

2

EMAIL hsc@hsc.work

Technical Audit (Civil, Fire, Lifts, Electrical & Mechanical), Conformity Assessment, Quality Control, QMS Consultance

5

Characteristics of each type:

Point	Hydraulic	Electric (Traction)
Speed	Limited to 1 m/s Typical 0.63 (0.5) m/s	Up to 10 m/s and more
Height	Limited to 21 m max Typical: 5 to 6 m	Up to 500 m with conventional ropes
Machine room	Flexible Could be located at 11 m from the well	Typically above but with MRL more flexible
Artistic Flexibility	See photo	Limited due to several mechanism (Counterweight)
Codes Flexibility	Less rated capacity with larger car area for goods lifts	Not Applicable
Electrical Consumption	For the same characteristics, the power dem electric lifts	and for a hydraulic lift is 5 times more than
Riding Luxury	The Hydraulic lifts have the issue of adjustm viscosity	ent with the change of temperature and

6

What are Standards

- Standards are an agreed way of doing things; whether making or supplying something, managing a process, or delivering a service, to make lives easier and safer. (BSI Group)
- SAFETY IS THE RESPONSIBILITY OF EVERY ENGINEER TOWARDS HIS COMMUNITY

EMAIL hsc@hsc.work

Safety Standards shall be mandatory by law How? Decree stating what and who For Buildings: Decree 7964 in 2012 Technical auditors are the tools

1	1
Τ.	Τ.
-	-

Role	Deliverables	Favorable
Design	Drawings and specifications	(Comply) مطابق
Execution	Building / Lifts	Not favorable
Technical Auditor	Conformity Reports	(Not Complying) غیر مطابق
		 Suspended Waiting بانتظار معلومات اضافیة
		L

_ift

- Mandate for inspection of all lifts starting 2017
- What are the applicable codes?
 - Series EN 81
 - Others

Main standards

NL EN 81	Safety rules for the construction and installation of lifts -
Part 1	Electric lifts
Part 2	Hydraulic lifts
Part 20	Passenger and goods passenger lifts (Will replace 1 & 2)
Part 50	Design rules, calculations Examinations and tests of lift components
Part 21	New lifts in Existing Building
Part 22	Electric lifts with inclined path
Part 3	Service lifts (Dumbwaiters)
Part 31	Accessible goods only lifts

Standards for special situations

NL EN 81	Safety rules for the construction and installation of lifts
Part 28	Remote alarm
Part 58	Landing doors fire resistance tests
Part 70	Accessibility to lifts for persons with disability
Part 80	Rules for improvement of safety of existing lifts
Part 82	Rules for improvement of accessibility of existing lifts

ADDRESS Boulos Center 4th floor, Osseily street Jdeidet El Metn, Lebanon

EMAIL hsc@hsc.work

ADDRESS Boulos Center 4th floor, Osseily street Jdeidet El Metn, Lebanon

EMAIL hsc@hsc.work

Determination of Parameters: Rule of Thum

 Applicable for small buildings only; for complex buildings use the services of VT Engineer

- Number of lifts
 - One lift per 100 people, minimum 1 lift for every 7 stops or part of.
 - Number of people: 1.75 people per bedroom
- Car capacity
 - Capacity: 1.5 % of the population (rounded up to the nearest digit) with minimum 6 / preferable 8
 - Rated load: 75 kg per person (app)

IL ISO 4190–1: Residential

23

24

0

MACHINE ROOM

Technical Audit (Civil, Fire, Lifts, Electrical & Mechanical), Conformity Assessment, Quality Control, QMS Consultancy

NL ISO 4190-

-	Rated speed		Little in a	residential	buildings		1	General-pe	spose lins			Intensive	-use lifts				OVER-
Parameter	$V_{\rm R}$							Rated tood (mass)									
									8								
			450	630	1 000	630	880	1 000¥ 1 275	1 350	1 275	1 350	T 600	1 800	2.000		CAR	۹
Height of sac A ₄				2	200			23	00			2.400		_			
Height of car door and landing doors, in	-	2 000						2	100						LANDING		
Pit depth ==, J _g	0.40 m/s ^e		1 400														
	0,63 m/s																
1	0.75 m/s					400											
	1,00 m/s																
	1,50 m/a														LANDING		
	1,60 m/s	1.0				1 600										_	
	1.75 m/s															RAI	£
	2,00 m/s		-	1	750					17	53					- H	IN
	2,50 m/s	0.00	(2	200	÷.,				22	00					5	0 N N
	3,00 m/s					1 5			1			3 200			LANDING	9	03
	3,50 m/s	1										3 400					
	4,00 m/z ⁶	1							13			3 800				DIT	
	5.00 mm ⁴											3 800				PIT	
	6.00 m/x*											4.000					

