

School of Engineering

Discrete Structures CS 2212 (Fall 2020)

© 2020 Vanderbilt University (Waseem Abbas)

Reminder and Recap ...

Recap from last time

Conditional:	$\mathbf{p} ightarrow \mathbf{q}$
Converse:	$q \rightarrow p$
Contrapositive:	$\neg q \rightarrow \neg p$
Inverse:	$\neg p \rightarrow \neg q$

TautologyContradictionExample: $\mathbf{p} \lor \neg \mathbf{p}$ Example: $\mathbf{p} \land \neg \mathbf{p}$

We also discussed when two statements are **equivalent**? (If they always have same truth values)

Laws of Propositional Logic

- So far, we have used **truth tables** to show equivalence between statements.
- Not the easiest way if we have more complex propositions.
- Can there be another way?

In a complex statement, **substitute parts with equivalent statements** until we get the desired statement

Laws of Propositional Logic

It only makes sense to prove these simple but useful equivalences once, and then **re-use** them whenever they appear in complicated statements.

Lets see some useful equivalences that are often termed as laws.

Logical Equivalence

Consider the following statement with AND operation.

What is the negation of the following statement?

¬ (p∧q) ?

Logical Equivalence

Rachel has a cell phoneandshe has a laptop.P Λ \P

- For this statement to be true, **both** p and q must be **true**.
- Thus, if **any** of the **p**, **q** is **false**, the statement becomes false.
- So, the negation of the above statement is,

Rachel does not have a cell phone	or	<u>she does not have a laptop</u> .
¬ p	V	¬ q

Logical Equivalence

not (p and q) is equivalent to **(not p) or (not q)** $\neg (p \land q) = \neg p \lor \neg q$

not (p or q) is equivalent to **(not p) and (not q)** \neg **(p ∨ q)** = \neg **p** $\land \neg$ **q**

(verify using truth tables)

Laws of Proportional Logic

Idempotent laws:	p∨p≡p	p∧p≡p
Associative laws:	$(p \vee q) \vee r \equiv p \vee (q \vee r)$	$(p \land q) \land r \equiv p \land (q \land r)$
Commutative laws:	$p \vee q \equiv q \vee p$	$p \land q \equiv q \land p$
Distributive laws:	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Identity laws:	pvF≡p	p∧T≡p
Domination laws:	p∧F≡F	$p \vee T \equiv T$
Double negation law:	¬¬p≡p	
Complement laws:	p∧¬p≡F ¬T≡F	$p \vee \neg p \equiv T$ $\neg F \equiv T$
De Morgan's laws:	¬(p∨q)≡¬p∧¬q	¬(p∧q)≡¬p∨¬q
Absorption laws:	$p \vee (p \land q) \equiv p$	p∧(p∨q)≡p
Conditional identities:	$p \rightarrow q \equiv \neg p \lor q$	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Equivalence through Proportional Logic Laws

Regarding all these equivalence rules:

- They will be handed out for exams.
- You don't need to memorize them.

Some Important Points:

- Know the Objective
- Be mindful of the order of terms
- Justify each step
- There could be many ways

So, what's the trick here?

- Practice, and
- Some more practice
- Keep in mind the objective.

Equivalence through Proportional Logic Laws

Show that $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent

LHS:
$$\neg (p \lor (\neg p \land q))$$

 $\equiv \neg p \land \neg (\neg p \land q)$ by the second De Morgan law
 $\equiv \neg p \land [\neg (\neg p) \lor \neg q]$ by the first De Morgan law
 $\equiv \neg p \land (p \lor \neg q)$ by the first De Morgan law
 $\equiv \neg p \land (p \lor \neg q)$ by the double negation law
 $\equiv (\neg p \land p) \lor (\neg p \land \neg q)$ by the second distributive law
 $\equiv \mathbf{F} \lor (\neg p \land \neg q)$ by the second distributive law
 $\equiv \mathbf{F} \lor (\neg p \land \neg q)$ by the second distributive law
 $\equiv (\neg p \land \neg q) \lor \mathbf{F}$ by the commutative law for disjunction
 $\equiv \neg p \land \neg q$ by the identity law for \mathbf{F}

So far, we have been dealing with propositions, which have <u>fixed</u> truth values.

