
IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2329 | P a g e

Alternative Programming language for Indian

Language Processing: A Choice among Java and C#
Harjit Singh1, Ashish Oberoi2

1Neighbourhood Campus Dehla Seehan, Punjabi University Patiala, Punjab, India
2School of Engineering, RIMT University, Mandi Gobindgarh, Punjab, India

(e-mail: hjit@live.com)

Abstract—A natural language other than English needs to

be processed using a programming language that is capable to

handle Unicode character set. In natural language processing

research, most of the researchers prefer to use Python

language. But Java and C# can also be used to process a
natural language because both these languages are capable to

handle Unicode character set. These are suitable for

processing Indian language text. These have built-in library

functions that can be used to access and manipulate Unicode

text strings. Due to the limited resources and limited ready to

use libraries available for Indian language processing in other

programming languages also, Java and C# are not so behind

the race. Also the existing libraries and functions are capable

enough to generate new libraries for Indian language

processing. The features like object-oriented, structured

programming, rich library and fast speed make both these
languages suitable for Indian language text processing. This

paper provides details about suitability of Java and C# for

Indian language processing with the available Natural

Language Processing toolkits and their support for Java and

C#.NET including alternative options that will be helpful to

beginners in Natural Language Processing.

Keywords— Natural Language Processing, Indian

Languages, Stanford CoreNLP, NLTK, NltkNet, OpenNLP,
SharpNLP, Java, C#.NET

I. INTRODUCTION

Indian language processing appears in beginning stage
when compared to natural language processing (NLP) research
for global languages. If we are just followers and want to
follow the same pattern of research done for global languages
then we should carry on otherwise at this initial stage it is not
necessary to choose a programming language that others have
chosen. Yes, the compulsion may be due to the reason that the
research guide is unable to provide guidance in some other
programming language and said that this particular language is
best of NLP. I think the best language is the language we know
the best and is capable to handle Unicode.

A natural language other than English needs to be
processed using a programming language that is capable to
handle Unicode character set. To implement Unicode, different
character encodings are used. UTF-8, UTF-16, UTF-32 and

many other encodings are used to represent Unicode character
set. Unicode provided a consistent encoding and ways to
handle text expressed in most of the natural languages written
in the world. Unicode Consortium maintains the standard and
the current version (as on March 2019) is Unicode12.0 which
represents 1, 37, 929 characters [1]. The Unicode standard has
been implemented in most of the recent technologies in the
computing industry which includes operating systems like
Windows, Meta languages like XML, and programming
languages such as C #.NET.

Each Indian language has its own range of character
representation in Unicode. For example, Devanagri Script
(used to write Hindi language) has Unicode range from 0900-
097F [2] and Gurmukhi Script (used to write Punjabi language)
has Unicode range from 0A00-0A7F [3]. A number of toolkits
available to process English language text but no up to the
mark tool is available for Indian Languages text processing.

The basic functions in natural language processing are to
convert Unicode character stream into set of lexical items such
as words or phrases [4]. Both Java and C#.NET provide
functions/methods to perform these tasks with some variations
in working.

The remaining sections in this paper provide detailed
analysis of functions and capability of Java and C#.NET and
their suitability to process Indian language text. Some
suggestions are given from personal viewpoint regarding the
choice of a programming language while beginning the
research in Indian language processing. The paper provides
details about the available Natural Language Processing
toolkits and their support for Java and C#.NET including
alternative options. Finally the paper concludes with a
summary of details presented in the paper and suggested
opinions.

II. INDIAN LANGUAGE PROCESSING AND JAVA

Java is an object oriented language extended for software
development and Internet applications. Java features such as
platform independence, multithreaded application
development, distributed application development, shows its
suitability for development of up to date applications [5]. Its
support for Unicode makes it useful for text processing of
languages other than and including English [6]. This section

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2330 | P a g e

discusses various features of Java and their suitability for
Indian Language Processing:

A. Platform Independence

If we require programming language code need to be
platform independent so that it could be executed on any
operating system or hardware, then Java is nice in this way.
The model of java satisfies this requirement with the invention
of Java Virtual Machine (JVM) or JRE (Java Runtime
Environment). The design of java offers two phase compilation
of java source to native machine code. When we compile Java
source code, it outputs Bytecode which is an in-between code
among java source code and the machine code. This Bytecode
produced is interpreted to machine language code by the java
interpreter. The standalone interpreter helps to execute the java
application from the command line. This function is also
performed by JRE (Java Runtime Environment). It means that
to compile and execute java program, the machine must have
Java Runtime Environment installed [7].

