Macromolecular Prodrug That Provides the Irinotecan (CPT-11) Active-Metabolite SN-38 with Ultralong Half-Life, Low C_{max}, and Low Glucuronide Formation

Daniel V. Santi,* Eric L. Schneider, and Gary W. Ashley

ProLynx, 455 Mission Bay Boulevard South, Suite 145, San Francisco, California 94158, United States

ABSTRACT: We have recently reported a chemical approach for half-life extension that utilizes β-eliminative linkers to attach amine-containing drugs or prodrugs to macromolecules. The linkers release free drug or prodrug over periods ranging from a few hours to over 1 year. We adapted these linkers for use with phenol-containing drugs. Here, we prepared PEG conjugates of the irinotecan (CPT-11) active metabolite SN-38 via a phenyl ether that release the drug with predictable long half-lives. Pharmacokinetic studies in the rat indicate that, in contrast to other SN-38 prodrugs, the slowly released SN-38 shows a very low C_{max} is kept above target concentrations for extended periods, and forms very little SN-38 glucuronide (the precursor of enterotoxic SN-38). The low SN-38 glucuronide is attributed to low hepatic uptake of SN-38. These macromolecular prodrugs have unique pharmacokinetic profiles that may translate to less intestinal toxicity and interpatient variability than the SN-38 prodrugs thus far studied.

INTRODUCTION

Conjugation of drugs to macromolecular carriers is an established strategy for improving pharmacokinetics. In one approach, the drug is covalently attached to a long-lived circulating macromolecule, such as poly(ethylene glycol) (PEG), through a linker that is slowly cleaved to release the native drug. Most of these conjugates use ester-containing linkers that cleave either by spontaneous or esterase-catalyzed reactions and have several limitations: (a) the rate of cleavage can be faster, but not slower than the spontaneous hydrolytic rate, and PEG–ester conjugates have half-lives of about 12–30 h at pH 7.4; (b) they can show intra- and interspecies variability of in vivo cleavage rates because of different esterase levels, and (c) cleavage rates are not generally predictable or easily adjustable.

We have recently reported conjugation linkers that self-cleave by a nonenzymatic β-elimination reaction in a highly predictable manner and with a large range of half-lives of cleavage spanning hours to over a year at physiological pH. In this approach, a macromolecular carrier is attached to a linker that is attached to a drug via a carbamate group (1; Scheme 1); the β-carbon has an acidic carbon–hydrogen bond (C–H) and also contains an electron-withdrawing modulator (Mod) that controls the pK_a of that C–H bond. Upon hydroxide-ion-catalyzed proton removal (2), a rapid β-elimination occurs to cleave the linker–carbamate bond and to release the free drug or prodrug and a substituted alkene 3. The rate of drug release is proportional to the acidity of the proton, which is controlled by the chemical nature of the modulator; thus, the rate of drug release is controlled by the modulator. It was shown that both in vitro and in vivo cleavages were linearly correlated with electron-withdrawing effects of the modulators and, unlike ester bonds commonly used in releasable linkers, 2 the β-elimination reaction was not catalyzed by general bases or serum enzymes. With releasable conjugates of this type, the terminal half-life ($t_{1/2,\beta}$) of a rapidly cleared released drug is transformed into that of the conjugate and has a longer $t_{1/2,\beta}$ and diminished C_{max} compared to repeated bolus doses of a short-lived drug.

Recently, we described an approach to adapt such β-eliminative linkers for use with phenol-containing drugs (Scheme 2, 4). In addition to the pK_a modulator, the modified linkers include a methylene adaptor that connects the carbamate nitrogen to the oxygen atom of the drug and an electron-withdrawing N-aryl stabilizer that inhibits undesirable cleavage of the adaptor–oxygen bond. Upon β-elimination (Scheme 2, path A), a carbamic acid is released, which rapidly disassembles to the free phenol-containing drug. Spontaneous $S_{\text{N}1}$ and acid-catalyzed solvolytic reactions were also characterized (Scheme 2, paths B and C); here, an iminium ion of the carbamate (9) is formed to assist prodrug expulsion that ultimately loses formaldehyde to give an N-aryl carbamate.

We were interested in applying this technology to produce conjugates of SN-38 with very long half-lives. SN-38 is the active metabolite of the anticancer agent irinotecan (CPT-11), primarily used to treat colon cancer, and is one of the most potent known inhibitors of topoisomerase 1 (topo 1). CPT-11 is extensively metabolized and shows large interpatient variability in its pharmacokinetics, pharmacodynamics, and toxicities; it can be reasoned that direct administration of SN-
38 might escape some of the metabolism of CPT-11 and thus reduce some of the variability. However, SN-38 is too insoluble to administer directly and has a short half-life and thus requires the use of soluble prodrug depots, such as CPT-11 or conjugates of long-lived macromolecules.

SN-38 prodrugs are usually administered as an i.v. bolus every 1 or 3 weeks. However, topo 1 inhibitors such as SN-38 display time-dependent cytotoxicity because prolonged exposure is needed to inhibit topo 1 during DNA replication. Hence, continuous, protracted administration of low-dose topo 1 inhibitors may be advantageous over the commonly used intensive bolus delivery. It has been proposed that a minimum threshold of exposure to a topo 1 inhibitor (i.e., continuous inhibition) must be achieved for optimal antitumor activity and that a higher dose intensity enhances toxicity but not tumor regression.9−11 To improve delivery of SN-38, numerous PEG conjugates of CPT-11 or SN-38 with cleavable ester-containing linkers have been developed.12 Although these are somewhat longer acting than CPT-11, they still achieve a time-over-target concentration for only a small fraction of the dosing schedules used. Indeed, none of the current conjugates maintains the concentration of free SN-38 over the target threshold for protracted periods, nor are they able to because, unless somehow protected, they are limited by the relatively short half-lives of 12 to 30 h for hydrolysis of ester linkages.1−4 In addition, all of the current SN-38 prodrugs show high C\textsubscript{max} values of SN-38 that likely contribute to toxicities.

RESULTS

Synthesis. On the basis of procedures described for conjugation of phenols to β-eliminative linkers,7 we prepared PEG−SN-38 conjugates 14A−E and 16D,E (Scheme 3). For the carbamate stabilizer, we used 4-NH\textsubscript{2}PhCON(Et)\textsubscript{2} (pK\textsubscript{a} 3.5) because of its suppression of SN1 solvolysis of analogous compounds7 and its relationship to amides of p-aminobenzoic acid that are generally safe. Azidoalcohols 10A−E were converted to N-aryl carbamates 11A−E via chloroformate reaction with 4-NH\textsubscript{2}PhCON(Et)\textsubscript{2}. The carbamates were treated with TMSCl/paraformaldehyde to provide the reactive N-chloromethyl carbamates 12A−E. Reaction of 12A−E with the SN-38 10-oxyanion (10-OH, pK\textsubscript{a} 8.56)13 gave the corresponding C-10 ethers 13A−E, which were connected to 4-arm PEG\textsubscript{40kDa}-(DBCO)\textsubscript{4} by Cu-free click chemistry to form PEG conjugates 14A−E in near quantitative yield.14 To synthesize a less hydrophobic conjugate that was more economical to prepare, we developed a method to attach the linker to PEG via an amide bond. Here, azido linker−SN-38 13D,E were reduced with Me\textsubscript{3}P to the corresponding amine linker−SN-38 analogues 15D,E, which were reacted with 4-arm PEG\textsubscript{40kDa}-N-hydroxysuccinimido ester to give 16D,E.

Solvolysis Products of N-Aryl-N-SN-38−CH\textsubscript{2}-carbamates. The solvolysis products of N-aryl-N-SN-38−CH\textsubscript{2}-carbamates 13 and 14 identify the pathways of SN-38 release. β-Eliminative cleavage (Scheme 2, path A) should give SN-38, the aryl amine, and an alkene (ModCH═CHR), whereas
spontaneous (path B) or acid-catalyzed (path C) reactions should both provide SN-38 and N-aryl carbamate 11. Over most of the pH range studied, the insolubility of the SN-38 product required use of such low concentrations (≤ 10 μM) that aryl amine could not be detected by HPLC−UV. However, SN-38 is ionized at low and high pH (pKₐ 1.4 and 8.6 ¹³) and is significantly more soluble. At pH 0, the azido linker−carbamate 13C (~40 μM) disappeared with concomitant production of SN-38 (t₁/₂ ~ 12 min); an intermediate presumed to be N-HOCH₂−11C initially appeared that converted to final product 11C. The analogous PEG−SN-38 conjugate 14C released the expected SN-38, leaving the aryl amine coupled to PEG as the acid-stable N-aryl carbamate. At pH 10.5, the azide linker−carbamate 13C produced stoichiometric quantities of SN-38 and 4-NH₂PhCON(Et)₂ at the same rate (t₁/₂ ~ 6 min). Stable analogue 13E produced SN-38 and carbamate 11E in acid or basic media.

In Vitro Kinetics of SN-38 Release. The kinetics for solvolysis of the SN-38-containing carbamate without a pKₐ modulator (14E), described by eq 1, shows an acid-catalyzed rate between pH 0 and 5.5 with a slope of −1.0 in a log kₐobsd versus pH plot; at higher pH, the rate was pH-independent up to at least pH 9.4. Determinations of spontaneous rates were limited by difficulties of measuring the extremely slow reaction. Conjugates containing pKₐ modulators (14A−D and 16D) show an additional hydroxide-catalyzed rate, as in eq 2.

\[
k_{\text{obsd}} = k_{H^{+}}[H_{3}O^{+}] + k_{H_{2}O}
\]

\[
k_{\text{obsd}} = k_{H^{+}}[H_{3}O^{+}] + k_{H_{2}O} + k_{OH^{-}}[OH^{-}]
\]

Solvolysis of 14A−D possessing pKₐ modulators were likewise first order in hydronium ion between pH 0 to ~4.5 (Figure 1 and Table 1) and first order in hydroxide ion at pH...
ether. They are, however, 6- to 8-fold faster than reported of the higher acidity of the initially formed carbamic acids.7 The solvolysis of 14C (●) was fit to eq 2 from pH 0 to 11.5 using the $k_{\text{H,O}}$ rate of 14E; the slope from pH 0 to 4 is $−1.0$ ($r^2 = 0.989$) and from 6 to 11.5 is $+1.0$ ($r^2 = 0.999$).

