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Polynomial Cancellation Coding and Finite Differences

Katherine A. Seaton and Jean Armstrong, Member, IEEE

Abstract—We give here a mathematical context for polynomial cancel-
lation coding, proposed recently to reduce intercarrier interference in or-
thogonal frequency division multiplexing (OFDM). In particular, we ana-
lyze polynomial cancellation coding (PCC) in terms of finite differences.

Index Terms—Finite differences, orthogonal frequency division multi-
plexing, polynomial cancellation coding.

I. INTRODUCTION

A technique has been proposed recently [1] which provides sev-
eral benefits for orthogonal frequency division multiplexing (OFDM).
In particular, this technique, termedpolynomial cancellation coding
(PCC), reduces the intercarrier interference (ICI) due to frequency shift
between transmitter and receiver [2]. Further, PCC has been discussed
in the context of reduction to out-of-band power and intersymbol inter-
ference in OFDM systems [3]. Used in its simplest form, PCC achieves
these advantages at the cost of bandwidth efficiency. However, the ad-
vantages can be retained while maintaining, or even increasing, band-
width efficiency if the symbol periods of the PCC coded data are over-
lapped [3] and an equalizer is used at the receiver to recover the trans-
mitted data from the overlapped symbols.

The main idea of PCC is to map each complex number which is to be
transmitted onto a group ofk subcarriers, with appropriate weightings,
rather than to a single subcarrier. In a previous article [2], the weight-
ings have been given as the coefficients of the polynomial(1�x)k�1.
It has been claimed that if the same weightings are applied in decoding
the received signal, polynomial variation of order(2k � 3) in the ICI
is canceled.

In this correspondence, we explain how ICI cancellation is achieved
by relating PCC to finite-difference techniques, well known in numer-
ical analysis. In Section II, we give mathematical expressions for poly-
nomial cancellation coding as described in [2]. In Section III we list
some standard results in finite difference theory, and recast our equa-
tions in this language. Finally, in Section IV we discuss the reduced ICI
obtained by use of PCC.

II. POLYNOMIAL CANCELLATION CODING

In the ith symbol period (lengthT ) of an OFDM communications
system, the complex numbersa0; i; � � � ; aN�1; i modulate theN sub-
carriers. If we assume an ideal channel, and the local oscillator at the
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Fig. 1. Block diagram of an OFDM system with PCC withN subcarriers.
In each symbol periodi, bN=kc complex values are transmitted (d ) and
received (^d ).

receiver is set at frequency�f above the correct frequencyfc, themth
output signal is

zm; i =

N�1

l=0

cl�mal; i (1)

where the coefficientscl�m resulting from the frequency shift are [2]

cl�m =
1

N

N�1

`=0

exp
j2�`(l�m+�fT )

N

=
1

N

sin(�(l�m+�fT ))

sin(�(l�m+�fT )=N)

� exp
j�(N � 1)(l�m+�fT )

N
(2)

in which we suppress the simple rotation due to phase offset. The ICI
affecting themth complex value is made up of the terms in the sum in
(1) for which l 6= m.

In PCC [1], each complex valuedn; i to be transmitted is copied, with
weighting, ontok subcarriers. (Thus for a system withN subcarriers, at
mostbN=kc values can be transmitted in this way per symboli, where
bxc denotes the integer part ofx.) A diagram of an OFDM system with
PCC is given in Fig. 1

The subcarriers0; 1; � � � ; k�1 are used to transmit the first complex
value, and in general the subcarriersfnk+ rgk�1r=0 carry the(n+1)th
value, wheren = 0; 1; � � � ; bN=kc � 1. The weightings [2] within
the subcarrier groups are taken from the coefficients in the binomial
expansion of

(1� x)k�1 =

k�1

r=0

(�1)r
k � 1

r
xr (3)

so that the weighted copies of the complex numberdn; i are

ank+r; i = (�1)r
k � 1

r
dn; i; r = 0; 1; � � � ; k � 1: (4)

Thus themth output signal in symboli is (from (1) and (4))

zm;i =

bN=kc�1

n=0

k�1

r=0

cnk+r�mank+r;i

=

bN=kc�1

n=0

dn;i

k�1

r=0

(�1)r
k � 1

r
cnk+r�m: (5)

The outputs are combined in groups of sizek to decode thepth complex
numberd̂p; i, wherep = 0; 1; � � � ; bN=kc�1, from the weighted sum
of fzpk+s; igk�1s=0

d̂p; i =

k�1

s=0

(�1)s
k � 1

s
zpk+s; i: (6)

If we now write s0 = k � 1 � s, substitute from (5), and make the
further change of variablesr0 = r + s0 so that the identity (see, e.g.,
[4]) for binomial coefficients

n

m=0

M

m

N

n�m
=

M +N

n

can be used, we obtain

d̂p; i =

bN=kc�1

n=0

dn; i

2k�2

r =0

(�1)r +k�1 2k � 2

r0
ck(n�p+1)�r �1

(7)

as thepth decoded complex value. Combinations of terms with the
structure in the brackets in (7) are well known in the field of numerical
analysis, and we next rewrite our formulas in terms of finite differences.

