
Python Tutorial (Basics)
CAP 4630 -Artificial Intelligence

Instructor :  Sam Ganzfried 
 (sganzfri@cis.fiu.edu)

Presented by: Farzana Beente Yusuf 
(fyusu003@fiu.edu)

mailto:sganzfri@cis.fiu.edu


Introduction

Developed by Guido van Rossum in the early 1990s. 

Features: 

Uses:

            

                                                                                                                                                             Fig: Percentage usage of Python [6]

• High-level powerful programming 

language 

• Interpreted language 

• Object-oriented 

• Portable 

• Easy to learn & use 

• Open source 

• Internet Scripting

• Database Programming

• Image Processing

•  Artificial Intelligence



Environment setup (Basic installation)

Major versions in use  : Python 2.7.x and Python 3.x 

Python 2.x is legacy, Python 3.x is the present and future of the language

Windows:

Binaries of latest version of Python 3 (Python 3.5.1) are available on this download page [4] or install 

using Anaconda Package Manager (Recommended) [7]

Linux and Mac:

Follow the instructions from https://www.tutorialspoint.com/python3/python_environment.htm [2]

https://www.python.org/downloads/windows/
https://www.continuum.io/downloads
https://www.tutorialspoint.com/python3/python_environment.htm


Python 2 vs 3 users in PyCharm [5]



Tools and IDE (Advanced installation)

➔ Download and install Pycharm Community 

edition  -  Free , No license required 

https://www.jetbrains.com/pycharm/downloa

d/#section=windows [6]

➔ Jupyter (Interactive python shell) [Anaconda] 

-http://jupyter.org/

➔ Spyder [Anaconda]

➔ Notepad++ - https://notepad-plus-plus.org/

https://www.jetbrains.com/pycharm/download/#section=windows
https://www.jetbrains.com/pycharm/download/#section=windows
http://jupyter.org/
https://notepad-plus-plus.org/


First Program(Interactive mode)

Enter python in the command line/terminal. Start coding right away in the interactive interpreter.



Scripting mode

Example (Hello.py):

In Terminal:

    



Basic Syntax

Identifiers:

● Name used to identify a variable, function, class, module or other object

● Starts with a letter A to Z or a to z or an underscore (_) followed by zero or more letters, 

underscores and digits (0 to 9)

● Punctuation characters such as @, $,and % within identifiers are not allowed

● Case sensitive programming language. Manpower and manpower are two different 

identifiers in Python



Reserved Keywords



Lines and Indentation

Python does not use braces({}) to indicate blocks of code for class and function definitions or flow control. 

Blocks of code are denoted by line indentation

The number of spaces in the indentation is variable, but all statements within the block must be indented 

the same amount. Use of tab  is recommended to be consistent and make the code more readable.

Correct implementation: Erroneous implementation:



Misc.

Multi-Line Statements : Statements in Python typically end with a new line. 
Python, however, allows the use of the line continuation character (\) to denote 
that the line should continue. 

Comments :A hash sign (#) that is not inside a string literal is the beginning of 
a comment.



Variable types

Variables are nothing but reserved memory locations to store values. It means that when you create a 

variable, you reserve some space in the memory.

Standard Data Type Example

Numbers counter=100, miles=100.0

String firstname= “john”

List (like Array in C,Java) heights=[“John”, 157]]

Tuple (Read only lists) heights = ( ''john', 157.2  )

Dictionary (like hash-table) Person={'name': 'john', 'dept': 'sales', 'code': 6734}



Type of  Operators

Operators are the constructs, which can manipulate the value of operands. Python language supports the 

following types of operators −



Basic Operators



Using Multiplication operator

mul.py

Console output:



Decision Making (if statement)

If.py

Console Output:



Decision Making (if -else statement)

IfElse.py

Console Output:



Decision Making (elif)



Decision Making (Nested if )

Ex:

Output:



Loops

In general, statements are executed sequentially − The first statement in a function is executed first, 

followed by the second, and so on. There may be a situation when it’s necessary to execute a block of 

code several number of times.



Loops



Functions

A function is a block of organized, reusable code that is used to perform a single, related action. Functions 

provide better modularity for your application and a high degree of code reusing.

Defining a Function

Simple rules to define a function in Python.

● Function blocks begin with the keyword def followed by the function name and parentheses 

( ( ) ).

