Grant Nos. 2325416 and 2325417.

Obaid Ullah Ahmad is with the Electrical Engineering Department
at the University of Texas at Dallas, Richardson, TX. Email: Obaidul-
lah.Ahmad@utdallas.edu.

Anwar Said, Mudassir Shabbir and Xenofon Koutsoukos are with the
Computer Science Department at the Vanderbilt University, Nashville, TN.
Emails: anwar.said,mudassir.shabbir, xenofon.koutsoukos@vanderbilt.edu.

Waseem Abbas is with the Systems Engineering Department
at the University of Texas at Dallas, Richardson, TX. Email:
waseem.abbas@utdallas.edu

Learning has recently gained attention in the context of
graph representation learning, aiming to maximize agree-
ment between similar subgraphs and produce informative
embeddings that capture the graph structure [5]. While
existing GCRL approaches primarily focus on node-level
embeddings [6], our proposed architecture has the potential
to generate graph-level embeddings suitable for SSL.

In this work, we introduce a novel approach that leverages
control properties to design graph-level embeddings for self-
supervised learning. Recent research has uncovered deep
connections between network controllability and various
graph-theoretic constructs, including matching, graph dis-
tances, and zero forcing sets [7], [8]. Additionally, significant
progress has been made in characterizing the controlla-
bility of different families of network graphs, including
paths, cycles, random graphs, circulant graphs, and product
graphs [8]. These investigations shed light on the interplay
between network structures and their controllability proper-
ties, enhancing our understanding of network dynamics. Our
aim is to explore and harness the interconnections between
network structures and their controllability properties to form
a foundation for comprehensive graph representations.

Furthermore, we introduce systematic graph augmentation
for creating positive and negative pairs in CL, in contrast to
previous random edge perturbation methods [5]. Our sys-
tematic approach focuses on preserving the graph’s control
properties, leading to improved performance in downstream
machine-learning tasks.

Our main contributions can be summarized as follows:
• We introduce a novel graph embedding—representing

graphs as vectors— called CTRL, which is based on
the control properties of networks defined on graphs,
including meaningful metrics of controllability such as
the spectrum of the Gramian matrix.

• We present the Control-based Graph Contrastive Learn-
ing architecture for unsupervised representation learning
of networks, applicable to various downstream graph-
level tasks.

• We devise innovative augmentation techniques that
mainly preserve the controllability of the network.

• We conduct extensive numerical evaluations on real-
world graph datasets, showcasing the effectiveness of
our method in graph classification compared to several
state-of-the-art (SOTA) benchmark methods.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations
A network, represented as a graph G = (V,E), consists

of interconnected entities denoted by vertices V = V (G) =

v1, v2, . . . , vN , with edges E = E(G) ⊆ V × V indicating
established relationships between entities. The terms ’vertex,’
’node,’ and ’agent’ are used interchangeably. The neighbor-
hood of a vertex vi is Ni = vj ∈ V : (vj , vi) ∈ E. The
shortest path length between vertices vi and vj is denoted
as d(vi, vj). The transpose of a matrix X is denoted as XT .
A zero vector of dimension N is represented as 0N , and
a vector of all ones is denoted as 1N . While our primary
focus is on undirected graphs, all methods apply equally to
directed graphs.

B. Problem Description

In this subsection, we tackle the task of unsupervised
graph-level representation learning by introducing a con-
trastive learning-based approach. Graph embeddings, de-
noted as ϕ(G) : G → Rd, are designed to map graphs from
the family G to a Euclidean space of dimension d. Given
the scarcity of labeled data, our goal is to learn represen-
tations that capture both local and global structural similar-
ities. Scalability is another critical consideration, ensuring
that embeddings can accommodate graphs of varying sizes
while effectively capturing underlying structural features.
Our approach addresses these challenges in generating graph
embeddings.

Problem 1: Given a graph G, generate unsupervised graph
representations ϕ(G) that capture essential structural in-
formation and node relationships for subsequent machine
learning tasks.

