Sample Test 2 Solutions
1. Do the following converge (explain)?
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Compare with Z
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Since Inn < n for n > 1, then 1 < A This im-
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Z el 3) then by the direct comparison test (DCT), the original series converges.
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Compare with Z 3 Since Z -3 converges (p series with p = 3) then by the limit
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comparison test (LCT), the original series converges.
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Taking the limit lim {/|a,| = lim (— + —) = ~ < 1 then by the n'" root test, the
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original series converges.
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= lim = 0 < 1 so by ratio test, the series converges
n—oo 1 +
(1.5) i _
7 = In(n+1)
1 1 >
Sinceln(n—i—l)<n—|—1forn21thenn+1<ln(n+1> i A

(harmonic) diverges, then by the DCT, original series does as well.
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Comparing with 2 then lim 1 / 1 _ lim n’ = 1, and since i 1
paring ~n nson(n+1)" n2  nseonn+1) n2

converges (p-series with p = 2) then by the limit comparison test (LCT) the origingl se-
ries converges.
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Since lim = 1, then by the n'" term test for divergence, the series diverges.
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i (i 1) (n+1) =4 > 1 so by ratio test, the series diverges
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Since Inn < n for n > 1 then In>n < nlnn for n > 1 which gives 1 < 1 for
nlnn n?n
n > 1. Since 2 —— diverges, (see next question) then by the direct comparison test,
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original series does as well.

Let f(x ) . Clearly f(x) > 0and f'(x) = g:f——i_)l

f(x)is decreasmg so that the integral test may be used. Consider

for x > 3 showing that

© dx _ b dx
/ = hm/ = lim lnlnx|3 = oo.
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Since the integral diverges, then by the integral test, the series does as well.
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Compare with Z . Then lim —/ = lim = 1 and since Z — con-
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verges (geometnc series with » = 1/2), the original series converges by the LCT

2. Determine whether the following series converge absolutely, conditionally or diverge
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Since r}l_t)Iolo T (—1)" # 0 this series diverges.
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We first consider Z and by limit comparison with ) _ — shows that we do
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not have absolute convergence So we check the two conditions for conditional conver-
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gence. If we let a,, = then clearly
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Next, we need to show a4, 11 < a,,. We could show
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but is easier to show that if
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x)=——— then f/(x)=——"—"— <0 forx>1
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so by the alternating series test (AST), the series converges conditionally.
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For this question we will use the ratio test.
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so by ratio test, the series diverges
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We first consider Z and compare with Z - By the LCT
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and since ) +; converges (geometric series r = 1/3), the original series converges abso-
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We first consider Z 21 and compare with Z . By the LCT
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which show that original series doesn’t converge absolutely since we compared with the

harmonic series that diverges. If we let a, = .77, then clearly
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Next, we need to show a, 11 < a,. If we let
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then f/(X):(x;—_i_—ii)z<0 for x>1
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so by the alternating series test (AST), the series converges conditionally.
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Since lim (=)
n—oo n-+1

= (—1)" # 0 this series diverges.

3. Determine the interval of convergence of the following.
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So |x| < 3 or —% < x < 1. Checking the endpoints gives
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which diverges by DCT with p series (p = 1/2)
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Therefore the interval of convergence is —3 < x < 1.
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Therefore the interval of convergenceis 0 < x < 1.



4. Calculate the n'" degree Taylor polynomial with remainder for the following. Expand
about the point x = ¢

(4.1) f(x)=¢€*, ¢c=0,n=2

fx) = e f(0)=1,
filx) = e f(0)=1,
flx) = e f'(0)=1,
" (x) e* for the remainder,

The Taylor polynomial is

P(x) = f(0)+fOx+ e

2!
= 1+x+ ;—T,
The remainder is given by
Ry(x) = Z—Z!x3,
for0<z<xorx<z<0
(4.2) f(x) =sinx, c=7 n=4,
In this example, we need only construct Py .
f(x) = sinx f(5) =1,
f(x) = cosx f(5)=0,
f"(x) = —sinx f”(%) =1,
f'(x) = —cosx  f(5) =0,
¥ (x) = sinx UG =1
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for 7 <z<xorx<z<7.

(43) f(x)=In(x+1), c=0, n=3

f(x) =In(x+1) f(0) =0,
o=t F10) =1,
f(x) = (x111)2 f(0) = -1,
7 (x) = (x-fl)3 f(0) =2,
f (4)( ) = —3 for the remainder.

The Taylor polynomial is
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The remainder is given by
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In this case we only need Ps. The derivatives are:

£ = 07 £0) =5,
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@) (x) = '
fFH(x) 2=t remainder,

The Taylor polynomial is
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Py(x) = f(0)+f(0)x + " =x"+
* +2' +gx_3
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The remainder is given by

R3(x) = f x*,

forO0<z<xorx <z<D0.
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