Java provided a new idea of improving performance using
Just-In-Time (JIT) compilation (called HotSpot) that allows the
Bytecode to be compiled to machine language code when it is
needed and then store it in the memory so that if it is required
again, it need not be re-compiled [8].

B. Speedup Processing

Indian Language Processing makes use of large set of data
or text files (such as lexicons or corpus) which needs fast
processing so as to produce outputs as quickly as possible. The
Java architecture including JIT (Just-In-Time) compilation
model makes it appropriate for these applications. Beyond that,
Java feature called multithreading is very useful one to speed
up processing of heavy burdened applications [8].

The design of an application for Indian Language
Processing can be in such a way to split the tasks into multiple
threads and those threads can be executed concurrently to
lessen the processing time. For example, one thread can access
the lexicon and another thread can interact with user requests
and responses [9].

C. Easy Linguistic Knowledge Updation

Indian Language Processing requires a large set of
linguistic knowledge collected in data files. Java is capable to
access any database with same programming code. Java
Database Connectivity (JDBC) establishes a bridged
connection among Database and Application. Database of
Linguistic knowledge remains independent from the
programmed knowledge. The linguistic knowledge is updatable
independently from the java code. The updated knowledge
base is incorporated by java application without any change to
answer future queries. Other applications are also allowed to
update the linguistic knowledge base without any affect on
Java application. The concurrent access to the linguistic
knowledge stored in the database can be provided to various
applications [10].

D. Linguistic Knowledge Reusability

The Linguistic knowledge utilized by Indian Language
Processing application should not be restricted to access by a
single application only. That linguistic knowledge need to be
an independent set of data or information collected in such a
way so that it can be accessed by any application.

In view of the fact that linguistic knowledge collected in the
database is absolutely separated from related Java programs, it
means that the knowledge is re-usable. The fresh applications
can be developed to access the linguistic knowledge without
any need to collect and store information from scratch. The
Database stores the linguistic knowledge in tables, and more
tables can be stored to existing database for new applications to
be written without changing the working of existing
applications [10].

E. Online Availability of Solutions

The utilization of Indian Language Processing systems can
be increased by providing their access online instead of the
need to have the full application installed on individual
machine. Due to the heavy load applications, not all systems
may fulfill installation requirements. Java’s distributed
application development is helpful to fulfill the need. Java
Applets embedded in a web application page are executed in
the web browser. Applets are capable to perform all tasks
online similar a standalone application performs offline. An
applet has an interface and according to the instructions by the
user, it communicates with the web server to fulfill user
requests in a safe way. That is the reason behind the extensive
use of applets in online transaction applications. Java applet
offers full utilization of java language strength in a web page
[11].

III. INDIAN LANGUAGE PROCESSING AND C#

C# is also an object oriented language for software
development and Internet applications (ASP.NET). C# features
such as object oriented, type safety, interoperability, scalability,
structured programming, fast speed and rich library shows its
suitability for development of up to date applications [12]. Its
support for Unicode makes it useful for text processing of
languages other than and including English [13]. This section
discusses various features of C# and its suitability for Indian
Language Processing:

A. Platform Independence

A language is platform independent if the program
compiled on one platform can be run without recompilation on
some other platform. The architecture of C# is similar to Java
in some way. The Java programs when compiled require JRE
(Java Runtime Environment) in order to execute in the same
way C# programs when compiled require CLR (Common
Language Runtime) in order to execute. The design of C# (or
we can say .NET) offers two phase compilation of source code
to native machine code. When we compile C# source code, it
outputs CIL (Common Intermediate Language) code which is
an intermediate code between C# source code and the machine
code. This CIL produced is interpreted to machine language
code by the CLR (acting as interpreter). It means that to

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2331 | P a g e

compile and execute C# program, the machine must have .NET
Framework (CLR is a part of) installed [14].

C# also uses the idea of improving performance using Just-
In-Time (JIT) compilation but with some differences. Here the
CLR compiles the whole code when it is invoked at runtime. It
improves performance in case large amount of code is there
and calls to same code are less frequent [15].