These learned representations ϕ(G) are intended to be se-
mantically meaningful and effective for various downstream
tasks, including node classification, link prediction, graph
classification, and community detection.

C. Proposed Approach

A typical method for learning unsupervised representa-
tions of raw data is self-supervised learning (SSL). Con-
trastive learning, a powerful technique within SSL, has
demonstrated remarkable success across various domains,
including computer vision [4]. In the field of graph repre-
sentation learning, researchers have introduced Contrastive
Graph Representation Learning (CGRL) [5]. This approach
operates by generating diverse augmented perspectives of the
same data samples through pretext tasks. We propose the
introduction of a dynamical system on graphs to examine the
control characteristics of this system, followed by crafting an
embedding that utilizes these control attributes, as detailed
in Section III.

a) Graph Contrastive Representation Learning: Graph
Contrastive Representation Learning (GCRL) offers several
advantages over traditional unsupervised graph representa-
tion methods. It encourages the model to bring similar nodes
or subgraphs closer together while pushing dissimilar ones
farther apart [5], thereby enhancing performance in various
downstream tasks [9]. GCRL is data-efficient, scalable to
large-scale datasets [5], and facilitates easy transfer to diverse
tasks, producing interpretable embeddings that aid in the
understanding and analysis of learned representations [9].

Input graph

(G)

T (G)

(G′)

Leader Vertex

Follower Vertex
f(CTRL(.))Shared Encoder

CTRL Embeddings

Learned Embeddings

CTRL(G)

CTRL(G′)

(zG)

(zG′)

Maximize

Agreement

Augmented graph

Fig. 1: Block diagram of the proposed CGCL approach

b) Control-based Graph Contrastive Learning (CGCL):
We introduce Control-based Graph Contrastive Learning
(CGCL), computing control-based graph-level features de-
noted as CTRL(.). These features are used to bring an
augmented version G′ of a graph G closer together in a
latent space z(.) using the normalized temperature-scaled
cross-entropy loss (NT-Xent) [3]. We propose augmentation
techniques that preserve the CTRL properties of the graph
to a certain extent. This is illustrated in Figure 1.

For a given graph G, we apply a control-based augmen-
tation T (G) to obtain G′, creating a positive pair. We then
compute control-based features CTRL(.) for both G and G′

and pass them through a learnable encoder f(.) to transform
them into a new latent space. The goal is to optimize the
similarity of each positive pair in this latent space. This
concept is illustrated in Figure 1, where the embeddings zG
and zG′ are represented as yellow cuboids.

This optimization employs the NT-Xent loss by Oord et al.
[3], encouraging similarity between the embeddings of the
original graph and its transformed counterpart (positive pair)
while minimizing similarity with transformed embeddings
z(.) of other graphs in the dataset (negative pairs). The loss
function is:

L = E

[
−log exp(sim(zG, zG′)/τ)

1
|G|

∑
g∈G,g ̸=G exp(sim(zG, zg′)/τ)

]
,

Here, sim(zG, zG′) represents the cosine similarity between
the embeddings of graph G and its augmentation G′. G
denotes the set containing all graphs in the dataset, where g′

represents the augmented version of graph g, and E denotes
the expectation. The temperature hyperparameter τ controls
the sharpness of the distribution.

In summary, CGCL utilizes contrastive learning principles
to generate expressive graph representations by leveraging
control-based features and optimizing the similarity of pos-
itive pairs. This highlights its potential for self-supervised
graph representation learning.

III. NETWORK CONTROLLABILITY AND GRAPH
EMBEDDINGS

In this section, we introduce a novel approach to graph
embedding rooted in network control properties. We start
by viewing a network as a controllable dynamic system and
define network controllability. We then explore metrics used
to measure it, forming the basis for constructing control-
based graph embeddings denoted as CTRL(G).

