
Sample Test 2 Solutions
1. Do the following converge (explain)?

(1.1)
∞

∑
n=1

ln n
n4 + 1

,

Compare with
∞

∑
n=1

n
n4 + 1

. Since ln n < n for n ≥ 1, then ln n
n4+1 < n

n4+1 . This im-

plies that
∞

∑
n=1

ln n
n4 + 1

<
∞

∑
n=1

n
n4 + 1

. Since
∞

∑
n=1

n
n4 + 1

converges (direct comparison with

∞

∑
n=1

1
n3 p = 3) then by the direct comparison test (DCT), the original series converges.

(1.2)
∞

∑
n=1

1
n3 + 1

,

Compare with
∞

∑
n=1

1
n3 . Since

∞

∑
n=1

1
n3 converges (p series with p = 3) then by the limit

comparison test (LCT), the original series converges.

(1.3)
∞

∑
n=1

(
1
2
+

1
n

)n
,

Taking the limit lim
n→∞

n
√
|an| = lim

n→∞

(
1
2
+

1
n

)
=

1
2

< 1 then by the nth root test, the

original series converges.

(1.4)
∞

∑
n=1

en

n!
,

Consider lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

en+1

(n + 1)!
/

en

(n)!
= lim

n→∞

en+1

(n + 1)!
· (n)!

en

= lim
n→∞

e
n + 1

= 0 < 1 so by ratio test, the series converges

(1.5)
∞

∑
n=1

1
ln(n + 1)

,

Since ln(n + 1) < n + 1 for n ≥ 1 then
1

n + 1
<

1
ln(n + 1)

for n ≥ 1 and since
∞

∑
n=1

1
(n + 1)

(harmonic) diverges, then by the DCT, original series does as well.

(1.6)
∞

∑
n=1

1
n(n + 1)

,

Comparing with
∞

∑
n=1

1
n2 then lim

n→∞

1
n(n + 1)

/
1
n2 = lim

n→∞

n2

n(n + 1)
= 1, and since

∞

∑
n=1

1
n2

converges (p-series with p = 2) then by the limit comparison test (LCT) the original se-
ries converges.
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(1.7)
∞

∑
n=1

n − 1
n + 1

,

Since lim
n→∞

n − 1
n + 1

= 1, then by the nth term test for divergence, the series diverges.

(1.8)
∞

∑
n=1

(2n)!
(n!)2 ,

Consider lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

(2n + 2)!
(n + 1)!2

/
(2n)!
(n)!2

= lim
n→∞

(2n + 2)!
(2n)!

· (n + 1)!2

n!2

= lim
n→∞

(2n + 2)(2n + 1)
(n + 1)(n + 1)

= 4 > 1 so by ratio test, the series diverges

(1.9)
∞

∑
n=2

1
ln2(n)

,

Since ln n < n for n ≥ 1 then ln2 n < n ln n for n ≥ 1 which gives
1

n ln n
<

1
ln2 n

for

n ≥ 1. Since
∞

∑
n=1

1
n ln n

diverges, (see next question) then by the direct comparison test,

original series does as well.

(1.10)
∞

∑
n=3

1
n ln n

,

Let f (x) =
1

x ln x
. Clearly f (x) > 0 and f ′(x) = − ln x + 1

(x ln x)2 for x ≥ 3 showing that

f (x) is decreasing so that the integral test may be used. Consider∫ ∞

3

dx
x ln x

= lim
b→∞

∫ b

3

dx
x ln x

= lim
b→∞

ln ln x|b3 = ∞.

Since the integral diverges, then by the integral test, the series does as well.

(1.11)
∞

∑
n=1

1
2n + 1

.

Compare with
∞

∑
n=1

1
2n . Then lim

n→∞

1
2n /

1
2n + 1

= lim
n→∞

2n + 1
2n = 1 and since

∞

∑
n=1

1
2n con-

verges (geometric series with r = 1/2), the original series converges by the LCT.