≥6. The rate of S_N1 solvolysis of 14C, as estimated by the S_N1 reaction of 14E, was in agreement with the nadir of the pH–log k_{obsd}. Also, the S_N1 reaction of 14E was ~7-fold slower than the corresponding p-nitrophenyl ether, which is in accord with the finding that rates of such reactions are inversely related to the pK_a of the leaving group.15 Of primary relevance are the base-catalyzed rates dictated by the pK_a modulators and the difference between these rates and the spontaneous solvolysis rate at physiological pH. The acid-catalyzed rates, which are independent of the pK_a modulator, primarily provide guidance in handling of samples in pharmacokinetic studies to prevent ex vivo hydrolysis and to assist design of long-term storage conditions.

Table 1 shows that the rates of base-catalyzed β-elimination are directly related to the electron-withdrawing ability of the modulator, and at pH 7.4, they have half-lives ranging from ~9 to 450 h. The rate of 14A is only slightly slower than that of the analogous p-nitrophenyl ether, indicating little dependence of the β-elimination reaction on the leaving group pK_a of the ether.7 They are, however, 6- to 8-fold faster than reported simple primary carbamates with the same modulators because of the higher acidity of the initially formed carbamic acids.7 Importantly, β-elimination rates dominate the significantly slower spontaneous S_N1 hydrolysis at physiological pH. It is noteworthy that for 14D and 16D the solvolysis rates are relatively unaffected by the spatially remote DBCO or amide connectors to the PEG macromolecule.

Mechanism. The pH-independent spontaneous hydrolysis of 14E has precedence in the analogous reactions of N-substituted N-aryloxy-7,15 and N-acyloxy-methyl16 carbamates. There is a spontaneous release of the leaving group with assistance of an iminium ion intermediate (Scheme 2, path B).

The acid-catalyzed solvolysis is first order in hydronium ion from pH 0 to ~4.5, indicating preprotonation of a site with $pK_a < 0$ prior to cleavage. The quinoline nitrogen of SN-38 has a pK_a of 1.4,15 but its protonation is not apparent from the pH–log k_{obsd} profile (Figure 1). Thus, the kinetically relevant protonation must occur at a site remote from and unaffected by protonation of quinoline nitrogen. Because it is unlikely that protonation of the ether linkage of 14 would be unaffected by protonation of SN-38, the site of preprotonation may be the carbonyl oxygen, as proposed for analogous aryl ethers.7

As with other β-eliminative carbamates6,7 conjugates with a pK_a modulator, 14A–D showed release rates of SN-38 that were first order in hydronium ion (Table 1). In the absence of an ionizable proton at the β-position of the carbamate (i.e., 14E), SN-38 release was extremely slow and did not exhibit hydroxide-ion catalysis. Thus, as shown for related ethers7 and depicted in Scheme 2, path A, the base-catalyzed reaction involves β-eliminative cleavage of the O-alkyl bond of the carbamate to form carbamic acid 5; subsequently, there is decarboxylation, which, from related models,17 is acid-catalyzed, followed by spontaneous collapse18 of the neutral Mannich base 6 to give CH$_2$O, the aryl amine, and SN-38.

We desired to determine whether the rate of decarboxylation of the carbamic acid 5 ($k_{[\text{H}_2\text{O}^+]}$, Scheme 2) or collapse of the Mannich base intermediate 6 (k_β, Scheme 2) was slow enough to allow accumulation of intermediates at physiologic pH. For this, we used a previously described7 kinetic approach that allows an estimate of the lower limit of the rate of collapse of these intermediates at pH 7.4. The rationale is that over the pH range where the hydroxide-catalyzed β-elimination is slow compared to subsequent rates the pH–log rate profile has a slope of ~1. If the hydroxide-catalyzed rate becomes faster than subsequent reactions, then the pH–log rate profile will have a slope of ~1 or 0, depending on the new rate-determining step. Thus, the rate at the highest pH where SN-38 release remains first order in hydronium ion and assignment of a lower limit on the error of reaction of either intermediate at that pH. Because the rate of reaction either remains the same (spontaneous Mannich base collapse18) or decreases (acid-catalyzed decarboxylation)17) at lower pH, this rate also corresponds to a lower limit of the overall rate of SN-38 release at pH 7.4.

Above pH 8.5, we could directly observe formation of the 10-phenolate ion of SN-38 by continuous spectrophotometric assay, which monitors the relevant C–O bond cleavage step. The log k_{obsd} versus pH profile for SN-38 formation from 14A,C show a slope of ~1 to at least pH 11.5. Here, $t_{1/2}$ for 14A was ~3 s, so neither intermediate 5 or 6 in Scheme 2, path A have a $t_{1/2} > 3$ s at that or lower pH. Thus, we conclude that

![Figure 1. pH–log k_{obsd} profile for solvolysis of 14A,C. For 14A (—■—), the slope is $+1.0$ ($r^2 = 0.993$) between pH 8.7 and 11.5. The solvolysis of 14C (●) was fit to eq 2 from pH 0 to 11.5 using the $k_{\text{H,O}}$ rate of 14E; the slope from pH 0 to 4 is $−1.0$ ($r^2 = 0.989$) and from 6 to 11.5 is $+1.0$ ($r^2 = 0.999$).](image)

Table 1. Rates of SN-38 Cleavage from PEG–SN-38 Conjugates

<table>
<thead>
<tr>
<th>R</th>
<th>$k_{\text{H,O}}$, M$^{-1}$ h$^{-1}$a</th>
<th>k_{cat}, M$^{-1}$ h$^{-1}$ × 10$^{-3}$a</th>
<th>$t_{1/2}$ h, pH 7.4</th>
<th>$t_{1/2}$ h, in vivob</th>
</tr>
</thead>
<tbody>
<tr>
<td>14E</td>
<td>H-</td>
<td>9.5 ± 3.0</td>
<td>NA</td>
<td>3600c</td>
</tr>
<tr>
<td>14A</td>
<td>PhSO$_2$CH$_2$-</td>
<td>1.2 ± 0.5</td>
<td>301 ± 60</td>
<td>9.2</td>
</tr>
<tr>
<td>14B</td>
<td>MeSO$_2$CH$_2$-</td>
<td>1.6 ± 0.7</td>
<td>34 ± 4.0</td>
<td>82</td>
</tr>
<tr>
<td>14C</td>
<td>O(CH$_2$CH$_2$)$_2$NSO$_2$CH$_2$-</td>
<td>2.4 ± 0.4</td>
<td>25 ± 3.8</td>
<td>110</td>
</tr>
<tr>
<td>14D</td>
<td>NCCH$_2$ (DBCO)</td>
<td>1.4 ± 0.6</td>
<td>6.5 ± 0.6</td>
<td>420</td>
</tr>
<tr>
<td>16D</td>
<td>NCCH$_2$ (amide)</td>
<td>2.2 ± 0.6</td>
<td>6.1 ± 0.1</td>
<td>450</td>
</tr>
</tbody>
</table>

aValues are from best fits to first-order acid- or base-catalyzed reactions ± SD. bFrom Table 2. cCalculated from $k_{\text{H,O}} = 0.19 × 10^{-3}$ h$^{-1}$ at pH 6.0–9.5.
both intermediates decompose rapidly and would not significantly accumulate at pH 7.4.

Pharmacokinetics. For pharmacokinetic studies of releasable PEG conjugates with slow cleavage rates, the longer t1/2 of PEG in the rat (ca. 30–40 h) compared to mouse (12–24 h) makes it the preferred rodent model. PEG–SN-38 conjugates 14A–E and 16D,E were administered i.v. to rats, blood samples were removed at various times and immediately quenched in acidified citrate to avoid ex vivo linker cleavage, and plasma was obtained by centrifugation; samples were analyzed by HPLC using UV and fluorescence detection.

Pharmacokinetic data for PEG–SN-38 conjugates, SN-38, and SN-38G in the rat were fit to a two-compartment model depicted in Figure 2 (see Supporting Information for derivations); relevant data with selected values normalized to constant PEG–SN-38 concentrations are summarized in Table 2, and all original data is provided in the Supporting Information. In a separate experiment, Cmax and AUC were linear over a range of at least 1 to 4 μmol of 16D. For comparison, reported pharmacokinetic parameters after a 60 mg kg−1 bolus dose of CPT-11 in rats that gave a SN-38 Cmax similar to that from 16D (0.38 nM) were Cmax_CPT-11 47 nM and t1/2_CPT-11 2.8 h, Cmax SN-38 0.43 nM and t1/2 SN-38 8 h, Cmax SN-38G 0.81 nM and t1/2 SN-38G 9.2 h, and AUC SN-38G/AUC SN-38 5.5.

Preliminary pharmacokinetic experiments of 16D, 16E, and CPT-11 were also performed in the African green monkey. Overall, the AUC of SN-38 derived from CPT-11 over the first 4 h was only ~2% of CPT-11, but SN-38G was formed in large amounts such that AUC SN-38G/AUC CPT-11 was 0.32 and AUC SN-38G/AUC SN-38 was 15. In view of the high SN-38 + SN-38G derived from CPT-11 (33%), it is likely that, as suggested for the rhesus monkey,20 the low levels of SN-38 are a consequence of high glucuronidation rather than decreased production. In striking contrast, 16D gave similar SN-38 levels as in rats and a very low AUC SN-38G/AUC SN-38 of 0.23. Interestingly, the linker cleavage t1/2 in the monkey (360 h) was almost identical to that in the rat (362 h), indicating that the SAR of in vitro versus in vivo cleavage6 likely holds in animals other than rodents.