A. Networks as Dynamical Systems

In network dynamics, each agent vi has a state xi(t) ∈ R
at time t, sharing states with neighbors in Ni. Agents update
states based on dynamics like consensus. The system state
at t is x(t) = [x1(t) x2(t) . . . xN (t)]T .

To control the system, we apply external signals to a
subset of agents called leaders. Leader states can be directly
manipulated (ẋl = ul(t)), while followers update states
based on local information. Follower dynamics (ẋf (t)) in
this leader-follower system are given by:

ẋf (t) = −M(G)xf (t) +H(G)u(t),

where M(G) represents follower subgraph matrices, and
H(G) denotes leader-follower interactions using the Lapla-
cian matrix.

In a graph G = (V,E), nodes V are partitioned into
followers (Vf) and leaders (Vℓ). The follower graph (Gf)
is represented by the Laplacian L partitioned as:

L =

[
A B
BT C

]
,

with A, B, and C of appropriate dimensions.
An external signal ul is applied to leader vl ∈ Vℓ. Follower

states update according to:

ẋf (t) = −Axf (t)−Bu(t),

where xf (t) is the follower state vector and u(t) is the
control signal. The matrices −A and −B are derived from
network structure and leader selection.

We analyze reachable state subspace dimensionality and
the influence of leader agent variation, offering insights into
graph structure for deriving controllability metrics in graph
embeddings.

B. Network Controllability Metrics

Controlling a network involves directing it from an initial
state to a desired final state by applying control inputs
to specific leader nodes. A state x∗

f ∈ RNf is consid-
ered reachable if an input can propel the network from
the origin to x∗

f within a finite timeframe, defining the
controllable subspace. The dimension of this subspace is
determined by the rank of the Controllability matrix: C =[
−B (−A)(−B) · · · (−A)Nf−1(−B)

]
. The rank of

this matrix hinges on the properties of matrices A and B,
which, in turn, depend on the network’s structure and the
selection of leader nodes.

The Controllability Gramian W quantitatively assesses
the transitioning between states, derived from the system
dynamics. For the system delineated in equation (III-A), the
infinite horizon controllability Gramian is defined as follows:

W =

∫ ∞

0

e−Aτ (−B)(−B)T e−AT τdτ ;∈;RNf×Nf .

When partitioning the Laplacian matrix L of an undirected
connected graph, as demonstrated in equation (III-A), the
matrix A is revealed to be positive definite, ensuring the
system’s stability [8]. This stability enables the computation
of the Controllability GramianW , which serves as a valuable

measure of controllability in terms of energy-related quan-
tification. It also facilitates the derivation of various con-
trollability statistics [10]–[12], including the trace, minimum
value, rank, and determinant of W .

The trace of W , tr(W), inversely relates to average con-
trol energy, indicating overall controllability. The minimum
eigenvalue µj(W) reflects worst-case control energy needs.
rank(W) corresponds to controllable subspace dimension,
while ld(W) assesses volume accessible with minimal con-
trol energy. Refer to [10], [11], [13] for details. An example
in [14] illustrates network controllability dependency on
topology and leader placement. In our evaluation (Section
V), we vary leader nodes to observe controllability, quantified
by these metrics.

IV. CONTROL-BASED GRAPH AUGMENTATIONS

Contrastive Graph Representation Learning (CGRL) is a
self-supervised technique utilizing augmented data to create
positive and negative pairs. Graph-level control embeddings
serve as inputs to the encoder, minimizing the NT-Xent
loss [3]. In this section, we introduce innovative methods
for data augmentation.

The primary purpose of data augmentation is to gener-
ate logically consistent new data while preserving seman-
tic labels. CGRL integrates a contrastive module into the
Graph Machine Learning (GML) architecture, employing
contrastive loss for fine-tuning models. Positive pairs include
original and augmented graphs, while negative pairs involve
other augmented graphs. CGRL aims to maximize similarity
among positive pairs and dissimilarity among negative pairs
during training. Given our embeddings’ reliance on control
properties, our augmentation technique prioritizes preserving
these properties in the augmented graphs.

