Python Tutorial (Basics)

CAP 4630 -Artificial Intelligence
Instructor : Sam Ganzfried
(sganzfri@cis.fiu.edu)
Presented by: Farzana Beente Yusuf
(fyusuO03@fiu.edu)

FIU -
INTERRATIONAL pyUthon

UNIVERSITY

mailto:sganzfri@cis.fiu.edu

Introduction

Developed by Guido van Rossum in the early 1990s.

Features:

e High-level powerful programming

language
e Interpreted language

e Object-oriented
Uses:

e [nternet Scripting

e Database Programming

e Portable
e Easy tolearn & use

e Open source

e [mage Processing

e Artificial Intelligence

19%
Data
analysis

18%
Software
Development

22%

Web N
Development
27% ‘

Scientific or 14%
Data Analysis Other

Fig: Percentage usage of Python [6]

Environment setup (Basic installation)

Maijor versions in use : Python 2.7.x and Python 3.x
Python 2.x is legacy, Python 3.x is the present and future of the language
Windows:

Binaries of latest version of Python 3 (Python 3.5.1) are available on this download page [4] or install
using Anaconda Package Manager (Recommended) [7]

Linux and Mac:

Follow the instructions from https://www.tutorialspoint.com/python3/python_environment.htm [2]

https://www.python.org/downloads/windows/
https://www.continuum.io/downloads
https://www.tutorialspoint.com/python3/python_environment.htm

Python 2 vs 3 users in PyCharm [5]

PyCharm: in late 2017 py3.users > py2.users

Python 2 and 3
100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%
1/1/2013 7M1/2013 1712014 7112014 1/1/2015 7/1/2015 1/1/2016 7/1/2016

Andrey Vliasovskikh @viasovskikh - 24 Nov 2016
l #Python 3: 50%, 2: 65% (overlap), 3 outgrows 2 by 2017-12 (source: @PyCharm stats) contrary to @zedshaw
claims in learnpythonthehardway.org/book/nopython3... pic.twitter.com/CFvTddQnhZ

Tools and IDE (Advanced installation)

-> Download and install Pycharm Community
edition - Free, No license required

https://www.jetbrains.com/pycharm/downloa

d/#section=windows [6]

- Jupyter (Interactive python shell) [Anaconda]

-http://jupyter.org/

-> Spyder [Anaconda]

-> Notepad++ - https://notepad-plus-plus.org/

_) Anaconda Navigator - Beta

File Help

A Home

. Environments

o] o
L
—_— A,
Jupyter IPy
e’ 4
noteboo qtc spyder
A A 300
PyYQE GUI that suj ’ Scientific PYthon Development
proper multiline h syntax EnviRonment. Powerful Python IDE with
i e highlighting, graphical calltips, and mere. advanced e ract i

A .‘.~\
4
M v

https://www.jetbrains.com/pycharm/download/#section=windows
https://www.jetbrains.com/pycharm/download/#section=windows
http://jupyter.org/
https://notepad-plus-plus.org/

First Program(Iinteractive mode)

Enter python in the command line/terminal. Start coding right away in the interactive interpreter.

Command Prompt - python — O X
soft Windows [Version 10.0.15063]
(c) 2017 Microsoft Corporation. All rights reserved.

C:\Users\Timtim>python

Python 3.5.2 |Anaconda 4.2.0 (64-bit)| (default, Jul 5
Type "help", "copyright", "

»>>> print("Hello World")
Hello World

>3

2016, 11:41:13) [MSC v.1900@ 64 bit (AMD64)] on win32
credits” or "license" for more information.

Scripting mode

Example (Hello.py):
, D:A\PycharmProjects\python_tutorial\Hello.py - Notepad ++
File Edit Search View Encoding Language Se‘rtings Tools Macro Run Plugins Window ?

e 3 5 & | g 2 BES1EEEE

(= Hello.py E3

0

1 print("Hello World")

In Terminal:

- \Us \Timtim>python d:\PycharmProjects\python_ tutorial\Hello.py
Helln Hnrld

re\Timtim>

Basic Syntax

Identifiers:

e Name used to identify a variable, function, class, module or other object

e Starts with a letter A to Z or a to z or an underscore (_) followed by zero or more letters,
underscores and digits (0 to 9)

e Punctuation characters such as @, $,and % within identifiers are not allowed

e Case sensitive programming language. Manpower and manpower are two different

identifiers in Python

Reserved Keywords

and
assert
break
class
continue
def

del

elif

else

except

exec
finally
for
from
global
if
import
in

is

lambda

not
or
pass
print
raise
return
try
while
with

yield

Lines and Indentation

Python does not use braces({}) to indicate blocks of code for class and function definitions or flow control.
Blocks of code are denoted by line indentation

The number of spaces in the indentation is variable, but all statements within the block must be indented
the same amount. Use of tab is recommended to be consistent and make the code more readable.