Finally, we saw no free SN-38 in plasma of rats or monkeys treated with stable conjugates 14E and 16E that cannot undergo β-eliminative release; because we can detect SN-38 at levels <0.1% of conjugate (e.g., 16D, Table 2), we conclude that there is no significant carbamyl hydrolysis that might arise from the action of some unidentified protease or esterase.

We have shown6 that the steady-state rate for loss of a cleavable conjugate is kβ = k1 + kγ, where k1 is the rate constant for β-elimination and kγ is the renal elimination rate of the conjugate. The kβ values were estimated for the DBCO- and amide-linked conjugates using the elimination rate of the corresponding stable conjugates, 14E or 16E, as surrogates that can only undergo clearance. Examples of the method to determine in vivo cleavage rates, kγ, are given in Figure 3AB, with complete data for all conjugates presented in Table 2. Figure 3C,D shows the C versus t profiles of PEG–SN-38 conjugates, SN-38, and SN-38G with the highest and lowest kβ values, respectively. As shown, the PEG–SN-38 conjugates give very low levels of SN-38G, with AUC SN-38G/AUC SN-38 ratios ranging from only 0.08 to 0.2, and the ratios track the rate of linker cleavage, kβ.

DISCUSSION

Rationale for Slow-Releasing PEG–SN-38 Conjugates.

Topo 1 inhibitors, such as SN-38, bind and stabilize the enzyme–DNA covalent complex to prevent DNA religation during S phase and thus cause time-dependent DNA damage and apoptosis. Because binding is reversible, constant exposure to the inhibitor is needed to maintain the complex until irreversible events occur that lead to cell death.21,22 Inhibitors of topo 1 also show a time-dependent increase of in vitro cytotoxicity.23,24

Preclinical and clinical studies have also suggested that low-dose, prolonged exposure of topo 1 to inhibitors may be less toxic and more efficacious than conventional high-intensity treatments. It has been convincingly demonstrated that continuous infusion of CPT-11 over 4 days is significantly less toxic than equivalent four daily bolus doses.19 Houghton et al.9–11 showed that the efficacy of CPT-11 in human tumor xenografts and in humans is highly schedule-dependent: a given dose administered on a protracted schedule over 21 days was more efficacious than dose-intensive schedules. They proposed that a minimum threshold of the drug must be maintained over long periods for optimal antitumor activity; higher dose-intensity did not provide further benefit, but it enhanced toxicity. Several phase 1 clinical trials of low-dose continuous infusions, including 1 to over 9 weeks of CPT-11, yielded steady-state levels of SN-38 of ~3 to 15 nM, confirming the tolerability and feasibility of low, protracted dosing.25–28 Similar phase 1 trials of continuous infusions of the topo 1 inhibitor topotecan also showed activity in several tumors,29–32 again suggesting that efficacy may be achieved by time-over-target inhibition. Thus, topo 1 inhibitors may display exposure-time-dependent rather than concentration-dependent cytotoxicity: achieving a high inhibitor concentration for a short period does not necessarily produce the same effect as maintaining a low concentration for a prolonged period, even if the total AUC per treatment period is equal.

Although promising, none of the phase 1 trials of protracted continuous infusion of topo 1 inhibitors have been taken forward in adequately powered clinical trials; a major impediment is the impractical requirement for continuous infusions to a large number of patients. A possible solution to this problem is to use long-lived macromolecular drug conjugates that slowly release the drug at low levels over long periods. Toward that end, numerous macromolecular conjugates of CPT analogues have been prepared and stud-
ied,12,33,34 in the forefront are three PEGylated conjugates with cleavable ester linkers that have yielded promising results in clinical trials: NKTR-102,35,36 a PEGylated CPT-11 with a Gly-ester linkage to the C-20 alcohol, ENZ-2208, an analogous PEGylated SN-38,3,37,38 and NK-012, a soluble PEG ester linkage to the C-20 alcohol, ENZ-2208, an analogous conjugate and not the cleavage \(t_{1/2} \) of the released drug. Hence, in addition to variations in metabolism and probably involve serum esterase(s) thus, much of the exposure is dominated by the early release of SN-38, but the drug remains over target for only ~2 days; thus, much of the exposure is “wasted AUC”. Also shown is a \(C_\text{max} \) versus \(t \) simulation in humans for SN-38 released from a PEG–SN-38 conjugate, 16D, that uses a \(\beta \)-eliminative linker with a much longer cleavage \(t_{1/2} \) of 362 h. By dosing q3wk, SN-38 can be kept above a target threshold of 5 nM (or higher with increased dose) for the duration of treatment with a very low \(C_\text{max} \) and peak-to-trough ratio. Here, unlike the conjugates linked by esters, \(t_{1/2} \) is limited by clearance of the PEG–SN-38 conjugate and not the cleavage \(t_{1/2} \) of the linker. Importantly, although the estimated AUC of the SN-38 released by this conjugate is similar to that of NK-012, the exposure displays time dependence rather than concentration dependence. On the basis of the above, we undertook the current studies to develop PEG–SN-38 conjugates that would release continuous low levels of SN-38 for protracted periods, mimicking a continuous infusion insofar as possible with a single injection.

Chemistry of PEG–SN-38 Conjugates

In the present work, we used \(\beta \)-eliminative linkers of carbamates adapted for use in conjugates containing an ether linkage. The approaches for synthesis and mechanistic evaluation follow directly from previous studies.7 Thus, PEG–SN-38 conjugates 14A–E containing a DBCO-derived triazole connector between the drug and macromolecule were prepared by a four-step process.

Pharmacokinetic Parameters for PEG–SN-38 Conjugates 14 and 16, Released SN-38 and SN-38G in the Rat

<table>
<thead>
<tr>
<th>conjugate</th>
<th>R-R-PEG connector</th>
<th>H-DBCO</th>
<th>H-DBCO</th>
<th>PhSO₂CH₂-</th>
<th>MeSO₂CH₂-</th>
<th>O(CH₂)₂NOS₂CH₂-</th>
<th>NCCH₂-</th>
<th>NCCH₂-</th>
</tr>
</thead>
<tbody>
<tr>
<td>14E</td>
<td></td>
<td>0.22</td>
<td>0.54</td>
<td>2.3</td>
<td>1.0</td>
<td>3.8</td>
<td>3.1</td>
<td>4.9</td>
</tr>
<tr>
<td>16E</td>
<td></td>
<td>86</td>
<td>36</td>
<td>379</td>
<td>116</td>
<td>579</td>
<td>387</td>
<td>623</td>
</tr>
<tr>
<td>14A</td>
<td></td>
<td>0.011</td>
<td>0.055</td>
<td>0.025</td>
<td>0.032</td>
<td>0.025</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>14B</td>
<td></td>
<td>39</td>
<td>58</td>
<td>9</td>
<td>28</td>
<td>30</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>14C</td>
<td></td>
<td>2132</td>
<td>1786</td>
<td>3632</td>
<td>3076</td>
<td>12 440</td>
<td>7588</td>
<td>16 664</td>
</tr>
<tr>
<td>14D</td>
<td></td>
<td>47.485</td>
<td>16 043</td>
<td>7738</td>
<td>15 072</td>
<td>16 041</td>
<td>11 994</td>
<td>16 664</td>
</tr>
<tr>
<td>16D</td>
<td></td>
<td>713</td>
<td>178</td>
<td>377</td>
<td>250</td>
<td>319</td>
<td>187</td>
<td>199</td>
</tr>
<tr>
<td>SN-38</td>
<td></td>
<td>1.4</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>N–C₆H₆–SN-38</td>
<td></td>
<td>2.98</td>
<td>0.28</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>16D</td>
<td></td>
<td>9</td>
<td>34</td>
<td>38</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>N–C₆H₆–SN-38</td>
<td></td>
<td>13.1</td>
<td>6</td>
<td>4.2</td>
<td>10.9</td>
<td>10.9</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>SN-38G</td>
<td></td>
<td>27.9</td>
<td>7.7</td>
<td>6.6</td>
<td>10.9</td>
<td>10.9</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>N–C₆H₆–SN-38</td>
<td></td>
<td>1.27</td>
<td>0.154</td>
<td>0.065</td>
<td>0.137</td>
<td>0.137</td>
<td>0.137</td>
<td>0.137</td>
</tr>
<tr>
<td>N–C₆H₆–SN-38</td>
<td></td>
<td>2.71</td>
<td>0.20</td>
<td>0.10</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Ratios</td>
<td></td>
<td>0.277</td>
<td>0.019</td>
<td>0.017</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>AUC₆H₆–SN-38/AUC₆H₆–SN-38</td>
<td></td>
<td>0.590</td>
<td>2.7</td>
<td>0.83</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>N–C₆H₆–SN-38</td>
<td></td>
<td>0.75</td>
<td>1.07</td>
<td>0.71</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
</tbody>
</table>

*Not applicable or not determined. The prefix N- with an italicized entry designates that values have been normalized to a constant dose of 4.9 μmol of SN-38 content in PEG–SN-38 conjugate 16D. C₀ is the concentration at \(t = 0 \) extrapolated from \(t_{1/2} \).
sequence used for analogous ethers of p-nitrophenol (Scheme 3). Conjugates 16D,E containing a less hydrophobic amide connector were prepared by diverting intermediates 13D,E to prepare amines 15D,E used for acylation with a 4-armed PEG40 kDa-HSE.

Solvolysis of conjugates with stable linkers (14E, 16E) at all pH values and those containing modulators (14A–D and 16D) in acidic media gave SN-38 and the N-aryl carbamate as final products, indicating initial cleavage of the methylene adaptor–oxygen bond. In contrast, solvolysis of the conjugate containing pKₐ modulators at pH > 6 yielded SN-38, the PEG-alkynylsulfone, and 4-(Et)_2NCOPhNH₂ as products, indicating initial β-eliminative O-alkyl cleavage of the carbamate bond.