Problem IV.1: Given a graph G = (V,E) and a leader
set Vℓ, perform an augmentation T (G) to obtain G′ by
perturbing k edges while ensuring that the controllability
properties are preserved.

In this context, edge perturbation can refer to actions such
as edge deletion, edge addition, or edge substitution.

During augmentation, our focus is on preserving the
rank of controllability, denoted as γ(G,Vℓ), in our CTRL
embedding. However, exact preservation of this rank is
complex, leading to exploration of lower bounds on network
controllability in the literature [7], [15]. Our edge pertur-
bation techniques employ a rigorous lower bound based
on topological node distances and introduce algorithms to
maintain this lower bound during network augmentation [7].

Assuming the presence of m leaders denoted as Vℓ =
{ℓ1, ℓ2, · · · , ℓm} within a leader-follower network G =
(V,E), we define the distance-to-leader (DL) vector for each
vertex vi ∈ V as follows:

Di =
[
d(ℓ1, vi) d(ℓ2, vi) · · · d(ℓm, vi)

]T ∈ Zm.

In this vector, the jth component, denoted as [Di]j , repre-
sents the distance between leader ℓj and vertex vi. We then
proceed to define a sequence of distance-to-leader vectors,
referred to as a pseudo-monotonically increasing sequence
(PMI), as described in [7].

Definition (Pseudo-monotonically Increasing Sequence
(PMI)) A sequence D = [D1 D2 · · · Dk] of distance-to-
leader vectors is a PMI if, for any vector Di in the sequence,
there exists a coordinate π(i) ∈ {1, 2, · · · ,m} such that

[Di]π(i) < [Dj]π(i), ∀j > i.

In essence, the PMI property (IV) ensures that for each
vector Di in the PMI sequence, there is an index/coordinate
π(i) such that the values of all subsequent vectors at the
coordinate π(i) are strictly greater than [Di]π(i).

The length of the PMI sequence provides a precise
lower bound on the dimension of the controllable subspace
γ(G,Vℓ). This is presented in the subsequent result.

Theorem 4.1: [7] If we denote the length of the longest
PMI sequence of DL vectors in a network G with Vℓ

leaders as δ(G,Vℓ) or simply δ(G), then we establish the
inequality: δ(G,Vℓ) ≤ γ(G,Vℓ), where γ(G,Vℓ) represents
the dimension of the controllable subspace.

We propose the following three sophisticatedly designed
edge perturbation methods that maintain the lower bound
δ(G,Vℓ) on the rank of controllability. They are illustrated in
Figure 2. The red vertices represent leaders, the gray dashed
edge can be removed, and the blue dashed edge can be
added while ensuring that the bound δ(G,Vℓ) = Nf = 4
is maintained for all augmented graphs.

(a) input G (b) Edge deletion

(c) Edge addition (d) Edge substitution

Fig. 2: Control-based graph augmentations where δ = γ = 4
for original and augmented graphs.

A. Egde Deletion
We propose leveraging controllability backbone edges,

introduced in [16], which preserve δ(G,Vℓ). We introduce
the distance-based controllability backbone and present an
algorithm for augmenting a graph with k-perturbed edges
while incorporating the controllability backbone.

Definition (Controllability Backbone) [16] For a given graph
G = (V,E) and a set of leaders Vℓ, the controllability
backbone is represented as a subgraph B = (V,EB). In
this subgraph B, the condition δ(G,Vℓ) ≤ δ(Ĝ, Vℓ). holds
for any subgraph Ĝ = (V, Ê) where the edge set satisfies
EB ⊆ Ê ⊆ E.

Algorithm 1 outlines the graph augmentation process via
edge deletion. Initially, we identify and preserve crucial
edges from the controllability backbone to maintain the
controllability bound, as computed using Algorithm 2 in [16].
Next, we identify a set of candidate edges in the original
graph G that excludes those from the backbone graph B.