B. Speedup Processing

Indian Language Processing makes use of large set of data
or text files (such as lexicons or corpus) which needs fast
processing so as to produce outputs as quickly as possible. The
.NET architecture (hence C#) including JIT (Just-In-Time)
compilation model makes it appropriate for these applications.
Beyond that, C# also provides multithreading which is very
useful one to speed up processing of heavy burdened
applications [15].

The design of an application for Indian Language
Processing can be in such a way to split the tasks into multiple
threads and those threads can be executed concurrently to
lessen the processing time. For example, in case of translation
and transliteration one thread can deal with source language
and another thread can deal with target language [16].

C. Easy Linguistic Knowledge Updation

Indian Language Processing requires a large set of
linguistic knowledge collected in data files. C# is capable to
access any database with same programming code. ADO.NET
establishes a connection among Database and Application
using Entity Framework. Entity Framework is an open source
object-relational mapping framework for ADO.NET. Using
Entity Framework, we can work at a higher level of abstraction
while dealing with data. Database of Linguistic knowledge
remains independent from the programmed knowledge. The
linguistic knowledge is updatable independently from the
source code. The updated knowledge base is incorporated by
C# application without any change to answer future queries.
Other applications are also allowed to update the linguistic
knowledge base without any affect on C# application. The
concurrent access to the linguistic knowledge stored in the
database can be provided to various applications [17].

D. Linguistic Knowledge Reusability

The Linguistic knowledge utilized by Indian Language
Processing application should not be restricted to access by a
single application only. That linguistic knowledge need to be
an independent set of data or information collected in such a
way so that it can be accessed by any application.

In view of the fact that linguistic knowledge collected in the
database is absolutely separated from related C# programs, it
means that the knowledge is re-usable. The fresh applications
can be developed to access the linguistic knowledge without
any need to collect and store information from scratch. The
Database stores the linguistic knowledge in tables, and more
tables can be stored to existing database for new applications to
be written without changing the working of existing
applications [17].

E. Online Availability of Solutions

The utilization of Indian Language Processing systems can
be increased by providing their access online instead of the
need to have the full application installed on individual
machine. Due to the heavy load applications, not all systems
may fulfill installation requirements. .NET Remoting provides
distributed application development which is helpful to fulfill
the need. ASP.NET web applications also provide
communication with web server through web browser. A web
page has an interface and according to the instructions by the
user, it communicates with the web server to fulfill user
requests in a safe way [18].

IV. THE READY TO USE TOOLKITS

There are a number of Natural Language Toolkits available
to use with various programming languages. But the support
for Indian Languages is very limited till now:-

A. Standford CoreNLP

Standford CoreNLP is a set of NLP tools which take raw
text in English and outputs base word forms, the POS (Parts-
of-Speech) tags of words, recognizes named entities etc. It
means it is easy to apply these tools to the plane text with a few
lines of code. It is very flexible and extensible. In the tool
pipeline, we can choose which tools we want to apply
(enabled) and which tools we do not want to apply (disabled).

Java language is used to write Stanford CoreNLP, so Java
needs to be installed to run it. Although it is better to use it
from a Java application, but the access is not limited to Java.
There are APIs available to access it from other programming
languages such as C#.NET, F#.NET, Go, Perl, PHP, Python,
Ruby and many others. Even it can be accessed as a web
service or from command line [19].

CoreNLP is basically expected for processing English
language text. But its architecture allows it to work with other
natural languages, given that there are components/models
available for those languages. The first party language support
is provided to English, French, German, Spanish, Chinese,
Arabic and unfortunately not to any Indian language till now
[20]. So, using CoreNLP for Indian languages is as difficult as
starting from scratch.

B. NLTK

Natural Language Toolkit (NLTK) is a popular package of
tools to work with natural languages using Python. It provides
libraries for text processing such as tokenization, classification,
tagging, stemming, parsing etc. and interfaces t more than 50
corpora including interface to WordNet. It can be used on
Windows, Linux, Mac OS X and it is open source and free. It is
useful for researchers, linguistics, students and educators [21].

Stemming is a basic task in Natural Language Processing.
NLTK 2.0.4 stemming supports only these languages i.e.
English, French, Italian, German, Spanish, Russian, Swedish,
Porter, Portuguese, Hungarian, Norwegian, Romanian, Dutch,
Danish, Arabic and Finnish. It should be cleared that not all
functionalities are available for all supported languages. So,
there is no Indian languages support from first party. Also there

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2332 | P a g e

are no POS taggers that are pre-trained for languages other than
English. NLTK is a great tool for teaching and research in
supported languages but it is quite limited if used for industrial
applications [21].