Kinetic studies of solvolysis of PEG–SN-38 conjugates showed spontaneous, hydronium-ion-, and hydroxide-ion-catalyzed reactions. The acid-catalyzed reaction involves pre-equilibrium protonation of the reactant followed by rate-determining cleavage to SN-38 and the unstable carbamate iminium ion (Scheme 2); the latter would rapidly hydrate to the N-hydroxymethyl carbamate and lose formaldehyde in acidic media. Because of several kinetically equivalent mechanisms, it was impossible to assign the exact site of initial protonation from the available data. The precise contribution of the uncatalyzed S₉,1 pathway cannot be ascertained with linkers containing a pKₐ modulator because of competing, more rapid hydroxide-catalyzed β-elimination, but it could be estimated from the nadir of the pH rate profile and the spontaneous solvolysis of stable carbamate 16E. In the present case, the t₁/₂ of S₉,1 solvolysis of 16E, and hence 14A–D and 16D, at pH 7.4 is estimated to be ~3600 h.

The specific base-catalyzed β-eliminative cleavage is driven by the electron-withdrawing effect of the pKₐ modulator on the adjacent C–H bond. Depending on the modulator used, the t₁/₂ values at pH 7.4 ranged from ~10 to 450 h, all significantly faster than the ~3600 h t₁/₂ for S₉,1 cleavage. The initial step is the cleavage of the O-alkyl bond of the carbamate to give a carbamic acid, which undergoes decarboxylation to the Mannich base and hence would not accumulate to any significant extent in vivo.

Pharmacokinetic Studies. Accurate determination of SN-38 blood levels in the presence of high levels of cleavable PEG–SN-38 conjugates is challenging. In addition to the high sensitivity needed for SN-38 and SN-38G analysis, precautions are needed to minimize ex vivo cleavage of the relatively high amount of PEG–SN-38 present (up to ~1800:1 in the present work). A low level of linker cleavage of the conjugate at pH 7.4, occurring after only a few minutes, can result in artifactual increases in free SN-38. Thus, drawn blood samples were rapidly quenched with cold, acidified citrate to pH ~5.5, and plasma samples were never subjected to conditions (e.g., strong acid) shown to catalyze cleavage. PEG–SN-38 and free SN-38 are easily separated from interfering substances on HPLC and quantitated by UV-fluorescence; however, the SN-38G peak co-eluted with an interfering fluorescent substance from plasma that prevented high-sensitivity analysis. Hence, independent measurements of SN-38G were made after acid treatment to convert it to its lactone form that eluted in a region free of interfering substances.
The cost of prolonged release of SN-38 from the conjugates is a decreased efficiency of drug utilization; that is, when \(t_{1/2,\text{cleavage}} \gg t_{1/2,\beta} \), the efficiency of SN-38 delivery \([k_f/(k_i + k_f)] \) is limited by the residence time of PEG. For example, 1A has a relatively high rate of drug release \((t_{1/2} \approx 12 \text{ h}) \) compared to renal elimination \((t_{1/2} \approx 39 \text{ h}) \) but delivers \(\sim 76\% \) of its SN-38 cargo; in contrast, 16D, with a very slow cleavage \((t_{1/2} \approx 362 \text{ h}) \) delivers only \(12\% \) of its SN-38 in the rat, whereas the remainder is excreted unchanged. In humans, the \(t_{1/2,\beta} \) of 16D is estimated to be \(\sim 7 \text{ days} \) (Figure 4), so the efficiency of SN-38 utilization is increased to \(\sim 32\% \). Thus, an appropriate balance must be reached between the duration of action desired and the economics of SN-38 utilization.

Clearly, it would be desirable to use conjugates with the longest circulating residence times possible. In the cleavable PEG–SN-38 conjugates with a –CN pKₐ modulator (14D and 16D) and their stable counterparts (14E and 16E), both DBCO and a simple amide were tested as connecting groups to PEG in the rat. Interestingly, although the cleavage rates were the same, conjugates with simple amide connections to PEG (16D and 16E) showed \(\sim 50\% \) longer \(t_{1/2,\beta} \) Values and over 2-fold increased exposure than corresponding conjugates with a hydrophobic DBCO connection (14D and 14E). The SN-38 released from amide-linked 16D also showed \(\sim 1.6\)-fold increase in AUC compared to the DBCO-linked 14D. It appears that SN-38 increases \(t_{1/2,\beta} \) of the conjugates, whereas the concurrent presence of the hydrophobic DBCO remnant decreases it. It is likely that the SN-38 moiety on the conjugate prolongs \(t_{1/2,\beta} \) through its high-affinity binding (\(\sim 99\% \)) to plasma proteins and blood cells.\(^{43}\) Because the circulating lifetime of conjugates with slow cleavage rates are limited by renal elimination, an extension of the residence time, as in 16D, makes the conjugate a more efficient source of SN-38 that would require less frequent administration.

Primary objectives of this work were to develop cleavable PEG–SN-38 conjugates that release SN-38 (a) with predictable long half-lives, (b) with low Cₘₐₓ values, and (c) that can be kept above a target concentration for too long in inhibition for very long periods. In vivo \(t_{1/2} \) values for cleavage of PEG–SN-38 conjugates with various pKₐ modulators vary from \(\sim 12 \) to \(360 \) h and agree reasonably well with in vitro \(t_{1/2} \) values at \(\text{pH} \, 7.4 \) (Table 1). Most are considerably longer than the \(12 \) to \(20 \) h \(t_{1/2} \) values reported for PEG–SN-38 conjugates that require ester cleavage. Whereas the \(t_{1/2,\beta} \) of SN-38 in the rat is about \(\sim 22 \text{ min} \),\(^{44}\) the \(t_{1/2,\beta} \) of the SN-38 released from the conjugates vary from \(8 \) to \(50 \) h, up to a 135-fold half-life extension. In rodents, the rapid renal elimination of 4-arm PEG\(_{40kDa}\) \((t_{1/2} \sim 1 \text{ day in mice, } 2 \text{ days in rat}) \) does not illustrate the full potential of slowly cleaved linkers in humans, where the renal elimination of PEG is much slower \((t_{1/2} \sim 5 \text{ to } 7 \text{ days}) \). Because the rate of linker cleavage is species-independent, knowledge of the \(t_{1/2} \) of PEG and pharmacokinetics of the drug in species of interest allows cross-species modeling.\(^{45}\) Thus, we simulated the C versus \(t \) for free SN-38 from our lead conjugate 16D in humans, which was presented in Figure 4. As shown, SN-38 can be kept above a target concentration of \(5 \text{ nM} \) for at least \(1 \text{ week} \) with a very low Cₘₐₓ and peak-to-trough ratio. Indeed, the Cₘₐₓ of SN-38 in the simulation is \(\sim 20- \) to 30-fold lower than reported for NK-012 and Enz-2208, two ester-linked PEG–SN-38 conjugates in clinical trials.\(^{38,39}\)

It is of interest to compare the plasma SN-38 levels in rats treated with PEG–SN-38 conjugates to those treated with CPT-11. In a study of the toxicity of CPT-11 as a function of dosing schedule, rats were administered a very high \(60 \text{ mg (102} \mu\text{mol}) \) CPT-11 kg\(^{-1}\) day\(^{-1} \times \) \(4 \) as daily boluses or as a continuous infusion.\(^{19}\) Serious acute and delayed-onset diarrhea and myelosuppression observed in the bolus injection group were alleviated in the continuous infusion group, illustrating the lower toxicity that can be achieved by time- versus dose-dependent exposure. Nevertheless, SN-38 exposure increased from \(1.9 \mu\text{M} \) in the bolus dosing to \(3.0 \mu\text{M} \) in the 4 day infusion, whereas Cₘₐₓ dropped from 0.43 to 0.15 \(\mu\text{M} \). After normalizing the \(20 \mu\text{mol} \text{ kg}^{-1} \) dose of 16D to \(5.5 \mu\text{mol} \), 3.6-fold lower than in Table 2, the exposure of SN-38 derived from a single dose of the PEG–SN-38 conjugate is estimated to be \(3 \mu\text{M} \), whereas Cₘₐₓ is \(0.17 \mu\text{M} \), closely matching parameters of the SN-38 formed during continuous infusion of CPT-11. Conjugate 16D also showed an AUC\(_{\text{SN-38G}}/\text{AUC}_{\text{SN-38}} \) of 0.08, which is dramatically lower than the 3.6 ratio observed in the 4 day infusion of CPT-11. Thus, with exception of the 45-fold lowering of the glucuronidation ratio, the SN-38 released from a single dose of 16D closely mimics the SN-38 formed in the 4 day CPT-11 continuous infusion.

The current study has implications for issues of toxicity and interpatient variability frequently observed with other SN-38 prodrugs, namely, CPT-11 and esterase-cleavable PEG–SN-38 and CPT-11 conjugates. CPT-11 is the most widely used prodrug of SN-38; its metabolism is well-understood\(^{45}\) and explains the late-onset severe diarrhea caused by toxicity to intestinal cells. As illustrated in Figure 5A, CPT-11 is converted into SN-38 by hepatic carboxysterse (CE), which is then metabolized by hepatic UGT1A to its 10-glucuronide, SN-38G. Glucuronidation facilitates biliary excretion, and bacterial \(\beta \)-glucuronidase causes conversion of SN-38G to SN-38 in the cecum and colon. Unless intestinal UGT1A converts the drug to SN-38G, SN-38G serves as a protection against CE-mediated toxicity to the intestine. Thus, as a precursor of SN-38, SN-38G is a source of the intestinal toxin, and as an inert product of SN-38 glucuronidation, SN-38G serves as a protection against intestinal toxicity.
bolus SN-38, or esterase-cleavable PEG–SN-38 or CPT-11 conjugates results in plasma AUC_{SN-38}/AUC_{SN-38} ratios that can approach 10- to over 100-fold higher than we observe with 16D. Preliminary results on the pharmacokinetics of 16D and CPT-11 in the African green monkey track those observed in the rat; that is, the AUC_{SN-38}/AUC_{SN-38} ratio is extremely high for CPT-11 and extremely low for 16D. Thus, the low SN-38G levels observed for our PEG conjugates in the rat are not due to peculiarities specific to rodents. Although the results may at first seem paradoxical, there is a congruent mechanism that explains the uniquely low SN-38G levels observed here and suggests its relevance to chemotherapy.