2. Determine whether the following series converge absolutely, conditionally or diverge

(2.1)
∞

∑
n=1

(−1)n(n − 1)
n + 1

,
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Since lim
n→∞

(−1)n(n − 1)
n + 1

= (−1)n ̸= 0 this series diverges.

(2.2)
∞

∑
n=1

(−1)n√
n(n + 1)

,

We first consider
∞

∑
n=1

1√
n(n + 1)

and by limit comparison with
∞

∑
n=1

1
n

shows that we do

not have absolute convergence. So we check the two conditions for conditional conver-

gence. If we let an =
1√

n(n + 1)
, then clearly

lim
n→∞

1√
n(n + 1)

= 0.

Next, we need to show an+1 < an. We could show

1√
(n + 1)(n + 2)

?
≤ 1√

n(n + 1)
,

but is easier to show that if

f (x) =
1√

x(x + 1)
then f ′(x) = − 2x + 1

2(x2 + x)3/2 < 0 for x ≥ 1

so by the alternating series test (AST), the series converges conditionally.

(2.3)
∞

∑
n=1

(−1)nnn

n!
,

For this question we will use the ratio test.

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)n+1

(n + 1)!
/

nn

n!
= lim

n→∞

(n + 1)(n + 1)n

(n + 1)n!
· n!

nn =

lim
n→∞

(n + 1)n

nn = lim
n→∞

(
1 +

1
n

)n
= e > 1

so by ratio test, the series diverges

(2.4)
∞

∑
n=1

(−1)n

2n + 3n ,

We first consider
∞

∑
n=1

1
2n + 3n and compare with

∞

∑
n=1

1
3n . By the LCT

lim
n→∞

1
3n /

1
2n + 3n = lim

n→∞

2n + 3n

3n = lim
n→∞

1 +
(

2
3

)n
= 1,
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and since
∞

∑
n=1

1
3n converges (geometric series r = 1/3), the original series converges abso-

lutely.

(2.5)
∞

∑
n=1

(−1)nn
n2 + 1

,

We first consider
∞

∑
n=1

n
n2 + 1

and compare with
∞

∑
n=1

1
n

. By the LCT

lim
n→∞

1
n

/
n

n2 + 1
= lim

n→∞

n2 + 1
n2 = 1,

which show that original series doesn’t converge absolutely since we compared with the
harmonic series that diverges. If we let an = n

n2+1 , then clearly

lim
n→∞

n
n2 + 1

= 0.

Next, we need to show an+1 < an. If we let

f (x) =
x

x2 + 1
then f ′(x) =

−x2 + 1
(x2 + 1)2 < 0 for x > 1

so by the alternating series test (AST), the series converges conditionally.

(2.6)
∞

∑
n=1

(−1)nn
n + 1

.

Since lim
n→∞

(−1)nn
n + 1

= (−1)n ̸= 0 this series diverges.

3. Determine the interval of convergence of the following.

3(i)
∞

∑
n=1

2nxn
√

n + 1
,

Choosing

an =
2nxn

√
n + 1

then

lim
x→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
x→∞

∣∣∣∣2n+1xn+1
√

n + 2
/

2nxn
√

n + 1

∣∣∣∣ = lim
x→∞

2
√

n + 1√
n + 2

|x| = 2|x| < 1
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So |x| < 1
2 or −1

2 < x < 1
2 . Checking the endpoints gives

x = −1
2

∞

∑
n=1

(−1)n
√

n + 1
, which converges by AST

x =
1
2

∞

∑
n=1

1√
n + 1

, which diverges by DCT with p series (p = 1/2)

Therefore the interval of convergence is −1
2 ≤ x < 1

2 .

4(ii)
∞

∑
n=1

(−1)n x2n

22n (n!)2 ,

Choosing

an =
(−1)n x2n

22nn!2

then

lim
x→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
x→∞

∣∣∣∣∣ (−1)n+1 x2n+2

22n+2(n + 1)!2
/
(−1)n x2n

22nn!2

∣∣∣∣∣ = lim
x→∞

1
4(n + 1)2

∣∣∣x2
∣∣∣ = 0 < 1

so series converges for all x.