C. NltkNet

It is a .NET wrapper for NLTK library and hence enables
support of NLTK for c# language. But to use NltkNet wrapper,
we need to install IronPython binaries and then NLTK library
for IronPython. IronPython interpreter is very useful to execute
and test Python scripts from Visual Studio.NET. After
successful installation and confirmation, NLTK can now be
accessed from Visual Studio.NET using C# as follows [22]:

using System;

using System.IO;

using System.Collections.Generic;

using System.Linq;

using NltkNet;

namespace NltkNetTest

{

 class TestClass

 {

 static void Main(string[] args)

 {

 Nltk.Init(new List<string>

 {

 @"X:\path-to-IronPython-libraries",

 @"X:\path-to-third-party-libraries",

 });

 string text = "Testing NltkNet using C# on VS.NET.";
 var words = Nltk.Tokenize.WordTokenize(text);

 // ----Statements----

 var corpus = new Nltk.Corpus.Brown();

 // ----Statements----

 var stemmer = new Nltk.Stem.PorterStemmer();

 // ----Statements----

 }

 }

}

But unfortunately, NltkNet is new and does not support all
features of NLTK library. For those unwrapped features, we
can use Nltk.Py directly from C# code to execute IronPython
script as [22]:

using System;

using System.IO;
using System.Collections.Generic;

using System.Linq;

using NltkNet;

namespace NltkNetTest

{

 class TestClass

{

 static void Main(string[] args)

 {
 Nltk.Init(new List<string>

 {

 @"X:\path-to-IronPython-libraries",

 @"X:\path-to-third-party-libraries",

 });

 NltkNet.Py.ImportModule(“nltk.corpus”);

 NltkNet.Py.ExecuteScript(“from nltk.corpus xxxx”);

 }

 }

}

D. OpenNLP

OpenNLP is a toolkit written in Java to process natural
language text based on machine learning. Common text
processing tasks like sentence segmentation, tokenization, POS
tagging, named entity recognition (NER), parsing, chunking
etc. are supported by OpenNLP. It supports perception based
machine learning and maximum entropy based machine
learning framework for training the NLP components, so it can
support a natural language given that the language model is
available. The latest release of OpenNLP (as on March 27,
2019) having Language Detector Model is able to detect 103
natural languages which includes 9 Indian languages i.e. Hindi,
Punjabi, Gujarati, Marathi, Malayalam, Sanskrit, Tamil, Telugu
and Urdu [23].

E. Sharp NLP

SharpNLP is a set of open source natural language
processing tools developed in C# for English language
processing. It is related to OpenNLP library and provides
natural language tools such as sentence splitter, POS tagger,
tokenizer, chunker, parser, named entity finder etc. it also
provides an interface to WordNet database [24].

V. CONCLUSION

There are a number of options available for a researcher
who begins research in Indian languages processing. No
programming language can be stamped as best for processing
language text. Actually the language suggestion is just related
to the availability of ready to use libraries for speeding up the
research process. As discussed in this paper, it is clear that
Indian languages are far away from language support by first
party NLP tool developers. So, taking into this fact in
consideration, one must use his/her expertise in that particular
language which he/she knows the best. C#.NET is a modern
programming language and can be used in Indian language
processing as well since no mature libraries exist for Indian
language processing in other programming languages also. The
beginning in an experienced programming language will be

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2333 | P a g e

better for concentrating on the research ideas instead of
learning a new language and putting the research work aside.
This paper provided details about the suitability of C# for
Indian language processing alongside Java. The paper also
provided lights on available NLP toolkits and their support for
Java and C#.NET including alternative options, so that
beginners in research can understand the things better at one
place.

REFERENCES

[1] UNICODE INC. Announcing The Unicode® Standard, Version
12.0. [Online]. http://blog.unicode.org/2019/03/announcing-
unicode-standard-version-120.html

[2] UNOCODE INC. Unicode range for Devanagri. [Online].
http://www.unicode.org/charts/PDF/U0900.pdf

[3] UNICODE INC. Unicode range for Gurmukhi. [Online].
http://www.unicode.org/charts/PDF/U0A00.pdf

[4] Eiichiro Sumita Takao Doi, "Input Sentence Splitting and
Translating," in Proceedings of the HLT-NAACL 2003
Workshop on Building and Using Parallel Texts: Data Driven
Machine Translation and Beyond, 2003, pp. 104–110.