Finally, we randomly remove k edges from the candidate set
in G to obtain the augmented graph G′. If k exceeds the
candidate set size, we delete all potential edges.

Algorithm 1 Edge Deletion

Input: G = (V,E), Vℓ, k
Output: G′ = (V,E′), |E| − |E′| = k

1: Compute the distance-based controllability backbone
B = (V,EB) for G = (V,E) and Vℓ.

2: pot edges ← E \ EB % Set of potential
edges.

3: Epot ← randomly selected k edges from pot edges
4: E′ ← E \ Epot

5: return G′ = (V,E′)

Proposition 4.2: Given a graph G = (V,E) and a
leader set Vℓ, Algorithm 1 returns an augmented graph
G′ = (V,E′), where E′ ⊆ E, while ensuring δ(G,Vℓ) ≤
δ(G′, Vℓ).

Proof: Available in [14].

B. Egde Addition
Expanding on our prior work [17] regarding identifying

removable edges while preserving the distance-based bound
δ(G,Vℓ), we utilize an augmentation technique to identify
edges that can be added to a given graph G = (V,E) while
maintaining δ(G,Vℓ). Following the approach outlined in
[17], we identify potential edges that can be added to G
without compromising δ(G,Vℓ). Subsequently, we randomly
select k such potential edges and introduce them into G,
resulting in the augmented graph G′ = (V,E′).

Proposition 4.3: [17] If δ(G,Vℓ) is a lower bound for
the dimension of the controllable subspace γ(G,Vℓ) of a
graph G = (V,E) with leaders Vℓ ⊂ V , then it also serves
as a lower bound for γ(G′, Vℓ) of an augmented graph G′ =
(V,E′), where E ⊆ E′ and E′ contains edges preserving
distances of DL vectors in the longest PMI sequence of G.

C. Egde Substitution
Next, we propose a novel approach that combines the

edge deletion and edge addition methods while preserving
the size of the edge set |E| of the given graph G = (V,E)
and the bound γ(G,Vℓ). Algorithm 2 outlines this approach.
First, we remove k edges from G to create Ḡ = (V, Ē)
using Algorithm 1. Then, we introduce k distinct edges
into Ḡ using the method described in IV-B, resulting in
G′ = (V,E′), where |E| = |E′|.

The maximal edge set Emax can be computed by from
Algorithm 1 of our previous work [17].

Proposition 4.4: Given a graph G = (V,E) and a leader
set Vℓ, Algorithm 2 yields an augmented graph G′ = (V,E′),
where |E′| = |E|, ensuring that δ(G,Vℓ) ≤ δ(G′, Vℓ),

Proof: Available in [14].
These edge perturbation methods are employed to create

positive pairs. Subsequently, we use the CTRL embeddings
to generate graph representations for these pairs and apply
the NT Xent loss for unsupervised learning of representa-
tions for each graph within the dataset. In the following

Algorithm 2 Edge Substitution

Input: G = (V,E), Vℓ, k
Output: G′ = (V,E′)

1: Ḡ = (V, Ē)← Edge Deletion(G,Vℓ, k)
2: Compute the maximal edge set Emax for G = (V,E)

and Vℓ.
3: pot edges ← Emax − E % Set of potential
edges.

4: Epot ← randomly selected k edges from pot edges
5: E′ ← Ē ∪ E′.
6: return G′ = (V,E′)

section, we conduct an empirical assessment using real-world
graph datasets. Our proposed approach is numerically eval-
uated through the task of graph classification and compared
with state-of-the-art methods.