What if our statements have *variable* truth values?

For this, we need:

Predicate Logic

Often times mathematical statements involve **variables**, and truth value of the statement depends on **particular values** of variables.

Example:x is an odd integerIs this a proposition?

Example: if (x > 10), then print "Hello"

Is our code going to print 10?

There is **no definite** true or false here.

Thus, propositional logic cannot deal with such situations.

We need to **"generalize"** the notion of propositions.

Predicate Logic

Predicate: It is a logical statement that contains **variables**, and the truth value of the statement depends on the particular values of variables.

P(x) :	x is an odd integer	(Pre	edicate)
P(5):	5 is an odd integer	(True)	These statements have —— definite truth values, so
P(4):	4 is an odd integer	(False)	they are propositions

A predicate with its variables instantiated is a **proposition**.

```
P(1), P(2), P(3), ...
```

Each of the above has a true or false value and is a proposition

Predicate Logic

P(x): x is an odd integer (**Predicate**)

- **x** is our **variable** here. So can *x* have **any** value ???
- How about x = banana?

P(banana): banana is an odd integer

- We must define a **set** or **Domain** which contains all possible values of variables. In other words, our variables can have values only from that domain or set.
- Such a domain is typically called **Domain of Discourse**

P(x): *x* is an odd integer

Domain: Set of integers (**Z**)

There are different ways of doing it. Here, we see three different ways.

Select a specific value of x from the domain. <u>Proposition:</u> P(x) for that specific value of x

Predicate:	Person is older than 30 years.
Variable (<i>x</i>):	Person
Domain:	Persons in this class
Quantifier:	Specific value of person $x =$ Waseem
Proposition:	Waseem is older than 30 years.
Truth Value:	True

Quantifying Predicates (Summarizing)

2. For all values of x in the domain

Proposition: For all x, P(x)

True: if P(x) is *true* for *every value* of *x*. False: if there is *at least one value* of *x* for which P(x) is *false*.

Predicate:	Person is older than 30 years.
Variable (<i>x</i>):	Person
Domain:	Persons in this class
<u> </u>	_ 11 1 0
Quantifier:	For all values of x
Quantifier: Proposition:	For all values of x All persons in the class are older than 30 years.

3. There exists some *x* in the domain

Proposition: For some x, P(x)

True: if there is at least one value of x for which P(x) is true. False: if P(x) is false for all values of x.

Predicate:	Person is older than 30 years.
Variable:	Person
Domain:	Persons in this class
Quantifier:	There exists some <i>x</i>
Proposition:	There is a person in the class are older than 30 years.
Truth Value:	True

Predicate P(x) Truth value depends on x Quantification

Proposition Definite truth value

Quantification:

1. Select a specific va <u>Proposition:</u>	lue of <i>x</i> from domain. P(<i>x</i>) for that specific value of <i>x</i>

Predicat Variable: Domain:	e: Person is older than 30 y Person Persons in this class	ears.
Quantifier	Proposition	Truth Value
Specific variable (Person = Waseem)	Waseem is older than 30 years	True
Specific variable (Person = <i>xyz</i>)	<i>xyz</i> is older than 30 years	False
For all	All persons in this class are older than 30 years	False
There exists	There is a person in the class older than 30 years	True

Quantifiers

Quantifier:	For all
Name:	Universal quantifier
Symbol:	\forall
Proposition	$\forall x P(x)$

Quantifier:	There exists
Name:	Existential quantifier
Symbol:	Э
Proposition	$\exists x P(x)$

Predicate P(x):	Person is older than 10 years.
Variable (x):	Person
Domain:	Students in this class

Quantifier	Proposition	Truth Value
For all ∀	$\forall x P(x)$	True
There exists ∃	$\exists x P(x)$	True

To **prove** universally quantified statements, we need to show that the statement is true for *all possible values* in the domain

To **disprove** a universally quantified statement, all we need to show is that there *exists at least one value* (case) for which the statement is not true. (also referred to as the **counterexample**).