In the case of CPT-11, the source of hepatic SN-38 is CE metabolism in the liver; because high blood levels of CPT-11 drive its hepatic uptake, CPT-11 acts as a large and efficient probe of hepatic metabolism in the liver; because high blood levels of CPT-11 transport CPT-11 or SN-38G. Thus, diuron conjugates described here enter the liver primarily via the organic anion transporter OATP1B1, which does not transport CPT-11 or SN-38G. Thus, differential hepatic uptake can explain why CPT-11 results in higher levels of hepatic and plasma SN-38G and hence higher intestinal SN-38 than the very low levels of SN-38 delivered to the liver by the conjugates described here. It appears that the high systemic SN-38G observed after CPT-11 treatment reflects its high hepatic uptake and the detoxification effects of liver and intestinal UGT1A glucuronidation against intestinal exposure to SN-38. However, if SN-38G is the source of enterotoxic SN-38, it may be surmised that intestinal toxicity and blood SN-38, with myelosuppression, it affects low hepatic uptake of SN-38, it may be surmised that intestinal exposure to SN-38 would likewise be low.

Bolus SN-38 or esterase-cleavable PEG–SN-38 conjugates also produce SN-38G, albeit not at the high levels seen with CPT-11 or the low levels observed with SN-38 conjugates described here; for example, the AUC_{SN-38}/AUC_{SN-38} of NK-012 is 1:1 (Figure 4). Because liver SN-38 is associated with intestinal toxicity and blood SN-38, with myelosuppression, it may not be coincidental that the DLT of many PEG–SN-38 prodrugs is neutropenia rather than diarrhea, which can be alleviated by treatment with G-CSF. The long-lived PEG–SN-38 conjugates described here, such as 16D, show even lower SN-38G than bolus SN-38 or esterase-cleavable PEG–SN-38. This may be explained by the comparatively high C\textsubscript{max} of free SN-38 that occurs with bolus injection or with the shorter-lived esterase-cleavable conjugates. With these, SN-38 should enter the liver via OATP1B1 in proportion to plasma levels (i.e., C\textsubscript{max} effect) because SN-38 levels never exceed the ~20 μM K\textsubscript{m} of the transporter.

A prodrug of SN-38 such as 16D that does not produce significant SN-38G might also result in less interpatient variability than CPT-11 because major sources of variability with CPT-11, namely, CE and Cyp3A, are not involved and UGT1A is not as important. Thus, if the low SN-38G levels formed from long-acting PEG–SN-38 conjugates in the rat translate to humans, then we may achieve therapeutic SN-38 levels without enteric injury and with lower interpatient variability than currently used SN-38 prodrugs.

CONCLUSIONS

We have described the synthesis of PEG–SN-38 conjugates linked by a series of cleavable β-eliminative linkers, their mechanisms of SN-38 release, and their pharmacokinetic properties in rats. Results show that such conjugates provide a unique pharmacokinetic profile to the released SN-38 that differs dramatically from those reported for other SN-38 prodrugs, including CPT-11. First, the presence of SN-38 on the conjugates greatly increases its circulatory residence time, providing a benefit in the duration of action and efficiency of drug delivery. Second, using linkers with very long half-lives for cleavage, SN-38 is delivered with a low C\textsubscript{max} yet at concentrations that keep the drug over presumed target levels for sustained periods. Third, very low levels of SN-38G are formed, suggesting that toxicities and other pharmacodynamic variabilities seen with other SN-38 prodrugs may be decreased. Last, as well established with other PEG–SN-38 conjugates, we expect accumulation of our conjugates in tumors by the EPR effect and consequent high intratumoral concentrations of the released drug. We are hopeful that these properties will faithfully translate to humans.

EXPERIMENTAL PROCEDURES

General. Materials purchased were of the purest grade commercially available. HPLC analyses were reverse-phase and used UV or fluorescence detection. Purity of the tested conjugates was all ≥95% as assessed by HPLC, and SN-38/PEG ≥ 3.98. Animal studies were performed at Invitex (rat) and RxGen (monkey). Details are provided in the Supporting Information.

Synthesis. O-[7-Azido-1-cyano-2-heptyl]-N-[4′-(diethylcarbamoyl)phenyl]carbamate (11D). A solution of 7-azido-1-cyano-2-heptanol 10D (4.6 g, 25.0 mmol) in 200 mL of anhydrous THF was treated with triphosphine (12.5 g, 42.0 mmol) and pyridine (1.6 mL, 50.0 mmol) for 10 min at ambient temperature. The solution was filtered and evaporated to yield the crude chloroforomate, which was dissolved in 200 mL of anhydrous THF and treated with 4-[N,N-diethylcarboxamido]aniline (4.80 g, 25.0 mmol) and triethylamine (7.5 mL, 53.8 mmol) for 1 h. The mixture was diluted with EtOAc and washed successively with water, 1 N HCl, sat. aq. NaHCO\textsubscript{3}, and brine, dried with MgSO\textsubscript{4}, filtered, and evaporated. The crude material was chromatographed on SiO\textsubscript{2} using a step gradient of hexane, 1:1 hexane/EtOAc, and 1:2 hexane/EtOAc. The product crystallized on standing and was recrystallized from 1:1 EtOAc/hexane to provide product 11D (4.4 g, 11.0 mmol, 44%). H NMR (400 MHz, CDCl\textsubscript{3}): δ 7.60 (2H, d, J = 8 Hz; H3\textsubscript{2}), 7.33 (2H, d, J = 8 Hz; H2\textsubscript{2}), 7.07 (1H, br s; NH), 4.98 (1H, m; H2), 3.49 (4H, br s; NCH\textsubscript{2}), 3.27 (2H, t, J = 6.8 Hz; H7\textsubscript{2}), 2.82 (1H, dd, J = 17, 5.3 Hz; H1a), 2.65 (1H, dd, J = 17, 4.4 Hz; H1b), 1.85 (1H, m; H3a), 1.73 (1H, m; H3b), 1.60 (3H, m; H4), 1.43 (4H, m; H5 + H6), 1.16 (6H, br s; CH\textsubscript{2}CH\textsubscript{3}) LC−MS m/z: [M + H+] calcd for C\textsubscript{20}H\textsubscript{29}N\textsubscript{6}O\textsubscript{3}, 401.2; found, 401.2. 4-N-((2-Chloroethyl)carbamate) 11C-E was prepared in a similar fashion and were described in the Supporting Information.

O-[7-Azido-1-cyano-2-heptyl]-N-[SN-38-CH\textsubscript{2}]-N′-[4′-(diethylcarbamoyl)phenyl]carbamate (13D). A mixture of 11D (400 mg, 1.0 mmol), paraformaldehyde (35 mg, 1.5 mmol), chloromethyltrimethylsilane (0.5 mL, 4.0 mmol), and 5 mL of anhydrous toluene was heated at 50 °C in a sealed 20 mL vial for 24 h, at which time a clear solution containing a small amount of precipitate was obtained. HPLC analysis of a 5 μL aliquot diluted into 1.0 mL of 4 mM N,N-diisopropylethylamine in ethanol indicated complete consumption of the starting carbamate (λ\textsubscript{max} 243 nm) and formation of a slightly later-eluting peak (λ\textsubscript{max} 231 nm), consistent with the N-(ethoxyethyl)carbamate of 11D. The solution was cooled to ambient temperature, filtered, and evaporated. The residue was dissolved in 5 mL of dry toluene, filtered, and evaporated to provide 458 mg of an unstable moisture-sensitive yellow oil containing 89% by weight of N′-(chloromethyl)carbamate 12D as determined by the HPLC assay. A 1.0 M solution of KOtBu in THF (250 μL, 0.25 mmol) was added to a solution of SN-38 (100 mg, 0.255 mmol) in 10 mL of 1:1 THF/DMF cooled on ice under nitrogen, forming an initial dark green color that changed to a bright gold suspension. After 15 min, a
solution of the crude N-(chloromethyl)carbamate (190 mg, 0.36 mmol) in 1 mL of THF was added. After 15 min, the pale yellow solution was diluted with EtOAc, washed sequentially with 5% citric acid, water, and brine, then dried over MgSO$_4$, filtered, and evaporated. Excess DMF was removed by trituration of the oily residue with water, and the residue was dissolved in DCM, dried, and then chromatographed on SiO$_2$ using a step gradient of hexane, 20, 40, 60, and 80% acetone in hexane, providing purified azido linker--SN-38 13D as a pale yellow foam (150 mg, 0.186 mmol, 73%). 1H NMR (400 MHz, CDCl$_3$): δ 8.15 (1H, d, J = 9.2 Hz), 7.60 (1H, s), 7.48 (1H, dd, J = 2, 9 Hz), 7.40 (4H, m), 7.25 (1H, d, J = 2), 5.75 (2H, br), 5.73 (1H, d, J = 16 Hz), 5.28 (1H, d, J = 16 Hz), 5.22 (2H, s), 4.99 (1H, m), 3.84 (1H, s), 3.53 (2H, br), 3.53 (2H, br), 3.17 (2H, t, J = 7 Hz), 3.12 (2H, q, J = 7 Hz), 2.74 (1H, dd, J = 1, 17 Hz), 2.54 (1H, dd, J = 5, 17 Hz), 1.86 (2H, m), 1.6 (1H, m), 1.46 (1H, m), 1.37 (3H, t, J = 7 Hz), 1.25 (6H, m), 1.12 (4H, m), 1.02 (3H, m), 0.73 (7H, t, J = 7.3 Hz). LC−MS m/z: [M + H]$^+$ calc for C$_{44}$H$_{51}$N$_{8}$O$_{8}$, 805.3; found, 805.3.

Compounds 1SA−C were prepared in a similar fashion and are described in the Supporting Information. An alternative large-scale preparation of 12D and 13D is described in the Supporting Information.