V. NUMERICAL EVALUATION

A. Benchmark Datasets
Datasets: We conducted experiments on 7 standard graph

classification benchmark datasets, which include MUTAG,
PTC MR, PROTEINS, and DD, representing bioinformat-
ics datasets, as well as IMDB-BINARY, IMDB-MULTI,
and COLLAB, representing social network datasets [18].
The bioinformatics datasets provide descriptions of small
molecules and chemical compounds. Among the social net-
work datasets, IMDB-BINARY and IMDB-MULTI describe
actors’ ego-networks, while COLLAB is a scientific collab-
oration dataset where graphs consist of researchers as nodes
and their collaborations as edges. Basic dataset statistics are
provided in Table 1 of [14].

B. The Role of Data Augmentation in Graph CL
We evaluate the effectiveness of our proposed framework

for graph classification using the TUDataset benchmark [18].
We utilize the CL method to unsupervisedly learn represen-
tations z(.) from CTRL embeddings, followed by the eval-
uation of these representations for graph-level classification.
This evaluation involves training and testing a linear SVM
classifier using the acquired representations. We employ
a 10% label rate and 10-fold cross-validation, conducting
experiments over 5 repetitions and reporting the evaluation
accuracy as a mean value along with the standard deviation.

As a baseline reference, we directly employ the CTRL em-
beddings for training the SVM classifier. The results for four
distinct bioinformatics datasets are summarized in Table I.
Edge deletion yields the best result on MUTAG and PTC,
while on PROTEINS and DD, edge addition and substitution
provide the best results, respectively. We vary the number of
edges perturbed from 1 to 3. Our augmentation techniques,
combined with contrastive learning, consistently yield higher
classification accuracies across all datasets compared to the
baseline approach.

C. Comparison with the State-of-the-art Methods
The effectiveness of CGCL is assessed in the context of

unsupervised representation learning, following the approach

TABLE I: Graph Classification accuracy (%) with 10% label
rate. The baseline involves a linear SVM trained directly on
CTRL embeddings.

Method MUTAG PTC PROTEINS DD
Baseline 75.86 ± 11.0 52.85 ± 9.5 58.72 ± 11.9 59.10 ± 13.9
CGCL 79.54 ± 11.0 56.10 ± 8.3 69.97 ± 4.5 63.22 ± 11.1

outlined in [9], [19]. We closely adhere to the established
approach within Graph CL for graph classification [5], [9].
We compare our results with various kernel-based, unsu-
pervised, and self-supervised methods. For graph kernel-
based methods, we consider Graphlet kernel (GK) [20],
Weisfeiler-Lehman sub-tree kernel (WL) [21], and deep
graph kernels (DGK) [22]. Unsupervised techniques include
node2vec [23], sub2vec [24], and graph2vec [19], while self-
supervised methods consist of InfoGraph [9] and GraphCL
[5], both employing graph neural networks.

The results of graph classification are presented in Ta-
ble II. When compared to the top-performing unsupervised
methods, our proposed approach exhibits significant im-
provements across several datasets, including MUTAG, PTC,
PROTEINS, COLLAB, and IMDB-B, resulting in gains of
6.76%, 6.17%, 0.83%, 13.0%, and 1.6%, respectively. No-
tably, our method consistently outperforms all unsupervised
competitors across all datasets except IMDB-M.

In contrast to self-supervised counterparts, our proposed
method surpasses the current SOTA on MUTAG, PRO-
TEINS, and COLLAB, and achieves the second-best accura-
cies on DD and IMDB-B datasets. Specifically, in MUTAG,
PROTEINS, and COLLAB, our approach outperforms the
existing standards by margins of 0.90%, 4.64%, and 3.74%,
respectively. However, on PROTEINS and IMDB-M, our
method falls short by 0.31% and 1.17%, respectively, com-
pared to the best self-supervised approaches.

In summary, as demonstrated by Table II, our proposed
method outperforms its competitors on two out of seven
graph classification datasets by a considerable margin and
achieves top-two accuracy rankings for five out of seven
datasets. For the remaining two datasets, our method achieves
accuracy levels within 2% of the SOTA methods.