Correct implementation: Erroneous implementation:
if True: if True:
print("Answer") print("Answer™)
print("True") print("Truc")
else: else:
print("Answer") print("Answer™)

print ("False") print ("False")|

Misc.

Multi-Line Statements : Statements in Python typically end with a new line.
Python, however, allows the use of the line continuation character (\) to denote

that the line should continue.
total = item one + \

item_two + \
item_three

Comments :A hash sign (#) that is not inside a string literal is the beginning of
a comment.

First comment
print ("Hello, Python!") # second comment

Variable types

Variables are nothing but reserved memory locations to store values. It means that when you create a
variable, you reserve some space in the memory.

Standard Data Type Example

Numbers counter=100, miles=100.0
String firstname= “john”

List (like Array in C,Java) heights=[*John”, 157]]
Tuple (Read only lists) heights = ("john', 157.2)

Dictionary (like hash-table) Person={'name": 'john’, 'dept": 'sales’, 'code": 6734}

Type of Operators

Operators are the constructs, which can manipulate the value of operands. Python language supports the

following types of operators -

Arithmetic Operators

Relational Operators
Assignment Operators
Logical Operators
Bitwise Operators
Membership Operators
Identity Operators

+,-, %/, %, ** (exponent), // (floor

division)

==F !=1 }1 {I‘: }=r o=

B, *=: fzr =y **=! /j:
and, or, not

&!‘ |.i' NJ nl {{J }}
in, not in

is, not is

Basic Operators

Operator

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

** Exponent

Description

Adds values on either side of the
operator.

Subtracts right hand operand from
left hand operand.

Multiplies values on either side of
the operator

Divides left hand operand by right
hand operand

Divides left hand operand by right
hand operand and returns
remainder

Performs exponential (power)
calculation on operators

Example

a*b=210

b/a=2.1

b% a=1

a**b =10 to the power 20

Using Multiplication operator

mul.py

#multiplication of two numbers
a=input ("Enter 1st no.: ")
b=input ("Enter Znd nc ")

c= int(a) * int(b)

print('The sum of

' .format(a, b, c}))

Console output:

C:\Users\Timtim>python d:\PycharmProjects\python_tutorial\mul.py

2
|
p

Enter 1st no.:
Enter 2nd no.: 2
The sum of 3 and 2 1s 6

Decision Making (if statement)

If.py

#check 1f a number 1s ewven
a=input ("Enter any no.: ")
Jif int(a)%Z ==0:
: print(a,' is even')

Console Output:

C:\Users\Timtim>python d:\PycharmProjects\python_tutorial\if.py
Enter any no.: 2
2 1is even

C:\Users\Timtim>python d:\PycharmProjects\python_tutorial\if.py

Enter any no.: 3

" 1

:\Users\Timtim>

Decision Making (if -else statement)

IfElse.py #check if a number is even
a=input ("Enter any no.: ")
Jif int({a)%Z ==0:
: print{(a,' 1s even')
?else:
print(a, ' is]||

Console Output:
C:\Users\Timtim>python d:\PycharmProjects\python tutorial\if.py

Enter any no.: 2
2 1s even

C:\Users\Timtim>python d:\PycharmProjects\python tutorial\if.py
Enter any no.: 3

3 1s odd

Decision Making (elif)

amount = int(input("Enter amount: "))

if amount<leee:
discount = amount*©.e5
print ("Discount",discount)
elif amount<5eee:

discount = amount*©.1©

print ("Discount",discount)
else:

discount = amount*©.15

print ("Discount",discount)

print ("Net payable:",amount-discount)

When the above code is executed, it produces the following result —

Enter amount: 606
Discount 208.¢

Met payable: 5796.80

Decision Making (Nested if)

