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Abstract—Creating strong agents for games with more than
two players is a major open problem in AI. Common approaches
are based on approximating game-theoretic solution concepts
such as Nash equilibrium, which have strong theoretical guar-
antees in two-player zero-sum games, but no guarantees in non-
zero-sum games or in games with more than two players. We
describe an agent that is able to defeat a variety of realistic
opponents using an exact Nash equilibrium strategy in a 3-
player imperfect-information game. This shows that, despite a
lack of theoretical guarantees, agents based on Nash equilibrium
strategies can be successful in multiplayer games after all.

I. INTRODUCTION

Nash equilibrium has emerged as the central solution con-
cept in game theory, in large part due to the pioneering PhD
thesis of John Nash proving that one always exists in finite
games [1]. For two-player zero-sum games (i.e., competitive
games where the winnings of one player equal the losses of the
other player), the solution concept is particularly compelling,
as it coincides with the concept of minimax/maximin strategies
developed earlier by John von Neumann [2]. In that work von
Neumann proved that playing such a strategy guarantees a
value of the game for the player in the worst case (in expecta-
tion), and that the value is the best worst-case guarantee out of
all strategies. Essentially this means that a player can guarantee
winning (or at least tying) in the worst case if he follows such
a strategy and alternates the role of player 1 and 2 in the
game. So for two-player zero-sum games Nash equilibrium
enjoys this “unbeatability” property. This has made it quite
a compelling solution concept, and in fact agents based on
approximating Nash equilibrium have been very successful,
and have even been able to defeat the strongest humans in the
world in the popular large-scale game of two player no-limit
Texas hold ’em poker [3], [4]. Nash equilibrium is additionally
compelling for two-player zero-sum games due to the fact that
it can be computed in polynomial time [5].

For non-zero-sum games and games with more than two
players, while Nash equilibrium is still guaranteed to exist due
to Nash’s result, none of these additional properties hold, as
highlighted from the classic Battle of the Sexes game depicted
in Figure 1. This game has three Nash equilibrium strategy
profiles: when both players select Opera (i.e., (Opera, Opera)),
when both players select Football (Football, Football), and
where both select their preferred option with probability 3
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Clearly in this case the success of playing a Nash equilibrium

depends heavily on the strategy chosen by the other player.
For example, if the wife follows her strategy from the first
Nash equilibrium and plays Opera, but the husband follows his
strategy from the second Nash equilibrium and plays Football,
the wife will receive the worst possible payoff of 0 despite
following a Nash equilibrium. While this example is just for
a two-player game, the same phenomenon can occur in games
with more than two players (though as described above it can-
not occur in two-player zero-sum games). Even three-player
zero-sum games are not special, as any two-player general-sum
game can be converted into a three-player zero-sum game by
adding a “dummy” third player whose payoff equals negative
the sum of the other two players’ payoff. Furthermore, even
if we wanted to compute a Nash equilibrium, it has been
proven to be PPAD-complete and is widely conjectured that
no efficient algorithm exists [6], [7], though several heuristic
approaches have been developed for strategic-form games (i.e.,
matrix games such as Battle of the Sexes) with varying degrees
of success in different settings [8], [9], [10], [11], [12]. There
have also been techniques developed that approximate Nash
equilibrium to a provably very small degree of approximation
error in a 3-player imperfect-information game [13], [14].

Opera Football
Opera (3,2) (0,0)

Football (0,0) (2,3)

Fig. 1. Battle of the sexes game.

Thus, the problem of how to create strong agents for
non-zero-sum and multiplayer games, and in particular the
question of whether Nash equilibrium strategies are successful,
remains an open problem—perhaps the most important one at
the intersection of artificial intelligence and game theory. Of
course, the most successful approach would not just simply
follow a solution concept and would also attempt to learn and
exploit weaknesses of the opponents [15], [16]. (Note that
this would be potentially very helpful for two-player zero-
sum games as well, as Nash equilibrium may not fully exploit
mistakes of suboptimal opponents as much as successful ex-
ploitative agents even for that setting.) However, successfully
performing opponent exploitation is very difficult, particularly
in very large games where the number of game iterations and



observations of the opponents’ play is small compared to the
number of game states. And furthermore, such approaches
are susceptible to being deceived and counterexploited by
sophisticated opponents. It is clear that pure exploitation
approaches are insufficient to perform well against a mix of
opponents of unknown skill level, and that a strong strategy
rooted in game-theoretic foundations is required.