O-[7-Amino-1-cyano-2-heptyl]-N-(SN-38-CH$_2$)-N-[4'-(diethylcarbamoyl)phenyl]carbamate Acetate (15D). A 1 M solution of trimethylphosphine in THF (2.9 mL, 2.9 mmol) was added to a solution of trimethylamine oxide (500 mg, 6.0 mmol) in 10 mL of THF. Gas was slowly evolved. After stirring for 2 h, water (1.0 mL) was added, and the mixture was stirred for an additional 1 h. The residue was partitioned between ether and water. The water phase was washed with EtOAc, and the clear yellow aqueous phase was evaporated to provide 800 mg of yellow foam. This was dissolved in THF, filtered, and quantitated by UV absorbance to provide a solution containing 1.2 μmol (86%) of product. C$_{18}$ H$_{27}$N$_{2}$O$_{3}$ was determined spectrophotometrically on a 0.45 mg mL$^{-1}$ solution in ACN using A_{433} nm = 22 500 M$^{-1}$ cm$^{-1}$ to be SN-38/PEG = 3.9. Treatment in basic solution released all SN-38.

PEGylated SN-38 16E was prepared in a similar fashion and is described in the Supporting Information. An alternative large-scale preparation of 16D is described in the Supporting Information.

Kinetic Studies. Kinetic studies were performed by HPLC or spectrophotometric determination of SN-38 anion at pH > 8.5 as described for analogous p-nitrophenol ethers.

Pharmacokinetics. Pharmacokinetic studies were performed on female Sprague−Dawley rats (n = 3 for each conjugate), assayed by HPLC, and analyzed by a two-compartment model, as detailed in Figure 2 and in the Supporting Information.

ASSOCIATED CONTENT

Detailed synthetic procedures and analytical and spectroscopic data for compounds as well as kinetic and pharmacokinetic methods. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
E-mail: Daniel.V.Santi@prolynxllc.com. Phone: 415 552 5306.

Notes
The authors declare the following competing financial interest(s): D.V.S, G.W.A., and E.L.S. are inventors on patent applications protecting the compounds and technologies disclosed in this article.

ACKNOWLEDGMENTS

We thank Philip Smith, Pieter Timmermans, and Joseph Dougherty for their comments on this work.

ABBREVIATIONS USED

CPT-11, irinotecan; CPT, camptothecin; DBCO, dibenzoaza-cyclooctyne; EPR, enhanced retention and permeability; HSE, hydroxysuccimide ester; PEG, poly(ethylene glycol); SN-38G, SN-38 10-glucuronide; SN-38, 7-ethyl-10-hydroxy-camptothecin; topo I, topoisomerase 1

REFERENCES

Supporting information

Supporting Information

A macromolecular pro-drug that provides the Irinotecan (CPT-11) active metabolite SN-38 with ultra-long half-life, low C_{max} and low glucuronide formation.

Daniel V. Santi, Eric Schneider and Gary W. Ashley

I. General
II. Syntheses of intermediates
III. Syntheses – PEG-conjugates
IV. Large scale synthesis of 16D
IV. Kinetic studies
V. Pharmacokinetic studies

I. General

Reversed-phase HPLC was performed on a Shimadzu UFLC system fitted with a Phenomenex Jupiter 300A 5u C₁₈ column thermostatted at 40 °C and running an ACN/water/0.1% TFA gradient from 20-100% over 10 min. Size exclusion HPLC used a Phenomenex BioSep S-2000 column running 50% ACN/water/0.1% TFA at 1 mL/min. PEG_{40kDa}-(DBCO)₄ was prepared as described in Ashley et al (2013). Azido-linker-alcohols 10A-E were prepared as described (1). Solutions containing SN-38 were quantitated by UV absorbance using ε_{363 nm} = 22,500 at pH 7, and for ε_{414 nm} = 27,500 M⁻¹ cm⁻¹ at pH 10 (2). NMR spectra were acquired on a JEOL ECX 400 spectrometer, and UV-vis data on a Hewlett Packard 8453 uv-vis spectrometer. SN-38 was from Tecoland Corp. 4-Arm PEG_{40kDa}-(DBCO)₄ was prepared as described (3) and PEG_{40kDa}-(HSE)₄ was from Jenkem Technology.

II. Syntheses of intermediates

O-[7-Azido-1-(Mod)-heptan-2-yl]-N-(SN-38-CH₂)-N-[4'-(diethylcarbamoyl)phenyl)] carbamates (13) and O-[7-Amino-1-(cyano;-H)-heptan-2-yl]-N-(SN-38-CH₂)-N-[4'-(diethylcarbamoyl)phenyl)] carbamate (15).

\[
\begin{align*}
\text{N-Aryl carbamates 11A-C,E were prepared as described for 11D using the appropriate anilines.}
\end{align*}
\]

O-[7-azido-1-(phenylsulfanyl)-2-heptyl]-N-[4'-(diethylcarbamoyl)phenyl)] carbamate (11A): colorless glass (500 mg, 97%). 1H-NMR (400 MHz, CDCl₃): δ 7.94 (2H, m; H3'), 7.61 (1H, m; Ph-H), 7.54 (2H, m; H2'), 7.33 (4H, m; Ph-H), 6.37 (1H, s; NH), 5.25 (1H,
m; H2), 3.52 (1H, dd, J = 14.9, 7.9 Hz; H1a), 3.5 (4H, br s; NCH2), 3.37 (1H, dd, J = 14.9, 3.6 Hz; H1b), 3.25 (2H, t, J = 6.9 Hz; H7), 1.74 (2H, m; H2), 1.57 (2H, m; H3), 1.37 (4H, m; H4+H5), 1.18 (6H, br s; CH2CH3). LC-MS: [M+H]+ = 516.2 (calc. for C25H34N5O5S = 516.2).

O-[7-azido-1-(methylsulfonyl)-2-heptyl]-N-[4'-(diethylcarbamoyl)phenyl]carbamate (11B): colorless glass (325 mg, 72%). LC-MS: [M+H]+ = 454.2 (calc. for C26H32N5O5S = 454.2).

O-[7-azido-1-(4-morpholinosulfonyl)-2-heptyl]-N-[4'-(diethylcarbamoyl)phenyl]carbamate (11C): colorless glass (425 mg, 81%). LC-MS: [M+H]+ = 525.2 (calc. for C23H37N6O6S = 525.2).

O-[6-azidohexyl]-N-[4'-(diethylcarbamoyl)phenyl]carbamate (11E) white crystals from 60/40 EtOAc/hexane (234 mg from 1.00 mmol, 65% yield). 1H-NMR (400 MHz, CDCl3): δ 7.41 (2H, m; H3'), 7.35 (2H, m; H2'), 6.69 (1H, s; NH), 4.18 (2H, t, J = 6.8 Hz; H1), 3.6~3.2 (4H, br; NCH2), 3.29 (2H, t, J = 6.7 Hz; H6), 1.70 (2H, m; H2), 1.63 (2H, m; H3), 1.44 (4H, m; H4+H5), 1.19 (6H, br; CH2CH3). LC-MS: [M+H]+ = 362.2 (calc. for C18H28N5O3 = 362.2).

The following 7-azido-linker-SN-38 analogs 13A-C,E were prepared as described for 13D.

O-[7-Azido-1-(phenylsulfonyl)-2-heptyl]-N-(SN-38-CH2)-N-[4'-(diethylcarbamoyl)phenyl]carbamate (13A): 47 mg from 0.1 mmol scale (51%). LC-MS: [M+H]+ = 920.4 (calc. for C48H54N7O10S = 920.4).

O-[7-Azido-1-(methylsulfonyl)-2-heptyl]-N-(SN-38-CH2)-N-[4'-(diethylcarbamoyl)phenyl]carbamate (13B): 41 mg from 0.1 mmol scale (48%). LC-MS: [M+H]+ = 858.4 (calc. for C43H52N7O10S = 858.3).

O-[6-Azidohexyl]-N-(SN-38-CH2)-N-[4'-(diethylcarbamoyl)phenyl]carbamate (13E): 107 mg (56%). LC-MS: [M+H]+ = 766.3 (calc. for C41H48N7O8 = 766.4).

The amino-linker-SN-38 analog 15E was prepared as described for 15D.

O-[6-Amino-2-hexyl]-N-(SN-38-CH2)-N-[4'-(diethylcarbamoyl)phenyl]carbamate acetate (16E). Yield 160 mg (0.186 mmol, 100%) from 186 mmol starting azide. LC-MS: [M+H]+ = 740.3 (calculated for C41H50N8O8 = 740.4).

III. PEG40kDa-N-aryl-N-(SN-38-CH2)-N-phenylcarbamates (15 and 16)
The following PEG-SN-38 conjugates 14A-C,E connected with PEG-(DBCO) were prepared as described for 14D.

O-[7-PEG-triazole-1-phenylsulfonyl-2-heptyl]-N-(SN-38-CH₂)]-N-[4′-(diethylcarbamoyl)phenyl]carbamate (14A): 95 mg (85%). SN-38/PEG = 3.4. Free SN-38 = 4.8%

O-[7-PEG-triazole-1-methylsulfonyl-2-heptyl]-N-(SN-38-CH₂)]-N-[4′-(diethylcarbamoyl)phenyl]carbamate (14B): 101 mg (90%). SN-38/PEG = 3.9. Free SN-38 = 0.9%

O-[7-PEG-triazole-1-(4-morpholinosulfonyl)-2-heptyl]-N-(SN-38-CH₂)]-N-[4′-(diethylcarbamoyl)phenyl]carbamate (14C): 100 mg (88%). SN-38/PEG = 3.8. Free SN-38 = 0.7%

O-[PEG-triazole-hexyl]-N-(SN-38-CH₂)]-N-[4′-(diethylcarbamoyl)phenyl]carbamate (14E): 100 mg (88%). SN-38/PEG = 3.8. Free SN-38 = 0.2%

The PEG-SN-38 conjugate 16E connected by an amide was prepared as described for 16D.

O-[6-PEG-carboxamidohexyl]-N-(SN-38-CH₂)]-N-[4′-(diethylcarbamoyl)phenyl]carbamate (16E). 180 mg on 5 µmol scale (4.0 mmol, 81%). Free SN-38 < 0.2%. SN-38/PEG = 3.9.