Ex: # ! /usr/bin/python3
num = int(input(”enter number™))
if num¥%2 == @:
1F pumEs == 8:
print ("Divisible by 3 and 2")
else:
print ("divisible by 2 not divisible by 3")
else:
if num¥%3 == ©:
print ("divisible by 3 not divisible by 2")
else:
print ("not Divisible by 2 not divisible by 3")

enter numbers8
Output: divisible by 2 not divisible by 3
|
enter numberl5
divisible by 3 not divisible by 2

Loops

In general, statements are executed sequentially — The first statement in a function is executed first,
followed by the second, and so on. There may be a situation when it’s necessary to execute a block of
code several number of times.

while loop|#
Repeats a statement or group of statements while a given condition is TRUE. It
tests the condition before executing the loop body.

for loop [
Executes a sequence of statements multiple times and abbreviates the code that
manages the loop variable.

nested loops (4
You can use one or more loop inside any another while, or for loop.

Loops

print (i)

i=1 1
while while (i<=3) : 2
print (i) 3

i=1+1
print from 1 to 3 1
for for i in range(1l,4): 2
3

Functions

A function is a block of organized, reusable code that is used to perform a single, related action. Functions
provide better modularity for your application and a high degree of code reusing.

Defining a Function

Simple rules to define a function in Python.

e Function blocks begin with the keyword def followed by the function name and parentheses
(()).

e Any input parameters or arguments should be placed within these parentheses.

e The first statement of a function can be an optional statement - the documentation string of
the function or docstring.

e The code block within every function starts with a colon (:) and is indented.

e The statement return [expression] exits a function, optionally passing back an expression to
the caller. Areturn statement with no arguments is the same as return None.

Function Call

Function definition:

def functionhame(parameters):
"function docstring"
function suite
return [expression]

Example:
I

Function definition is here

def printme(str):
"This prints a passed string into this function®
print (str)
return

Now you can call printme function
printme("This is first call to the user defined function!")
printme("Again second call to the same function")

Function- Arguments

Function definition is here
def printinfo(name, age):
"This prints a passed info into this function'

print ("Name: ", name)
print ("Age ", age)
return

Now you can call printinfo function
printinfo(age = 50, name = "miki")

When the above code is executed, it produces the following result —

Name: miki

Age 50|

Function- Variable length arguments

Example Output:

Function definition is here
def printinfo(argl, *vartuple):

"This prints a variable passed arguments” Output is:
print ("Output is: ") 10
print (argl) Output is:
for var in vartuple: 0
print (var)

60
return

50

Now you can call printinfo function
printinfo(10)
printinfo(70, 60, 50)

Modules

A module allows to logically organize Python code. Grouping related code into a module makes the code
easier to understand and use. A module is a Python object with arbitrarily named attributes. Python code
for a module named aname normally resides in a file FILE_NAME.py. Here is an example of a simple
module, support.py -

def print func(par):

print "Hello : ", par
return

When the interpreter encounters an import statement, it imports the module if the module is present in
the search path.

Import module support
import support

Now you can call defined function that module as follows
support.print_func("Zara")

File /0

Python provides basic functions and methods necessary to manipulate files by default. Most of the file manipulation can
be completed using a file object.

Open a file
fo = open("foo.txt"™, "wb"™)
print ("Name of the file: ", fo.name)

print ("Closed or not : ", fo.closed)
print ("Opening mode : ", fo.mode)
fo.close()

This produces the following result —

Mame of the file: Ffoo.txt
Closed or not : False

Opening mode : wb

Exceptions

Python provides two very important features to handle any unexpected error in your Python programs and to add
debugging capabilities in them -

e Exception Handling - Basic error handling i.e Division by zero, File Read/Write error etc.
e Assertions - Advanced topic

try:
fh = open("testfile™, "w")

fh.write("This is my test file for exception handling!!"™)
except TOError:

print {("Error: can\'t find file or read data™)
else:

print {("Written content in the file successfully™)
fh.close()

This produces the following result —

Written content in the file successfully

Class (OOP)

Python has been an object-oriented language since the time it existed. Due to this, creating and using classes and

objects are downright easy.

The class statement creates a new class definition. The name of the class immediately follows the keyword class

followed by a colon as follows —

class ClassName:
'Optional class documentation string’

class suite

e The class has a documentation string, which can be accessed via ClassName.__doc__

e The class_suite consists of all the component statements defining class members, data attributes and

functions.