Always be mindful of the **domain**

 $\forall x (x^2 > x)$ (domain: x is a positive integer) This statement is false. Counterexample: x = 1

 $\forall x (x^2 > x)$ (domain: *x* is a positive integer greater than 1) This statement is true.

A question:

If a *universally* quantified statement is *false*, does that mean the *existentially* quantified statement is *always true*?

Think of $\forall x P(x)$ as a Conjunction

Domain = { $x_1, x_2, x_3, ..., x_n$ }

 $\forall x P(x)$ is true means

 $(P(x_1) \text{ is true})$ and $(P(x_2) \text{ is true})$ and ... $(P(x_n) \text{ is true})$

 $\forall x \mathbf{P}(x) = \mathbf{P}(x_1) \land \mathbf{P}(x_2) \land \mathbf{P}(x_3) \land \dots \land \mathbf{P}(x_n)$

Think of $\exists x P(x)$ as a Disjunction

Domain = { $x_1, x_2, x_3, ..., x_n$ } $\exists x P(x)$ is true means (P(x_1) is true) or (P(x_2) is true) or ... (P(x_n) is true) $\forall x P(x) = P(x_1) \lor P(x_2) \lor P(x_3) \lor ... \lor P(x_n)$

Example:

Let P(x) means x is prime and

let O(x) means x is odd.

Given the proposition, $\forall x (P(x) \rightarrow O(x))$, x is a positive integer

- what does it mean?
- Is it *true*?

Solution:

 $\forall x (P(x) \rightarrow O(x))$ says that for every positive integer *x*, if *x* is prime then *x* is odd (we can word this in many ways). This proposition is *false*. We just need one counter example. Letting *x* =2, which is prime and even.

Example:

Let P(x) means x is prime and

let O(x) means x is odd.

Given the proposition, $\exists x (P(x) \land \neg O(x))$,

- what does it mean?
- Is it *true*?

Solution:

 $\exists x (P(x) \land \neg O(x))$, says that there is a positive integer x which is prime and even.

This proposition is *true*.

Letting x = 2, which is prime and even.

Quantifiers and Precedence of Operations

The quantifiers \forall and \exists are applied <u>before</u> the logical operations (\land , \lor , \rightarrow , and \leftrightarrow) used for propositions.

Example:

What does $\forall x P(x) \land Q(x)$ mean?

Logic and Predicates: Free and Bound Variables

- A variable x in the predicate P(x) is called a free
 variable because the variable is free to take on any value in the domain.
- The variable *x* in the statement $\forall x P(x)$ or $\exists x P(x)$ is a **bound variable** because the variable is bound to the quantifier within the domain.
- A statement with **no free variables is a proposition** because the statement's truth value can be determined.
- The part of logical expression to which a quantifier is applied is called the **scope** of the quantifier, $\exists x \frac{R(x)}{R(x)}$

Logic and Predicates: Free and Bound Variables

Example:

 $(\forall x P(x)) \land Q(x)$

Bound variable

Free variable

Not a proposition

Proposition

 $\forall x (P(x) \land Q(x))$ x is a bound variable

DeMorgans Law with Quantifiers

 $\forall x P(x)$: Every student in this class has taken a calculus course.

 $\neg (\forall x P(x))$

What is the negation of the above statement, that is, $\neg (\forall x P(x))$? It is not true that every student in this class has taken calculus. There is at least one student that has not taken calculus.

DeMorgans Law with Quantifiers

Domain of discourse = { x_1 , x_2 , ..., x_n }

DeMorgans Law with Quantifiers

Similarly, we have

- If a predicate has more than one variable, each variable **must be bound** by a separate quantifier.
- A logical expression with more than one quantifier that bind different variables in the same predicate is said to have **nested quantifiers**.
- Example:

 $\forall x \exists y P(x, y)$

Lets see which are bound and free variables here.

Statement	Bound variable	Free variable
$\forall x \exists y L(x, y)$	Both <i>x</i> and <i>y</i>	
$\forall x L(x, y)$	X	y
$\forall x \exists y L(x, y, z)$	Both <i>x</i> and <i>y</i>	Z

There are 4 machines in a plant and three supervisors. Plant works if every machine is operated by at least 1 supervisor.