III. FINITE-DIFFERENCEFORMULAS

In numerical analysis, finite-difference techniques are used to inter-
polate or extrapolate from tabulated data, and in numerical integration
and differentiation. We need only consider techniques appropriate to
evenly spaced data. We give here the results we need, and refer the
reader to [5] or a similar work for further details.

Given a functionf(x), the (first)central differenceis

�f(x) = f x+
h

2
� f x�

h

2
(8)

where the step sizeh is suppressed if it is understood to be1. Successive
central differences are defined inductively by

�rf(x) = �r�1f x+ 1
2

� �r�1f x� 1
2

: (9)

Denoting byf(x0 + k) = fk the function valuek steps from an arbi-
trary initial argumentx0, the following closed-form expression results:

�rfk =

r

j=0

(�1)j
r

j
fk+r=2�j : (10)

One may regard�r as a linear operator. It has the exponential prop-
erty�m(�n) = �m+n. Most importantly, it is a reductive operator; that
is, it reduces the degree of any polynomial. In particular, therth central
difference operator annihilates a polynomial of degree(r � 1).

We can now examine the PCC expressions using these ideas. For
example, from (10) themth output signal (5) is seen to be

zm; i = (�1)k�1
bN=kc�1

n=0

= dn; i �
k�1cnk�m+(k�1)=2 (11)

and the weighted combination (6) of received signals used to decode
thepth piece of data is

d̂p; i = (�1)k�1�k�1zkp+(k�1)=2; i: (12)

Care must be taken when these expressions are combined becausezm; i

is constructed from thecnk�m. The operator acting on the first sub-
script ofzm; i, actually acts oncnk�m as(�1)k�1�k�1. Making use
of the linearity and exponential properties of the operators, thepth com-
plex value is decoded as

d̂p; i = (�1)k�1
bN=kc�1

n=0

= dn; i�
2k�2ck(n�p): (13)

This is indeed (7) expressed in terms of the central difference (10).
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(a)

(b)

(c)

Fig. 2. Plots of (17) forN = 16 andk = 1 (no PCC) andk = 2; 3 with
�fT = 0:2. The sampling effectively provided by PCC (13) is indicated (*).

IV. REDUCED ICI

By arriving at (13), we have demonstrated that for an OFDM system
with PCC the coefficients in (1) are replaced by the (signed)(2k�2)th
difference of a function on

c(x) =
1

N

sin(�x)

sin(�x=N)
exp (j�(N � 1)x=N) (14)

sampled according to

cn = c(n+�fT ): (15)

ICI is due to terms in (13) for whichn 6= p.
To give a general expression for the finite differences ofc(x), we

return to the original expression as a sum, rather than the closed form
given in(2). It is readily established that

�re�x+� = (e�=2 � e��=2)re�x+�: (16)

Applying this we obtain

(�1)k�1�2k�2c(x) = (�1)k�1
1

N

N�1

`=0

�2k�2 exp
j2�`x

N

=
4k�1

N

N�1

`=0

sin
�`

N

2k�2

exp
j2�`x

N
:

(17)

Since c(x) is trigonometric rather than polynomial in structure,
�2k�2ck(n�p) will not actually vanish for any value ofk. (Of course,
it shouldnot vanish forn = p, since this corresponds to the wanted
decoded signal.) Neither does the sum (17) have a closed form about
which we could draw general conclusions. However, as was pointed
out in [2], and is demonstrated in Fig. 2(a), the functionc(x) peaks
aboutx = 0 and varies more slowly elsewhere. Fig. 2(b) and (c)
shows that the effect of taking finite differences is to enhance the peak
(the wanted signal, in practice normalized again to1) relative to the
rest of the graph. Due to the reductive nature of the finite-difference
operators, PCC causes annihilation of polynomial variation up to
order(2k � 3) in the slowly varying regions of the graph (the ICI).
Indeed, as (11) makes clear, applying PCC only at the transmitter
would give polynomial correction of order(k � 2). Fig. 2(a)–(c) also
provide, with the sampling points marked, signal-to-ICI plots; the
effective sampling (13) is seen to further the smoothing provided by
the difference procedure. In practice,�fT is small,N is large, and
data transmission is improved even for relatively small values ofk.
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