We also perform an evaluation of our proposed CGCL
approach using the edge augmentation method proposed by
You [5]. We follow an i.i.d. uniform distribution to add/drop
edges instead of the systematic edge perturbation methods
mentioned in Section IV. We call this approach Random-
CGCL. Table III presents the results for graph classification
accuracies for all seven datasets under consideration. It can
be seen that the accuracy of Random-CGCL is comparable
to both GraphCL and CGCL. However, CGCL outperforms
Random-CGCL on all the datasets. These results suggest
that a sophisticated augmentation technique, as employed in
CGCL, is essential for effectively leveraging control-based
embeddings in graph contrastive learning.

VI. CONCLUSION

We introduced Control-based Graph Contrastive Learning
(CGCL), a novel framework for unsupervised graph repre-
sentation learning that leverages graph controllability prop-

TABLE II: Comparing classification accuracy on top of graph representations learned from graph kernels, SOTA representa-
tion learning method. The top two results are highlighted by First, Second. The numerical values presented for comparison
are obtained from the respective papers, following the identical experimental configurations.

Methods MUTAG PTC PROTEINS DD COLLAB IMDB-B IMDB-M

Kernel Approaches
GK 81.70 ± 2.1 57.30 ± 1.4 - - 72.80 ± 0.3 65.90 ± 1.0 43.90 ± 0.4
WL 80.63 ± 3.1 56.91 ± 2.8 72.92 ± 0.6 - 78.90 ± 1.9 72.30 ± 3.4 47.00 ± 0.5
DGK 87.44 ± 2.7 60.10 ± 2.6 73.30 ± 0.8 - - 66.96 ± 0.6 44.60 ± 0.5

Unsupervised Approaches
node2vec 72.63 ± 10.2 58.85 ± 8.0 57.48 ± 3.6 - 55.70 ± 0.2 50.20 ± 0.9 36.0 ± 0.7
sub2vec 61.05 ± 15.8 59.99 ± 6.4 53.03 ± 5.6 - 62.10 ± 1.4 55.26 ± 1.5 36.7 ± 0.8
graph2vec 83.15 ± 9.2 60.17 ± 6.9 73.30 ± 2.1 - 59.90 ± 0.0 71.10 ± 0.5 50.40 ± 0.9

Self-Supervised Approaches
InfoGraph 89.01 ± 1.1 61.70 ± 1.4 74.44 ± 0.3 72.85 ± 1.8 70.65 ± 1.1 73.03 ± 0.9 49.70 ± 0.5
GraphCL 86.80 ± 1.3 61.30 ± 2.1 74.39 ± 0.5 78.62 ± 0.4 71.36 ± 1.2 71.14 ± 0.4 48.58 ± 0.7
CGCL 89.91 ± 6.4 66.34 ± 7.9 74.13 ± 2.8 75.33 ± 3.3 75.10 ± 1.8 72.70 ± 4.4 48.53 ± 3.1

TABLE III: Graph Classification accuracies using different Augmentation methods. The top accuracies are highlighted.

Methods MUTAG PTC PROTEINS DD COLLAB IMDB-B IMDB-M

GraphCL 86.80 ± 1.3 61.30 ± 2.1 74.39 ± 0.5 78.62 ± 0.4 71.36 ± 1.2 71.14 ± 0.4 48.58 ± 0.7
Random-CGCL 87.81 ± 7.4 65.73 ± 6.6 73.23 ± 1.8 75.15 ± 2.9 75.04 ± 1.8 71.40 ± 4.0 47.40 ± 2.7
CGCL 89.91 ± 6.4 66.34 ± 7.9 74.13 ± 2.8 75.33 ± 3.2 75.10 ± 1.8 72.70 ± 4.4 48.53 ± 3.1

erties. Using advanced edge augmentation methods, we cre-
ated augmented data while preserving graph controllability.
Extensive experiments on graph classification benchmarks
demonstrated CGCL’s effectiveness, outperforming state-
of-the-art methods. Incorporating domain-specific structural
knowledge, like controllability, can significantly enhance
graph representation learning. CGCL presents a promising
approach for applications requiring informative graph repre-
sentations. Future work will focus on refining graph augmen-
tation techniques to preserve all relevant control features.