4(iii)
∞

∑
n=1

(2x − 1)n

n2 ,

Choosing

an =
(2x − 1)n

n2

then

lim
x→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
x→∞

∣∣∣∣ (2x − 1)n+1

(n + 1)2 /
(2x − 1)n

n2

∣∣∣∣ = lim
x→∞

n2

(n + 1)2 |2x − 1| = |2x − 1| < 1

So |2x − 1| < 1 or −1 < 2x − 1 < 1 or 0 < 2x < 2 or 0 < x < 1. Checking the endpoints
gives

x = 0
∞

∑
n=1

(−1)n

n2 , which converges absolutely, it’s a p series

x = 1
∞

∑
n=1

1
n2 , which converges, it’s a p series

Therefore the interval of convergence is 0 ≤ x ≤ 1.
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4. Calculate the nth degree Taylor polynomial with remainder for the following. Expand
about the point x = c

(4.1) f (x) = ex, c = 0, n = 2

f (x) = ex f (0) = 1,
f ′(x) = ex f ′(0) = 1,
f ′′(x) = ex f ′′(0) = 1,
f ′′′(x) = ex for the remainder,

The Taylor polynomial is

P2(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2,

= 1 + x +
x2

2!
,

The remainder is given by

R2(x) =
ez

3!
x3,

for 0 < z < x or x < z < 0

(4.2) f (x) = sin x, c = π
2 n = 4,

In this example, we need only construct P4 .

f (x) = sin x f (
π

2
) = 1,

f ′(x) = cos x f ′(
π

2
) = 0,

f ′′(x) = − sin x f ′′(
π

2
) = −1,

f ′′′(x) = − cos x f ′′′(
π

2
) = 0,

f (4)(x) = sin x f (4)(
π

2
) = 1,

The Taylor polynomial is

P4(x) = f (
π

2
) +

f ′(π
2 )

1!
(x − π

2
) +

f ′′
(

π
2

)
2!

(x − π

2
)2 + · · ·+

f (4)(π
2 )

4!
(x − π

2
)4,

= 1 − 1
2!

(
x − π

2

)2
+

1
4!

(
x − π

2

)4
,

The remainder is given by

R4(x) =
f (5)(z)

5!

(
x − π

2

)5
,

=
cos z

5!

(
x − π

2

)5
,

6



for π
2 < z < x or x < z < π

2 .

(4.3) f (x) = ln(x + 1), c = 0, n = 3

f (x) = ln(x + 1) f (0) = 0,

f ′(x) =
1

x + 1
f ′(0) = 1,

f ′′(x) =
−1

(x + 1)2 f ′′(0) = −1,

f ′′′(x) =
2

(x + 1)3 f ′′(0) = 2,

f (4)(x) =
−3!

(x + 1)4 for the remainder.

The Taylor polynomial is

P3(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)
n!

x3,

= 0 + x − 1
2!

x2 +
2!
3!

x3,

= x − x2

2
+

x3

3
,

The remainder is given by

R3(x) =
f (4)(z)

4!
x4,

= − 3!
(z + 1)4

x4

4!
,

for 0 < z < x or x < z < 0.

(4.4) f (x) =
1

2 − x
, c = 0, n = 3.
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In this case we only need P3. The derivatives are:

f (x) =
1

(2 − x)
, f (0) =

1
2

,

f ′(x) =
1

(2 − x)2 , f ′(0) =
1
22 ,

f ′′(x) =
2

(2 − x)3 , f ′′(0) =
2
23 ,

f ′′′(x) =
3!

(2 − x)4 , f ′′′(0) =
3!
24 ,

f (4)(x) =
4!

(2 − x)4 , remainder,

The Taylor polynomial is

P3(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3,

=
1
2
+

x
22 +

2!
23

x2

2!
+

3!
24

x3

3!
,

=
1
2
+

x
22 +

x2

23 +
x3

24 ,

The remainder is given by

R3(x) =
f (4)(z)

4!
x4,

=
1

(2 − z)5 x4.

for 0 < z < x or x < z < 0.
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