The strongest existing agents for large multiplayer games
have been based on approaches that attempt to approximate
Nash equilibrium strategies [17], [18]. In particular, they apply
the counterfactual regret minimization algorithm [19], [20],
which has also been used for two-player zero-sum games
and has resulted in super-human level play for both limit
Texas hold ’em [21] and no-limit Texas hold ’em [3], [4].
These agents have performed well in the 3-player limit Texas
hold ’em division of the Annual Computer Poker Competi-
tion which is held annually at the AI conferences AAAI or
IJCAI [22]. Counterfactual regret minimization is an iterative
self-play algorithm that is proven to converge to Nash equi-
librium in the limit for two-player zero-sum games. It can be
integrated with various forms of Monte Carlo sampling in or-
der to improve performance both theoretically and in practice.
For multiplayer and non-zero-sum games the algorithm can
also be run, though the strategies computed are not guaranteed
to form a Nash equilibrium. It was demonstrated that it does
in fact converge to an ε-Nash equilibrium (strategy profile in
which no agent can gain more than ε by deviating) in the
small game of 3-player Kuhn poker, while it does not converge
to equilibrium in Leduc hold ’em [17]. It was subsequently
proven that it guarantees converging to a strategy that is not
dominated and does not put any weight on iteratively weakly-
dominated actions [18]. While for some small games this
guarantee can be very useful (e.g., for two-player Kuhn poker a
high fraction of the actions are iteratively-weakly-dominated),
in many large games (such as full Texas hold ’em) only a very
small fraction of actions are dominated and the guarantee is
not useful. Other approaches based on integrating the fictitious
play algorithm with MDP-solving algorithms such as policy
iteration have been demonstrated experimentally to converge
to ε-equilibrium for very small ε in a no-limit Texas hold
’em poker tournament endgame [13], [14]. It has been proven
that if these algorithms converge, then the resulting strategy
profile constitutes a Nash equilibrium (while CFR does not
have such a guarantee); however, the algorithms are not proven
to converge in general, despite the fact that they did for the
game that was experimented on.

The empirical success of the 3-player limit Texas hold ’em
agents in the Annual Computer Poker Competition suggests
that CFR-based approaches which are attempting to approxi-
mate Nash equilibrium are promising for multiplayer games.
However, the takeaway is not very clear. First, the algorithms
are not guaranteed to converge to equilibrium for this game,
and there is no guarantee on whether the strategies used by
the agents constitute a Nash equilibrium or are even remotely
close to one. Furthermore, there were only a small number
of opposing agents submitted to the competition who may

have questionable skill level, so it is not clear whether the
CFR-based approaches actually produce high-quality strategies
or whether they just produced strategies that happened to
outperform mediocre opponents and would have done very
poorly against strong ones. While these CFR-based approaches
are clearly the best so far and seem to be promising, they do
not conclusively address the question of whether Nash equi-
librium strategies can be successful in practice in interesting
multiplayer games against realistic opponents.

In this paper we create an agent based on an exact Nash
equilibrium strategy for the game of 3-player Kuhn poker.
While this game is relatively small, and in particular quite
small compared to 3-player limit Texas hold ’em, it is far from
trivial to analyze, and has been used as a challenge problem at
the Annual Computer Poker Competition for the past several
years [22]. A benefit of experimenting on a small problem
is that exact Nash equilibrium strategies can be computed
analytically [23]. That paper computed an infinite family
of Nash equilibrium strategies, though it did not perform
experiments to see how they performed in practice against
realistic opponents. The poker competition also did not publish
any details of the agents who participated, so it is unclear what
approaches were used by the successful agents. We ran exper-
iments with our equilibrium agent against 10 agents that were
created recently as part of a class project. These agents were
computed using a wide range of approaches, which included
deep learning, opponent modeling, rule-based approaches, as
well as game-theoretic approaches. We show that an approach
based on using a natural Nash equilibrium strategy is able
to outperform all of the agents from the class. This suggests
that agents based on using Nash equilibrium strategies can in
fact be successful in multiplayer games, despite the fact that
they do not have a worst-case theoretical guarantee. Of course
since we just experimented on one specific game there is no
guarantee that this conclusion would apply beyond this to other
games, and more extensive experiments would be needed to
determine whether this conclusion would generalize.