REFERENCES

[1] M. Newman, Networks. Oxford University Press, 2018.
[2] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation

learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[3] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[4] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in Interna-
tional conference on machine learning. PMLR, 2020, pp. 1597–1607.

[5] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in neural information
processing systems, vol. 33, pp. 5812–5823, 2020.

[6] L. Xia, C. Huang, Y. Xu, J. Zhao, D. Yin, and J. Huang, “Hyper-
graph contrastive collaborative filtering,” in Proceedings of the 45th
International ACM SIGIR conference on research and development in
information retrieval, 2022, pp. 70–79.

[7] A. Yazıcıoğlu, W. Abbas, and M. Egerstedt, “Graph distances and
controllability of networks,” IEEE Transactions on Automatic Control,
vol. 61, no. 12, pp. 4125–4130, 2016.

[8] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010, vol. 33.

[9] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “Infograph: Unsu-
pervised and semi-supervised graph-level representation learning via
mutual information maximization,” arXiv:1908.01000, 2019.

[10] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics,
limitations and algorithms for complex networks,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 1, pp. 40–52, 2014.

[11] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and
controllability in complex dynamical networks,” IEEE Transactions
on Control of Network Systems, vol. 3, no. 1, pp. 91–101, 2015.

[12] E. Wu-Yan, R. F. Betzel, E. Tang, S. Gu, F. Pasqualetti, and D. S. Bas-
sett, “Benchmarking measures of network controllability on canonical
graph models,” Journal of Nonlinear Science, pp. 1–39, 2018.

[13] A. Said, O. U. Ahmad, W. Abbas, M. Shabbir, and X. Koutsoukos,
“Network controllability perspectives on graph representation,” IEEE
Transactions on Knowledge and Data Engineering, 2023.

[14] O. U. Ahmad, A. Said, M. Shabbir, X. Koutsoukos, and W. Abbas,
“Control-based graph embeddings with data augmentation for con-
trastive learning,” arXiv:2403.04923, 2024.

[15] A. Chapman and M. Mesbahi, “On strong structural controllability of
networked systems: A constrained matching approach,” in American
Control Conference, 2013, pp. 6126–6131.

[16] O. U. Ahmad, M. Shabbir, and W. Abbas, “Controllability backbone
in networks,” in IEEE Conference on Decision and Control (CDC),
2023, pp. 2439–2444.

[17] W. Abbas, M. Shabbir, H. Jaleel, and X. Koutsoukos, “Improving net-
work robustness through edge augmentation while preserving strong
structural controllability,” in American Control Conference (ACC),
2020, pp. 2544–2549.

[18] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and
M. Neumann, “Tudataset: A collection of benchmark datasets for
learning with graphs,” in ICML 2020 Workshop on Graph Represen-
tation Learning and Beyond, 2020.

[19] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
and S. Jaiswal, “graph2vec: Learning distributed representations of
graphs,” arXiv preprint arXiv:1707.05005, 2017.

[20] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borg-
wardt, “Efficient graphlet kernels for large graph comparison,” in
Artificial intelligence and statistics. PMLR, 2009, pp. 488–495.

[21] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels.” Journal of
Machine Learning Research, vol. 12, no. 9, 2011.

[22] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceed-
ings of the ACM SIGKDD International Conference on Knowledge
Discovery and data mining, 2015, pp. 1365–1374.

[23] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016.

[24] B. Adhikari, Y. Zhang, N. Ramakrishnan, and B. A. Prakash,
“Sub2vec: Feature learning for subgraphs,” in Advances in Knowledge
Discovery and Data Mining. Springer, 2018, pp. 170–182.