Class (OOP)

Example Code Output

class Employee:
"Common base class for all employees’
empCount = @

def dinit (self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1 Name : Zara ,Salary: 2000
Name : Manni ,Salary: 5000
def displayCount(self):
print ("Total Employee ¥%d" % Employee_empCount) Total Employee 2

def displayEmployee(self):

print {("Name : ", self.name, » Salary: ", self.salary)

#This would create first object of Employee class™
empl = Employee("Zara"™, 2000)

#This would create second object of Employee class™
emp?2 = Employee(™Manni™, 5000)
empl.displayEmployee()

emp2.displayEmployee()

print ("Total Employee #d"™ ¥ Employee.empCount)

Numbers - Functions [3]

___Type | Function | Description | _Example |

pow(x, y) The value of ;‘f’;ﬁ’ét ot
x**v "math.pow(2, <)
: 7, math.pow(Z,
1)
math.pow(2, 4} : 16.0
Mathematical
print "akbs(—45)
abs(x) ITheabsolote = o
value of x abs(-a5) : 45
. H import math
sin (x) Return the sine of S e
x radians e g
sin(3) : 0.14112000806
. . H import math
Trigonometric cox (x) Returnthecosine | 0~ "= . .
of x radians Bett moai

sin(3) : 0.14112000806

String - Functions [3]

String Method Description

capitalize()

len()

Capitalizes first letter of
string

Returns the length of the
string

SEEis s
is SEring
EXATMF] e, .« - WO
- LS

print
"str.capitali
et =l B L
BEL. CRpIERILE

ef)

SR M rhEs
iz String
example.Wo
> R

print "Length
ot the
string: M,
leniztr)

str.capitalize() ; This
is string
example...wowlll

Length of the
string: 32

List - Operators and functions [3]

__Expression | ___Result | _Description

len([1, 2, 3]) 3 Length
3in[l, 2, 3] True Membership
forxin[1, 2, 3]: 123 Iteration

print x,

Advanced Libraries

Numpy- support for large, multi-dimensional arrays and matrices, along with a large
collection of high-level mathematical functions to operate on these arrays [12]

Scipy- provides many user-friendly and efficient numerical routines such as routines for
numerical integration and optimization [11]

Matplotlib - 2D plotting library which produces publication quality figures in a variety of
hardcopy formats and interactive environments across platforms [9]

Pandas- high-performance, easy-to-use data structures and data analysis tools [8]

Scikit Learn(sklearn) - Machine learning libraries built on top of NumPy, SciPy and
matplotlib [10]

L i S D S

For more reference: https://wiki.python.org/moin/UsefulModules

https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Matrix_(math)
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)

Resources and References

1. http://learnpython.org/

https://www.tutorialspoint.com/python3/

3. https://www.slideshare.net/MoitraSabya/python-basic-77418012?gid=e78f7c5d-51b8-4a70-a48d-3
2b1aeb35548&v=&b=&from search=1

https://www.python.org/
https://www.slideshare.net/mariczhuck/austin-python-meetup-2017-how-to-stop-worrying-and-star
t-a-project-with-python-3?qid=83f645fe-c735-4b00-aeee-c9224c8294d7&v=&b=&from search=11
https://www.jetbrains.com/pycharm/

https://www.continuum.io/downloads

http://pandas.pydata.org/

https://matplotlib.org/

10. http://scikit-learn.org/stable/

11. bhttps://www.scipy.org/

12. http://www.numpy.org/

N

»

d

0 00 N O

http://learnpython.org/
https://www.slideshare.net/MoitraSabya/python-basic-77418012?qid=e78f7c5d-51b8-4a70-a48d-32b1aeb35548&v=&b=&from_search=1
https://www.slideshare.net/MoitraSabya/python-basic-77418012?qid=e78f7c5d-51b8-4a70-a48d-32b1aeb35548&v=&b=&from_search=1
https://www.python.org/
https://www.slideshare.net/mariczhuck/austin-python-meetup-2017-how-to-stop-worrying-and-start-a-project-with-python-3?qid=83f645fe-c735-4b00-aeee-c9224c8294d7&v=&b=&from_search=11
https://www.slideshare.net/mariczhuck/austin-python-meetup-2017-how-to-stop-worrying-and-start-a-project-with-python-3?qid=83f645fe-c735-4b00-aeee-c9224c8294d7&v=&b=&from_search=11
https://www.jetbrains.com/pycharm/
https://www.continuum.io/downloads
http://pandas.pydata.org/
https://matplotlib.org/
http://scikit-learn.org/stable/
https://www.scipy.org/