II. THREE-PLAYER KUHN POKER

Three-player Kuhn poker is a simplified form of limit poker
that has been used as a testbed game in the AAAI Annual
Computer Poker Competition for several years [22]. There is
a single round of betting. Each player first antes a single chip
and is dealt a card from a four-card deck that contains one
Jack (J), one Queen (Q), one King (K), and one Ace (A).
The first player has the option to bet a fixed amount of one
additional chip (by contrast in no-limit games players can bet
arbitrary amounts of chips) or to check (remain in the hand
but not bet an additional chip). When facing a bet, a player
can call (i.e., match the bet) or fold (forfeit the hand). No
additional bets or raises beyond the additional bet are allowed
(while they are allowed in other common poker variants such
as Texas hold ’em, both for the limit and no-limit variants). If
all players but one have folded, then the player who has not
folded wins the pot, which consists of all chips in the middle.
If more than one player have not folded by the end there is a



showdown, at which the players reveal their private card and
the player with the highest card wins the entire pot (which
consists of the initial antes plus all additional bets and calls).
The ace is the highest card, followed by king, queen, and jack.
As one example of a play of the game, suppose the players
are dealt Queen, King, Ace respectively, and player 1 checks,
then player 2 checks, then player 3 bets, then player 1 folds,
then player 2 calls; then player 3 would win a pot of 5, for a
profit of 3 from the amount he started the hand with.

Note that despite the fact that 3-player Kuhn poker is only
a synthetic simplified form of poker and is not actually played
competitively, it is still far from trivial to analyze, and contains
many of the interesting complexities of popular forms of poker
such as Texas hold ’em. First, it is a game of imperfect
information, as players are dealt a private card that the other
agents do not have access to, which makes the game more
complex than a game with perfect information that has the
same number of nodes. Despite the size, it is not trivial to
compute Nash equilibrium analytically, though recently an
infinite family of Nash equilibria has been computed [23]. The
equilibrium strategies exhibit the phenomena of bluffing (i.e.,
sometimes betting with weak hands such as a Jack or Queen),
and slow-playing (aka trapping) (i.e., sometimes checking with
strong hands such as a King or Ace in order to induce a bet
from a weaker hand). To see why, suppose an agent X played
a simple strategy that only bet with an Ace or sometimes a
King. Then the other agents would only call the bet if they
had an Ace, since otherwise they would know they are beat
(since there is only one King in the deck, if they held a King
they would know that player X held an Ace). But now if the
other agents are only calling with an Ace, it is unprofitable for
player X to bet with a King, since he will lose an additional
chip whenever another player holds an Ace, and will not get a
call from a worse hand; it would be better to check and then
potentially call with hopes that the other player is bluffing (or
to fold if you think the player is bluffing too infrequently). A
better strategy may be to bet with an Ace and to sometimes bet
with a Jack as a bluff, to put the other players in a challenging
situation when holding a Queen or King. However, player X
may also want to sometimes check with an Ace as well so
that he can still have some strong hands after he checks and
the players are more wary of betting into him after a check.

A full infinite family of Nash equilibria for this game has
been computed and can be seen in the tables from a recent
article by Szafron et al. [23]. The family of equilibria is based
on several parameter values, which once selected determine
the probabilities for the other portions of the strategies. One
can see from the table that randomization and including some
probability on trapping and bluffing are essential in order to
have a strong and unpredictable strategy. Thus, while this game
may appear quite simple at first glance, analysis is still very far
from simple, and the game exhibits many of the complexities
of far larger games that are played competitively by humans
for large amounts of money.

III. NASH EQUILIBRIUM-BASED AGENT

One way wonder why it is worthwhile to create agents and
experiment on three-player Kuhn poker, given that the game
has been “solved,” as described in the preceding section. First,
as described there are infinitely many Nash equilibria in this
game (and furthermore there may be others beyond those in the
family computed in the prior work). So even if we wanted to
create an agent that employed a Nash equilibrium “solution,”
it would not be clear which one to pick, and the performance
would depend heavily on the strategies selected by the other
agents (who may not even be playing a Nash equilibrium at
all). This is similar to the phenomenon described for the Battle
of the Sexes Game in the introduction, where even though
the wife may be aware of all the equilibria, if she attends the
Opera as part of the (O,O) equilibrium while the husband does
football as part of the (F,F) equilibrium, both players obtain
very low payoff despite both following equilibrium. A second
reason is that, as also described in the introduction, Nash
equilibrium has no theoretical benefits in three-player games,
and it is possible that a non-equilibrium strategy (particularly
one that integrates opponent modeling and exploitation) would
perform better, even if we expected the opponents may be
following a Nash equilibrium strategy, but particularly if we
expect them to be playing predictably and/or making mistakes.