25

NL	150	4	19	0	-1										MACHIN ROOM	E	OVER-
52.55	a second	<u> </u>	Lifts in	residentia	buildings			General-p	urpose lifts	à		Intensiv	e-use lifts				RIDE
Parameter	Mated speed Pa							Rated loa (mass)	d								
	64		1						kg						1 4		
	let au		450	630	1 000	630	800	1 000/ 1 275	1 350	1 275	1 350	1.600	1 800	2 000	1	CAI	R
٤,	0.40 mh ^p		3	600			-		_		-			-	LANDING		
్ర	0.53 m/s			in the second													
asen	0,75 m/s		ಿತ	000		3	800	. 4	200							1	
W Cr.	1,00 m/s.		3	700		1						12					
₽ 0	1.50 m/s											1					
	1.60 m/s	¢		3 B00		4	000	4	200						LANDING		
leadoon", h	1.75 m/s																
	2.00 m/s	1		4	300			4 400								RA	EF
	2.50 m/s		5	5	000	- W	5 000		5 200			5 500					UN IGH
	3.00 m/s											5 500			LANDING	- DB	NEC
	3.50 m/s											5 700					
	4.00 m/e ⁴					8						5 700					
	5,00 m/e ⁴											5 700			1	PIT	
	6.00 m/s ⁴											6 200			1 l		

26

3- Selection and Dimensions

c) Lifts for Office Buildings

27

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

28

30

EMAIL hsc@hsc.work WEBSITE www.hsc.work

SGS

31

Parameter	Rated speed	4	Litsin	rosidential	buildings			General-pr	ripose lifts			Intensive	-use lifts		ROOM		OVER- RIDE
	P _R							(1966)	<u> (</u>							┢┍═╨	
									8								
			450	630	1.000	630	880	1 009/ 1 275	1 350	1 275	1 350	T 600	1 800	2 000		II CAF	2
Height of sac A ₄			_	2	200			23	00			2.400		-			
Height of car door and landing doors, in		2 000						2	00						LANDING		
Pit depth =, J ₂	0.40 m/s*		1 400														
	0,63 m/s																
	0,75 m/s					400											
	1,00 m/s																
	1,50 m/a											000			LANDING		
	1,60 m/s					1600											
	1,75 m/s															RA	쑵⊢
	2,00 m/s			1	750					17	53					DE	TNI
	2,50 m/s			2	200	÷.				2.2	00				LANDING	105	- NE
	5,00 m/s											3 200			LANDING	Ŭ	05
	3,50 m/s											3 400					
	4,00 m/x ⁶								- 1			3.890				PIT	
	5.00 m/s ⁴	1										3 800					
	6,00 m/x*											4.000			L.		

SGS

33

EMAIL hsc@hsc.work

EMAIL hsc@hsc.work

37

Parameter	Rated speed F _n m/s			Rate (m) 1 275 1 600	d load ass) 0 2 000	2 500		OVER
Car		Height, k ₄	(mm)	2	300			CAR
Car door and landing doors		Height, A ₃	(mm)	2	100			
Pit depth, d ₃	0,63			1 600		1 800	LANDING	
	1,00			1 700		1 900	LANDING	
	1,60		1	1900		2 100		
	2,00			2 100		2.300		
	2,50			2.5	500	2 2	LANDING	
Headroom, k ₁	0,63			4 400		4 600	LANDING	
	1,00			4 400		4 600		RAIL
	1,60			4 400		1 600		DEL
	2,00			4 600		4 800	LANDING	COUL GUI
	2,50			5 400		5 600	LANDING	
Machine room ^a	0,63 m/s	Surface, A	(m ²)	25	27	29		
(where needed)	10 2,50 m/s	Width ¹⁰ , \vec{d}_4	(mm)	3 200		3 500		PIT
	+1750×16763	Depth ^b , d,	(mm)	5 500	5	800		

2- Selection and Dimensions

>>> e) Lifts for Handicapped

39

EMAIL hsc@hsc.work

NL EN 81-70: (...) Accessibility to lifts for persons including persons with disability
on one side wall of the car a handrail shall be installed on a height of 900mm
In case a user of a wheelchair cannot turn it around, a mirror shall be installed to enable this user to observe obstacles behind them when moving backwards out of the car. Where a glass mirror is used it shall be safety glass.
Indicators and hall lanterns at special heights

41

NI EN 81-70: N	lain requirements
Minimum car dimensions	Accessibility level
450 kg Car width : 1 000 mm Car depth : 1 250 mm	This car accommodates one wheelchair user.
630 kg Car width : 1 100 mm Car depth : 1 400 mm	This car accommodates one wheelchair user and an accompanying person.
1 275 kg Car width : 2 000 mm Car depth : 1 400 mm	This car accommodates one wheelchair user and several other users. It also allows a wheelchair to be rotated in the car.