(1)O-[7-azido-1-cyano-2-hexyl]-N-chloromethyl-N-[4′-(diethylcarbamoyl)phenyl] carbamate (12D): A suspension of 7-azido-1-cyano-2-hexyl N-(chloromethyl)-4-(N,N-diethylcarboxamido)-phenylcarbamate 11D (2.00 g, 5.0 mmol), paraformaldehyde (225 mg, 5.5 mmol, 1.5 Eq), chlorotrimethylsilane (2.5 mL, 20.0 mmol, 4.0 Eq), and 25 mL of anhydrous toluene was placed under N₂ atmosphere in a 50-mL RBF fitted with a magnetic stir bar and closed with a rubber septum cap. The sealed flask was heated in a 50 °C oil bath for 24 h, at which time a clear yellow solution was obtained. The solution was cooled to ambient temperature and evaporated. The residue was redissolved in 10 mL of dry toluene, filtered, and evaporated to provide the crude N-(chloromethyl)-carbamate as an unstable yellow oil containing residual toluene (2.68 g, 119% of expected). This material was dissolved in 10 mL of anhydrous THF and stored under N₂. Formation of the N-(chloromethyl)carbamate was confirmed by addition of 5
µL of the solution to 1.0 mL of 4 mM N,N-diisopropylethylamine in ethanol, followed by reversed-phase HPLC analysis (Phenomenex Jupiter 300A 4.6x150 mm C_{18}; 1.0 mL/min; gradient from 20-100% CH_{3}CN/H_{2}O/0.1% TFA over 10 min). Starting carbamate elutes at 8.42 min and shows λ_{max} 243 nm; product N-(ethoxymethyl)-carbamate elutes at 8.52 min and shows λ_{max} 231 nm; an unknown impurity elutes at 8.04 min and shows λ_{max} 245 nm. Peak integration at 240 nm indicated approximately 89% of the N-(ethoxymethyl)carbamate of 11D, presumed to represent the purity of 12D.

1H-NMR (400 MHz, CDCl_{3}): δ 7.39 (4H, m, PhH), 5.54 (1H, d, J = 12 Hz, NCH_{a}O), 5.48 (1H, d, J = 12 Hz; NCH_{b}O), 4.99 (1H, m, H2'), 3.51 (4H, br, NCH_{2}), 3.26 (2H, t, J = 6.8 Hz; H7), 2.79 (1H, m; H1a), 2.63 (1H, m; H2a), 1.85 (1H, m; H3a), 1.73 (1H, m; H3b), 1.60 (2H, m; H4), 1.43 (4H, m; H5+H6), 1.16 (6H, br; NCH_{2}CH_{3}).

(2) O-[7-azido-1-cyano-2-heptyl]-N-[SN-38-CH_{2}]-N-[4'-[diethylcarbamoyl]phenyl] carbamate (13D). SN-38 (1.00 g, 2.55 mmol) was suspended in 10 mL of anhydrous pyridine, then concentrated to dryness under vacuum (bath temperature 50 °C). This was repeated with 10 mL of anhydrous THF. The resulting pale yellow solid was dissolved in 50 mL of anhydrous THF and 50 mL of anhydrous DMF under N_{2} atmosphere, then cooled on ice. A 1.0 M solution of potassium tert-butoxide in THF (2.55 mL, 2.55 mmol) was added forming an initial dark green color that changed to a thick orange suspension. After 15 min, a THF solution of the NF(chloromethyl)carbamate (7.5 mL, 2.8 mmol) was added. After 15 min at 4 °C, the light orange mix was allowed to warm to ambient temperature. After 1 hr, HPLC analysis (5 µL of sample + 1 mL of ACN/TFA) indicated 86/14 product/SNF38. The pale yellow mixture was diluted with 200 mL of EtOAc, washed 2x100 mL of water, 100 mL of sat. aq. NaCl, dried over MgSO_{4}, filtered, and evaporated. Excess DMF was removed by trituration of the oily residue with water, and the residue was dissolved in 50 mL of ACN, filtered, and evaporated to yield 2.96 g of yellow glass. The residue was chromatographed on SiO_{2} (80 g) using a step gradient of 200 mL each of hexane, 20%, 40%, 60%, 80%, and 100% acetone in hexane, providing the purified azido-linker-SN-38 (1.66 g, 81%). This material was dissolved in 50 mL of acetone, and 45 mL of 0.1% acetic acid in water was added dropwise with stirring until the mixture became cloudy. Upon stirring, a solid material separated. An additional 5 mL of 0.1% acetic acid in water was then added to complete the precipitation. After stirring for 2 h, the solid was collected by vacuum filtration, washed with water, and dried to provide 1.44 g (1.8 mmol, 70%) of the product as a light yellow powder.

1H-NMR (400 MHz, CDCl_{3}): δ 8.15 (1H, d, J = 9.2 Hz; H12), 7.60 (1H, s; H14), 7.48 (1H, dd, J = 2.9 Hz; H11), 7.40 (4H, m; PhH), 7.25 (1H, d, J = 2; H9), 5.75 (2H, br; NCH_{2}O), 5.73 (1H, d, J = 16 Hz; H22a), 5.28 (1H, d, J = 16 Hz; H22b), 5.22 (2H, s; H5), 4.99 (1H, m; H2'), 3.84 (1H, s; OH), 3.53 (2H, br; NCH_{2}), 3.53 (2H, br; NCH_{2}), 3.17 (2H, t, J = 7 Hz; H7'), 3.12 (2H, q, J = 7 Hz; 7FCH_{2}), 2.74 (1H, dd, J = 1, 17 Hz; H1'a), 2.54 (1H, dd, J = 5, 17; H1'b), 1.86 (2H, m; H19), 1.6 (1H, m; H3'a), 1.46 (1H, m; H3'b), 1.37 (3H, t, J = 7 Hz; 7FCH_{3}), 1.25 ~ 1.12 (12 H, m; H4'+H5'+H6'+NCH_{2}CH_{3}), 1.02 (3H, t, J = 7.3 Hz; H18). LC-MS: [M+H]* = 805.3 (calc. for C_{44}H_{51}N_{8}O_{8} = 805.3).

(3) O-[7-Amino-1-cyano-2-heptyl]-N-[SN-38-CH_{2}]-N-[4'-[diethylcarbamoyl]phenyl] carbamate (15D). A 1 M solution of trimethylphosphine in THF (2.9 mL, 2.9 mmol) was added to a solution of the azido-linker-SN-38 13D (1.13 g, 1.4 mmol) and acetic acid
(0.19 mL, 3.3 mmol) in 10 mL of THF. Gas was slowly evolved. After stirring for 2 h, water (1.0 mL) was added and the mixture was stirred for an additional 1 h. The residue was partitioned between ether and water. The water phase was washed once with EtOAc, and the resulting clear yellow aqueous phase was evaporated to provide 800 mg of yellow foam. This was dissolved in THF, filtered, and quantitated by UV absorbance to provide a solution containing 1.2 µmol (86%) of product. C\textsubscript{18} HPLC showed a single peak.

LC-MS: [M+H]\(^+\) = 779.3 (expected 779.4).

(4) O-[7-PEG-amide-1-cyano-2-heptyl]-N-(SN-38-CH\textsubscript{2})-N-[4’-(diethylcarbamoyl)phenyl]carbamate (16D). A mixture of 40 kDa 4-arm tetra-(succinimidyl-carboxymethyl)-PEG (JenKem Technology; 10.0 g, 1.0 mmol HSC), the amino-linker-SN-38 acetate 15D (1.2 mmol), and N,N-diisopropylethylamine (0.21 mL, 1.2 mmol) in 75 mL of THF was kept at ambient temperature. Coupling progress was monitored by HPLC, which indicated completion of reaction by 90 minutes. After a total of 2 h, the mixture was filtered into 500 mL of stirred MTBE. The precipitate was collected by vacuum filtration, washed with MTBE, and dried under vacuum to provide the conjugate as a waxy pale yellow solid (10.1 g, 95%). Spectrophotometric analysis of a 2.0 mg sample in 1.0 mL of water indicated 0.170 mM SN-38; based on the calculated 0.175 mM SN-38 expected by weight, indicating a conjugate loading of 96%. C\textsubscript{18} HPLC analysis indicated a single major peak (98% of total peak area at 363 nm; 97% at 256 nm), with a minor peak of 0.6 mol% of free SN-38. Treatment in basic solution released all SN-38.

V. Kinetic studies. All kinetic procedures and equations were as described (4).

VI. Pharmacokinetic studies.

In vivo studies: rat. Pharmacokinetic assays in the rat were performed on jugular-cannulated female Sprague Dawley rats (n=3) ~275 g in weight. Dosing solutions were prepared at up to 900 µM conjugate (3.6 mM SN-38) in 10 mM NaOAC, pH 5.0 and filtered through a 0.2 micron syringe filter. IV injections were made at 5 mL/kg body weight. Blood samples (300 µL) were collected at 0, 1, 2, 4, 8, 10, 12, 24, 48, 72, and 120 hours and immediately added to 30 µL of 1M citrate/0.1% Pluronic F68, pH 4.5 (5), and centrifuged at 1500 x g for 10 minutes at 4 °C to give ~150 µL plasma samples which were stored frozen at -80 °C until analysis.