So despite that the fact that exact Nash equilibrium strate-
gies have been computed for this game, it is still very unclear
what a good approach is for creating a strong agent against a
pool of unknown opponents.

For our agent we have decided to use a Nash equilibrium
strategy that has been singled out as being more robust than
the others in prior work and that obtains the best worst-
case payoff assuming that the other agents are following one
of the strategies given by the computed infinite equilibrium
family [23]. We depict this strategy in Table I. This table
assigns values for the 21 free parameters in the infinite family
of Nash equilibrium strategies. To define these parameters,
ajk, bjk, and cjk denote the action probabilities for players
P1, P2, and P3 respectively when holding card j and taking
an aggressive action (Bet (B) or Call (C)) in situation k, where
the betting situations are defined in Table III. Prior work has
actually singled out a range of strategies that receive the best
worst-case payoff; above we have described the lower bound
of this space, and we also experiment using the strategy that
falls at the upper bound (Table II).

P1 P2 P3
a11 = 0 b11 = 0 c11 = 0
a21 = 0 b21 = 0 c21 = 1

2
a22 = 0 b22 = 0 c22 = 0
a23 = 0 b23 = 0 c23 = 0
a31 = 0 b31 = 0 c31 = 0
a32 = 0 b32 = 0 c32 = 0
a33 = 1

2 b33 = 1
2 c33 = 1

2
a34 = 0 b34 = 0 c34 = 0
a41 = 0 b41 = 0 c41 = 1

TABLE I
PARAMETER VALUES USED FOR OUR NASH EQUILIBRIUM AGENT



P1 P2 P3
a11 = 0 b11 = 1

4 c11 = 0
a21 = 0 b21 = 1

4 c21 = 1
2

a22 = 0 b22 = 0 c22 = 0
a23 = 0 b23 = 0 c23 = 0
a31 = 0 b31 = 0 c31 = 0
a32 = 0 b32 = 1 c32 = 0
a33 = 1

2 b33 = 7
8 c33 = 0

a34 = 0 b34 = 0 c34 = 1
a41 = 0 b41 = 1 c41 = 1

TABLE II
PARAMETER VALUES USED FOR OUR SECOND NASH EQUILIBRIUM AGENT

Situation P1 P2 P3
1 – K KK
2 KKB B KB
3 KBF KKBF BF
4 KBC KKBC BC

TABLE III
BETTING SITUATIONS IN THREE-PLAYER KUHN POKER

IV. EXPERIMENTS

We experimented against 10 of 11 agents submitted recently
for a class project (we ignored one agent that ran very
slowly, which performed poorly). These agents utilized a
wide variety of approaches, ranging from neural networks
to counterfactual regret minimization to opponent modeling
to rule-based approaches. For each grouping of 3 agents we
ran matches consisting of 3000 hands between each of the
6 permutations of the agents (with the same cards being
dealt for the respective positions of the agents in each of
the duplicated matches). The number of hands per match
(3000) is the same value used in the Annual Computer Poker
Competition, and the process of duplicating the matches with
the same cards between the different agent permutations is a
common approach that significantly reduces the variance. We
ran 10 matches for each permutation of 3 agents. Table IV
shows the overall payoff (divided by 100,000) for each agent.
The Nash agent received highest payoff. The results are very
similar when using the upper and lower bound equilibrium
strategies with the upper bound performing slightly better.

Nash A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
2.81 (UB) 2.25 1.18 2.54 -1.65 2.32 1.74 -1.34 -9.56 -3.48 1.42
2.81 (LB) 2.24 1.17 2.54 -1.66 2.32 1.74 -1.34 -9.54 -3.47 1.42

TABLE IV
EXPERIMENTS USING NASH AGENTS AGAINST CLASS PROJECT AGENTS

V. CONCLUSION

Creating strong agents for games with more than two play-
ers, and in particular the question of whether Nash equilibrium
strategies are successful, is an important open problem—
perhaps the most important one at the intersection of game
theory and AI. We demonstrated that an agent based on
following an exact Nash equilibrium is able to outperform
agents submitted for a recent class project that utilize a wide
variety of approaches. This suggests that agents based on
using Nash equilibrium strategies can in fact be successful
in multiplayer games, despite the fact that they do not have a
worst-case theoretical guarantee.
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