[5] Harjit Singh, "Role of Java in Natural Language Processing for
Indian Regional Languages," International Journal of scientific
research and management (IJSRM), vol. 4, no. 11, pp. 4800-
4802, Nov. 2016.

[6] ORACLE INC. Unicode (The Java™ Tutorials). [Online].
https://docs.oracle.com/javase/tutorial/i18n/text/unicode.html

[7] Marisa Gil Ruben Pinilla, "JVM: Platform Independent vs.
Performance Dependent," ACM SIGOPS Operating Systems
Review, vol. 37, no. 2, pp. 44-56, April 2003.

[8] IBM. JIT Overview (Java). [Online].
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.
0.0/com.ibm.java.vm.80.doc/docs/jit_overview.html

[9] ORACLE INC. Processes and Threads (The Java™ Tutorials).
[Online].
https://docs.oracle.com/javase/tutorial/essential/concurrency/pro
cthread.html

[10] ORACLE INC. JDBC Introduction (The Java™ Tutorials).
[Online].
https://docs.oracle.com/javase/tutorial/jdbc/overview/index.html

[11] ORACLE INC. An Overview of RMI Applications (The Java™
Tutorials). [Online].
https://docs.oracle.com/javase/tutorial/rmi/overview.html

[12] Microsoft Corp. Introduction to the C# Language and the.NET
Framework. [Online]. https://docs.microsoft.com/en-
us/dotnet/csharp/getting-started/introduction-to-the-csharp-
language-and-the-net-framework

[13] Microsoft Corp. Character Encoding in.NET. [Online].
https://docs.microsoft.com/en-us/dotnet/standard/base-
types/character-encoding

[14] CODE PROJECT. Understanding Common Intermediate
Language-CIL. [Online].
https://www.codeproject.com/Articles/362076/Understanding-
Common-Intermediate-Language-CIL

[15] Microsoft Corp. Managed Execution Process. [Online].
https://docs.microsoft.com/en-us/dotnet/standard/managed-
execution-process

[16] Microsoft Corp. Managed Threading. [Online].
https://docs.microsoft.com/en-us/dotnet/standard/threading/

[17] Microsoft Corp. ADO.NET Overview. [Online].
https://docs.microsoft.com/en-
us/dotnet/framework/data/adonet/ado-net-overview

[18] C-Sharp Corner. Remoting in.NET. [Online]. https://www.c-
sharpcorner.com/article/remoting-in-net/

[19] Stanford University. Stanford CoreNLP – Natural language
software. [Online]. https://stanfordnlp.github.io/CoreNLP/

[20] Christopher D., Mihai Surdeanu, John Bauer, Jenny Finkel,
Steven J. Bethard, and David McClosky Manning, "The
Stanford CoreNLP Natural Language Processing Toolkit," in
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, 2014.

[21] NLTK Project. Natural Language Toolkit. [Online].
https://www.nltk.org/

[22] NltkNet. [Online]. https://github.com/nrcpp/NltkNet

[23] Apache. OpenNLP. [Online]. https://opennlp.apache.org/

[24] CodePlex. SharpNLP. [Online].
https://archive.codeplex.com/?p=sharpnlp

Authors Profile

Mr. Harjit Singh received the MCA (Master in Computer
Applications) degree from IGNOU
(Indira Gandhi National Open
University), New Delhi, India and
M.Phil.(CS) degree from Global
Open University, Nagaland, India. He
is working as Assistant Professor
(Senior Scale) in Computer Science at
Punjabi University Neighbourhood
Campus Dehla Seehan, Sangrur,
India. He is pursuing Ph.D. degree
from RIMT University, Mandi
Gobindgarh (Punjab). His current
research interests include Natural
Language Processing, Machine
Translation, Artificial Intelligence.

Dr. Ashish Obroi is working as Professor in Computer Science and
Engineering at School of
Engineering, RIMT University,
Mandi Gobindgarh, Punjab, India.
He completed his Ph.D. in Computer
Science and Engineering from
Maharishi Markandeshwar
University, Mullana, India. He is
skilled and expertise in Image
Processing, Medical Imaging, Image
Segmentation, Diagnostic Imaging
and Image Reconstruction.