In vivo studies: monkey. Pharmacokinetic studies were performed on adult male St. Kitts African green monkeys (Chlorocebus sabaues) (n=2) ~5.5 kg in weight. Sterile-filtered (0.2 µm) PEG-SN-38 conjugate and CPT-11 dosing solutions were prepared the day of administration at 20 mg/mL (455 µM 16E, 1.8 mM SN-38 equivalents), 42 mg/mL (955 µM 16D, 3.8 mM SN-38) and 12.5 mg/mL (42.6 mM CPT-11) in saline. IV injections were made at 0.75 mL/kg 16E, 1 mL/kg 16D and 2 mL/kg CPT-11 in the saphaneous vein by controlled infusion over 30 min. Blood samples (2.0) were collected from the femoral vein at the following times: pre-dose, 0.5h, 1, 2, 4, 8, 24, 48, 72, and 168 hours after initiation of infusion. The blood samples were immediately added to 200 µL of 1M citrate/0.1% Pluronic F68, pH 4.5 (5), and centrifuged at 1500 x g for 10 minutes at 4 °C to give ~1 mL plasma samples which were stored frozen at -80 °C until analysis.
Analyses. Plasma samples were thawed on ice was treated with two volumes ACN/0.5% AcOH containing 8 ng/mL camptothecin, and centrifuged at 16,000 x g for 10 min. Samples (100 µL; 25 µL plasma) of the supernatants were analyzed by HPLC on a Phenomenex Jupiter C18 column (5 µm; 300 Å, 150 mm x 4.6 mm column) at 40 °C using a mobile phase of 100 mM KPi and 3 mM 1-heptanesulfonic acid adjusted to pH 4.0 with H3PO4 (buffer A) and 75% ACN in water (buffer B) (6). Samples were eluted over 19 min at 1.0 mL/min using the gradient: 5% B for 3 min, 20% B for 3 min, 20-40% B over 5 min, 40-100% B over 2 min, 100% B for 3 min, and 5% B for 3 min. RT values were SNF38G 7.1 min, SNF-38 12.7 min, CPTF11 13.2 min and PEG-SNF38 14.5 min. Sample elution was monitored with a diode array detector (380 nm) and a fluorescence detector with ex 370 nm and em 470 nm for 9 min followed by em 534 nm for 10 min. SNF38G in these samples could not be quantitated because of co-elution of an interfering substance from processed plasma. LLOQ was 10 nM, and LLOD was 3 nM in plasma samples.

For analysis of SNF38G the precipitated plasma samples were treated with 0.45 vol of 1 N HCl prior to HPLC to convert it to the lactone (RT =4.6 min), and the HPLC column and eluent were exactly as reported (6). Here, the SNF38G was separated from the interfering substance in processed plasma. Concentrations were calculated by comparison of peak areas to appropriate standard curves of samples of PEG-SN38 conjugate, SN-38 and SN-38G in rat plasma, processed as above.

Pharmacokinetic modeling and parameters.

Concentration vs time data. C vs t data for the PEG-SN38 and SN-38 were fit to a two-compartment model (Fig. 2, text) to determine rate constants k1, k12 and k21 using eqs. 1-4 and nonlinear regression analysis (Nelder-Mead downhill simplex); here, α is the time constant and A amplitude for the conjugate distribution phase, and β is the time constant and B the amplitude for the conjugate elimination phase. The distribution phases of all conjugates used t1/2,a 4 h, a reasonable composite of conjugates tested and decreased the variables in other equations. Since the steady-state rate for loss of a releasable conjugate, kelim is k1+k3 (1), values for k1 for the DBCO- and amide-linked conjugates were estimated as β(14A-D) - β(14E) and β(16D) - β(16E), respectively. These values were then used to generate curves for the model of Fig. S1, with the concentration data for free SN-38 being fit to determine values for the remaining parameter k2, using Vd = 0.18 L/kg (7), and assuming Kdist = Vd/Vc to reduce the number of variable parameters.

\[
\text{Conj}_t = Ae^{-\alpha t} + Be^{-\beta t}
\]

\[k_{21} = (A^*\beta + B^*\alpha)/(A + B)\]
\[k_{\text{elim}} = \alpha^*/\beta /k_{21}\]
\[k_{12} = \alpha + \beta - k_{21} - k_{\text{elim}}\]
\[A + B = C_{\text{max}} = \text{Dose}/V_c\]

SI Table 1 shows all pharmacokinetic data obtained in the rat and values calculated thereof.
SI Table 1. Pharmacokinetic parameters for PEG-SN-38 conjugates 14A-E and 16D,E and released SN-38 in the rat.

<table>
<thead>
<tr>
<th>Conjugate</th>
<th>14E</th>
<th>16E</th>
<th>14A</th>
<th>14B</th>
<th>14C</th>
<th>14D</th>
<th>16D</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-PEG connector</td>
<td>DBCO</td>
<td>DBCO</td>
<td>DBCO</td>
<td>DBCO</td>
<td>DBCO</td>
<td>DBCO</td>
<td>DBCO</td>
</tr>
<tr>
<td>Peg-SN-38</td>
<td>umol SN-38</td>
<td>0.22</td>
<td>0.54</td>
<td>2.3</td>
<td>1.0</td>
<td>3.8</td>
<td>3.1</td>
</tr>
<tr>
<td>C_{max}, uM</td>
<td>86</td>
<td>36</td>
<td>379</td>
<td>116</td>
<td>579</td>
<td>387</td>
<td>623</td>
</tr>
<tr>
<td>V_d, L/kg</td>
<td>0.011</td>
<td>0.055</td>
<td>0.025</td>
<td>0.032</td>
<td>0.025</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>t_{1/2,\alpha}, h</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>t_{1/2,\beta}, h</td>
<td>39</td>
<td>58</td>
<td>9</td>
<td>28</td>
<td>30</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>t_{1/2} cleavage (ln2/k_r), h</td>
<td>–</td>
<td>–</td>
<td>12</td>
<td>99</td>
<td>138</td>
<td>342</td>
<td>362</td>
</tr>
<tr>
<td>k_{12}, h^{-1}</td>
<td>0.075</td>
<td>0.066</td>
<td>0.019</td>
<td>0.061</td>
<td>0.063</td>
<td>0.075</td>
<td>0.086</td>
</tr>
<tr>
<td>k_{21}, h^{-1}</td>
<td>0.075</td>
<td>0.099</td>
<td>0.122</td>
<td>0.090</td>
<td>0.087</td>
<td>0.066</td>
<td>0.065</td>
</tr>
<tr>
<td>k_{el}, h^{-1}</td>
<td>0.041</td>
<td>0.021</td>
<td>0.109</td>
<td>0.047</td>
<td>0.046</td>
<td>0.052</td>
<td>0.037</td>
</tr>
<tr>
<td>r^2</td>
<td>0.9397</td>
<td>0.9500</td>
<td>0.9630</td>
<td>0.9804</td>
<td>0.9099</td>
<td>0.9850</td>
<td>0.9390</td>
</tr>
<tr>
<td>AUC_{0-\infty}, uM\cdot hr</td>
<td>2132</td>
<td>1768</td>
<td>3632</td>
<td>3076</td>
<td>12440</td>
<td>7588</td>
<td>16664</td>
</tr>
<tr>
<td>C_0,PEG-SN-38, uM</td>
<td>32</td>
<td>19.6</td>
<td>177</td>
<td>51</td>
<td>247</td>
<td>118</td>
<td>199</td>
</tr>
</tbody>
</table>

SN-38

	C_{max}, uM	–	–	1.4	–	0.18	0.18	0.38
	t_{1/2,\beta}, h	–	–	9	–	34	38	58
	AUC_{0-\infty}, uM\cdot hr	–	–	13.1	–	6	4.2	10.9
	C_0,SN-38	–	–	1.27	–	0.154	0.065	0.137

SN-38G

| | C_{max}, uM | – | – | 0.277 | – | 0.019 | 0.017 | 0.026 |
| | AUC_{0-\infty}, uM\cdot hr | – | – | 2.7 | – | 0.83 | 0.45 | 0.86 |

^a^ Complete pharmacokinetic data and parameters of Fig. 2 of text. ^b^ Not applicable or not determined, – ; ^c^ C_o is the concentration at t=0 extrapolated from t_{1/2} β.

SI Table 2 shows data from a preliminary pharmacokinetic study in the African green monkey and values calculated thereof assuming blood compartment is 45 mL/kg. One of the eight animals suffered illness and was omitted from the study results. Certain parameters for SN-38 and SN-38G could not be reliably calculated because later points in the data set were below the LLOQ of 10 nM. Likewise, although the AUC of PEG-conjugates from t=0->\infty could be calculated, small molecules could only be reliably quantitated from 0.5 to 4 hr post infusion, and are listed as such for comparative purposes in SI Table 2. None of the deficiencies cited above materially modify statements and conclusions described in the text.

SI Table 2. Pharmacokinetic parameters for PEG-SN-38 conjugates 16D,E and CPT-11 in the African green monkey.

<table>
<thead>
<tr>
<th>Administered drug</th>
<th>16E</th>
<th>16D</th>
<th>CPT-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug, umol</td>
<td>7.7</td>
<td>21.9</td>
<td>247.1</td>
</tr>
</tbody>
</table>
Determination of in vivo cleavage rates.

This approach, used to calculate the in vivo cleavage rates of PEG-SN38 conjugates studied here (Fig. 3A,B), was briefly described in ref. (1). The concentration of the PEG-SN-38 cleavable complex at time t is given by eq. 5

\[
C_{\text{cleavable}}(t) = C_0 \cdot \exp[-(k_1 + k_3)t] \quad [5]
\]

Where \(k_1\) is the in vivo rate constant for cleavage of the linker, and \(k_3\) the elimination rate of the PEG-conjugate. The concentration of the stable complex is described by eq. 6.

\[
C_{\text{stable}}(t) = C_0 \cdot \exp[-k_3t] \quad [6]
\]

Thus,

\[
\ln\left\{\frac{C_{\text{cleavable}}(t)}{C_{\text{stable}}(t)}\right\} = \ln\{C_{\text{cleavable}}(t)\} - \ln\{C_{\text{stable}}(t)\}
\]

\[
= \ln\{C_0 \cdot \exp[-(k_1 + k_3)t]\} - \ln\{C_0 \cdot \exp[-k_3t]\}
\]

\[
= \ln\{C_0\} - (k_1 + k_3)t + \ln\{C_0\} + k_3t
\]

\[
= -k_1t \quad [7]
\]

Thus, as in Fig. 3A,B of the text, a plot of \(\ln\{C_{\text{cleavable}}(t)/C_{\text{stable}}(t)\}\) versus time will yield a line of slope of \(-k_1\).

SI References