PHONE +961 1 891 823 +961 3 345 371

4– Standards Requirements

a) Well Construction

Prevention of the pre

Requirements for the we

- Reaction load:
 - Car buffer (F2): 10 x [rated load]
 - Counterweight buffer (F4): 8 x [rated load]
 - Car rails (F1): 4 x [rated load]
- Well lighting:
 - 50 lux
 - At 50 cm from ceiling and from pit
 - Estimated one lamp 400 lumen every 3 m for every lift
- Two way switching for lights:
 - Pit
 - Machine room

EMAIL hsc@hsc.work

4- Standards Requirements

b) Machine room construction

47

oints to consider

- Machine room lighting:
 - 200 lux
 - Estimated total lamp illumination based on 400 lumen x area of the machine room
- Exclusivity of machine room
- There shall be socket outlet in the machine room

EMAIL hsc@hsc.work

Technical Audit (Civil, Fire, Lifts, Electrical & Mechanical), Conformity Assessment, Quality Control, QMS Consultance

Points to consider

- Machine room Electrical:
 - Near the entrance door
 - Main switch pad lockable
 - Car light switch
 - Well light switch (two-way)
 - Earthing
- Power requirement (in Watt):
 - 10 x [rated load] x [rated speed]
 - Power factor: 0.8

49

Points to consider Machine room accessible by stairs (if by ladders 4m max and should be fixed) Hooks and signage 2.5 x [rated load] Accessibility to staircase from the landing door for all common area use lifts

50

EMAIL hsc@hsc.work

Building C

- For construction constraints in existing buildings there are some solutions in NL EN 81-21:
 - Low headroom
 - Reduced pit depth
 - Small well dimensions
 - Low landing doors

ADDRESS Boulos Center 4th floor, Osseily street Jdeidet El Metn, Lebanon

EMAIL hsc@hsc.work

General information Main Specification defined:

- Applicable codes
- Speed
- Capacity
- Type and dim of doors
- Car height, ...
- Special requirement for mission F
- Well dimension suitability
 - NL ISO 4190; or
 - <u>Technical dossier of the supplier</u>

Technical dossier

- The technical dossier contains:
 - Information about the installation
 - Layout drawings
 - Calculation notes
 - Technical data sheets
 - Schematic diagram for the safety circuit
 - Type examination certificates

58

59

EMAIL hsc@hsc.work

SGS

Calculation notes required

- Guide rails
- Traction Ropes Safety factor
- Evaluation of traction
- Overspeed governor ropes
- > The first two can not be verified by tests

61

EMAIL hsc@hsc.work

Certificates for electric lifts

- Lift type examination certificate (if applicable)
- Door locks
- Fire rated doors
- Safety gear
- Overspeed governor
- Buffers
- Safety circuits containing electronic components
- Ascending protection
- UCM

PHONE +961 1 891 823 +961 3 345 371 EMAIL hsc@hsc.work WEBSITE www.hsc.work

SGS

65

67

Forward to Mechanica

- Heat Emission of the machine
- Temperature range: +5 to +40 deg C

>> • Final testing

ADDRESS Boulos Center 4th floor, Osseily street Jdeidet El Metn, Lebanon **PHONE** +961 1 891 823 +961 3 345 371 EMAIL hsc@hsc.work

Final examination

- Examination includes:
 - Visual Inspection
 - Performance checks and test
 - Measurements
 - Availability of User information
- Compliance with:
 - Standards
 - Pre-authorized documents
 - Other client's requirements within the scope

Main tests

- Safety switches
- Traction
- Safety gear
- Buffers
- Overspeed governor
- Ascending car overspeed protection
- Unintended Car movement
- **)** ...

Final report

- > Standard ensures safety of persons:
 - Users;
 - Outside the well; and
 - Technicians
- Before putting the lift into service, the lift shall be safe for use... couple of months could be given to repair items related to safety of the technicians

ADDRESS Boulos Center 4th floor, Osseily street Jdeidet El Metn, Lebanon **PHONE** +961 1 891 823 +961 3 345 371 EMAIL hsc@hsc.work

Summary

- 1. Introduction to lifts
- 2. Selection and dimensions
- 3. Applicable Standards
- 4. Design Requirements
- 5. Lift Documents

75

Conclusion 1: Safety is our role

- Safety is relying on standards
 =>
 engineers are responsible for standards
 knowledge
- Standards are amended on regular basis
 =>
 updating the knowledge is a must

ADDRESS Boulos Center 4th floor, Osseily street Jdeidet El Metn, Lebanon

EMAIL hsc@hsc.work

Conclusion 2:

- The safety is costly; if limited to license only it will be pure expenses
- The need is to go beyond the initial phase and ensure continual safety:
 - Periodical checks for electromechanical items
 - Control of usage of building

ADDRESS Boulos Center 4th floor, Osseily street Jdeidet El Metn, Lebanon **PHONE** +961 1 891 823 +961 3 345 371 EMAIL hsc@hsc.work