● Any input parameters or arguments should be placed within these parentheses. 

● The first statement of a function can be an optional statement - the documentation string of 

the function or docstring.

● The code block within every function starts with a colon (:) and is indented.

● The statement return [expression] exits a function, optionally passing back an expression to 

the caller. A return statement with no arguments is the same as return None.



Function Call

Function definition:

Example:



Function- Arguments



Function- Variable length arguments

Example Output:



Modules
A module allows to logically organize Python code. Grouping related code into a module makes the code 

easier to understand and use. A module is a Python object with arbitrarily named attributes. Python code 

for a module named aname normally resides in a file FILE_NAME.py. Here is an example of a simple 

module, support.py −

When the interpreter encounters an import statement, it imports the module if the module is present in 

the search path.



File I/O

Python provides basic functions and methods necessary to manipulate files by default. Most of the file manipulation can 
be completed using a file object.



Exceptions

Python provides two very important features to handle any unexpected error in your Python programs and to add 
debugging capabilities in them −

● Exception Handling - Basic error handling i.e Division by zero, File Read/Write error etc.
● Assertions - Advanced topic



Class (OOP)

Python has been an object-oriented language since the time it existed. Due to this, creating and using classes and 

objects are downright easy. 

The class statement creates a new class definition. The name of the class immediately follows the keyword class 

followed by a colon as follows −

● The class has a documentation string, which can be accessed via ClassName.__doc__.

● The class_suite consists of all the component statements defining class members, data attributes and 

functions.



Class (OOP)

Example Code Output



Numbers - Functions [3]



String - Functions [3]



List - Operators and functions [3]



Advanced Libraries 

★ Numpy- support for large, multi-dimensional arrays and matrices, along with a large 

collection of high-level mathematical functions to operate on these arrays [12]

★ Scipy- provides many user-friendly and efficient numerical routines such as routines for 

numerical integration and optimization [11]

★ Matplotlib - 2D plotting library which produces publication quality figures in a variety of 

hardcopy formats and interactive environments across platforms [9]

★ Pandas- high-performance, easy-to-use data structures and data analysis tools [8]

★ Scikit Learn(sklearn) - Machine learning libraries built on top of NumPy, SciPy and 

matplotlib [10]

 For more reference: https://wiki.python.org/moin/UsefulModules

https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Matrix_(math)
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)


Resources and References

1. http://learnpython.org/

2. https://www.tutorialspoint.com/python3/
3. https://www.slideshare.net/MoitraSabya/python-basic-77418012?qid=e78f7c5d-51b8-4a70-a48d-3

2b1aeb35548&v=&b=&from_search=1

4. https://www.python.org/

5. https://www.slideshare.net/mariczhuck/austin-python-meetup-2017-how-to-stop-worrying-and-star

t-a-project-with-python-3?qid=83f645fe-c735-4b00-aeee-c9224c8294d7&v=&b=&from_search=11

6. https://www.jetbrains.com/pycharm/

7. https://www.continuum.io/downloads

8. http://pandas.pydata.org/

9. https://matplotlib.org/

10. http://scikit-learn.org/stable/

11. https://www.scipy.org/

12. http://www.numpy.org/

http://learnpython.org/
https://www.slideshare.net/MoitraSabya/python-basic-77418012?qid=e78f7c5d-51b8-4a70-a48d-32b1aeb35548&v=&b=&from_search=1
https://www.slideshare.net/MoitraSabya/python-basic-77418012?qid=e78f7c5d-51b8-4a70-a48d-32b1aeb35548&v=&b=&from_search=1
https://www.python.org/
https://www.slideshare.net/mariczhuck/austin-python-meetup-2017-how-to-stop-worrying-and-start-a-project-with-python-3?qid=83f645fe-c735-4b00-aeee-c9224c8294d7&v=&b=&from_search=11
https://www.slideshare.net/mariczhuck/austin-python-meetup-2017-how-to-stop-worrying-and-start-a-project-with-python-3?qid=83f645fe-c735-4b00-aeee-c9224c8294d7&v=&b=&from_search=11
https://www.jetbrains.com/pycharm/
https://www.continuum.io/downloads
http://pandas.pydata.org/
https://matplotlib.org/
http://scikit-learn.org/stable/
https://www.scipy.org/