Does the plant work?

There are 4 machines in a plant and three supervisors. Plant works if every machine is operated by at least 1 supervisor.

Does the plant work now?

Machine: *m* Supervisor: *s* P(*m*,*s*): *m* is operated by *s*.

Plant works if every machine is operated by at least one supervisor.

For every machine, there is a supervisor that operates it.

 $\forall m \exists s P(m, s)$

Domain of *m*: $\{m_1, m_2, m_3, m_4\}$ Domain of s: $\{s_1, s_2, s_3\}$

$\forall m \exists s P(m, s)$

$(\exists s P(m_1,s)) \land (\exists s P(m_2,s)) \land (\exists s P(m_3,s)) \land (\exists s P(m_4,s))$

There are 4 students and 3 courses in a semester.

A new whiteboard is installed in a classroom if there is a student with A's in all courses.

	Course 1	Course 2	Course 3
Student 1	А	А	С
Student 2	А	В	В
Student 3	А	В	В
Student 4	А	В	В

Do we have a new whiteboard?

There are 4 students and 3 courses in a semester.

A new whiteboard is installed in a classroom if there is a student with A's in all courses.

	Course 1	Course 2	Course 3
Student 1	А	А	С
Student 2	А	В	В
Student 3	А	А	А
Student 4	А	В	В

Do we have a new whiteboard now?

Student: s Course: c G(s,c): s scored A in c

There is a student with A's in all courses..

There exists some s for which G(s,c) is true for all c.

 $\exists s \forall c G(s,c)$

Domain of s:
$$\{s_1, s_2, s_3, s_4\}$$

Domain of c: $\{c_1, c_2, c_3\}$

$(\forall c G(s_1, c)) \lor (\forall c G(s_1, c)) \lor (\forall c G(s_1, c)))$

Nested Quantifiers Precedence

Operator	Precedence
\forall, \exists	1
	2
\wedge	3
\checkmark	4
\rightarrow	5
\leftrightarrow	6

The quantifiers ∀ and ∃ have *higher* precedence than all the logical operators.

Nested Quantifiers Precedence

Predicate precedence with no presence of parentheses:

1. ∀,∃ 2. 3.4. \land, \lor $ightarrow, \leftrightarrow$ 5. 6. **Example:** $\forall x \neg \exists y \ p(x, y) \rightarrow \forall x \ q(x)$ $\equiv (\forall x \neg \exists y \ p(x, y)) \rightarrow (\forall x \ q(x))$ $\equiv (\forall x \neg (\exists y \ p(x, y))) \rightarrow (\forall x \ q(x))$ $\equiv (\forall x (\neg (\exists y p(x, y)))) \rightarrow (\forall x q(x)))$

$\forall x \exists y P(x, y)$

It means that in **every row**, there should be at least one true value (green block). We don't care where this true value is in the row, but each row must contain one.

Example:

 y_1 y_2 y_3 y_4 y_5

 $\forall x \exists y P(x, y) \text{ is true}$

 $\forall x \exists y P(x, y) \text{ is false}$

It means there is at least one **row** that **does not** have any true value.

 $\neg \forall x \exists y P(x, y) \text{ is true}$

 $\exists x \forall y P(x, y)$

We are looking for a **row** with all true values

 $\exists x \forall y P(x, y) \text{ is true}$

 $\forall x \forall y P(x, y)$ All blocks should be true

 $\forall x \forall y P(x, y) \text{ is true}$

 $\exists x \exists y P(x, y)$ We are looking for a **at least one block** to be true.

 $\exists x \exists y P(x, y) \text{ is true}$

Statement	When True?	When False?
$\forall x \forall y P(x, y), \\ \forall y \forall x P(x, y) \end{cases}$	P(x, y) is true for every pair x , y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every <i>x</i> there is a <i>y</i> for which P(<i>x</i> , <i>y</i>) is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y), \\ \exists y \exists x P(x, y) \end{cases}$	There is a pair <i>x, y</i> for which P(<i>x, y)</i> is true.	P(x, y) is false for every pair x, y .

(Summary)