

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Starr Calibrations, Inc. dba Starr Instrument Service, dba Starr-Chek 1101 West Lawrence Highway Charlotte, MI 48813

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President Expiry Date: 19 December 2026 Certificate Number: AC-1360

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AND

ANSI/NCSL Z540-1-1994 (R2002)

Starr Calibrations, Inc. dba Starr Instrument Service, dba Starr-Chek

1101 West Lawrence Highway Charlotte, MI 48813 Robin Shuten 517-543-8089

CALIBRATION

ISO/IEC 17025 Accreditation Granted: 17 September 2024

Certificate Number: AC-1360 Certificate Expiry Date: 19 December 2026

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Measure ¹	(0 to 110) mV (0.11 to 1.1) V (1.1 to 11) V (11 to 300) V	48 μV 0.36 mV 9.6 mV 0.19 V	Comparison to Process Calibrator
DC Voltage – Source ¹	(0 to 110) mV (0.11 to 1.1) V (1.1 to 15) V	18 μV 0.18 mV 2.5 mV	Comparison to Process Calibrator
DC Current – Measure ¹	Up to 100 mA	38 μA	Comparison to Process Calibrator
DC Current – Source ¹	Up to 22 mA	6.7 μΑ	Comparison to Process Calibrator
Resistance – Measure ¹	(0 to 110) Ω (0.11 to 1.1) kΩ (1.1 to 11) kΩ	0.13 Ω 1.2 Ω 28 Ω	Comparison to Process Calibrator
Resistance – Source ¹	(0 to 110) Ω (0.11 to 1.1) kΩ (1.1 to 11) kΩ	58 mΩ 0.81 Ω 9.2 Ω	Comparison to Process Calibrator

This Scope of Accreditation, version 012, was last updated on: November 19, 2024 and is valid only when accompanied by the Certificate.

1899 L Street NW, Suite 1100-A, Washington, DC 20036

414-501-5494 www.anab.org

Page 1 of 11

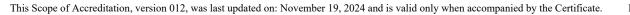
Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicating Devices – Source/Measure ¹	Type E (-100 to 982) °C Type J (-100 to 1 199) °C Type K (-100 to 1 371) °C Type N (-100 to 1 300) °C Type R (50 to 1 760) °C Type S (50 to 1 760) °C Type T (-100 to 399) °C	0.3 °C 0.35 °C 0.27 °C 0.27 °C 0.36 °C 0.35 °C 0.29 °C	Thermocouple Calibrator, Process Calibrators; AMS 2750, AIAG CQI-9 or internal calibration procedures.

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Brinell Scopes ¹	Up to 7 mm	31 µm	Comparison to Stage Micrometer
Micrometers ^{1,2}	Up to 24 in	(52 + 3.8 <i>L</i>) μin	Comparison to Gage Blocks
Calipers ^{1,2}	Up to 80 in	(102 + 4.7 <i>L</i>) μin	Comparisons to Gage Blocks, Caliper Master
Indicators ¹	Up to 2 in	260 µin	Comparison to Micrometer Head with Digital Display, Gage Blocks
Depth Micrometers ^{1,2}	Up to 12 in	(69 + 2.7 <i>L</i>) μin	Comparison to Gage Blocks
Height Gages ^{1,2}	Up to 48 in	(160 + 3.1 <i>L</i>) μin	Comparison to Gage Blocks
Measuring Microscopes ¹	Up to 1 in	170 µin	Stage Micrometer; ASTM E1951 or internal
Linear Measuring Gages ^{1,2}	Up to 25 mm Up to 80 in	2.5 μm (102 + 4.7 <i>L</i>) μin	calibration procedure. Comparison to Gage Blocks

This Scope of Accreditation, version 012, was last updated on: November 19, 2024 and is valid only when accompanied by the Certificate. Page 2 of 11


1899 L Street NW, Suite 1100-A, Washington, DC 20036

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Protractors ¹	Up to 90°	0.4°	Comparison to Angle Blocks, Surface Plate
Standardized Rockwell Hardness Test Blocks	HRA $ \begin{array}{c} \geq 80 \\ (70 \text{ to } 80) \\ \leq 70 \\ \text{HRBW} \\ \begin{array}{c} \geq 88 \\ (60 \text{ to } 88) \\ \leq 60 \\ \text{HRC} \\ \begin{array}{c} \geq 60 \\ (35 \text{ to } 60) \\ \leq 35 \\ \text{HREW} \\ \end{array} \\ \begin{array}{c} \geq 93 \\ (84 \text{ to } 93) \\ \leq 84 \\ \text{HRFW} \\ \begin{array}{c} \geq 93 \\ (84 \text{ to } 93) \\ \leq 84 \\ \text{HRFW} \\ \begin{array}{c} \geq 94 \\ (80 \text{ to } 94) \\ \leq 80 \\ \text{HRGW} \\ \begin{array}{c} \geq 80 \\ (55 \text{ to } 80) \\ \leq 55 \\ \text{HRHW} \\ \begin{array}{c} \geq 95 \\ \leq 95 \\ \text{HR15N} \\ \geq 90 \\ (80 \text{ to } 90) \\ < 80 \\ \end{array} $	0.3 HRA 0.26 HRA 0.26 HRA 0.32 HRBW 0.31 HRBW 0.31 HRBW 0.31 HRC 0.31 HRC 0.31 HRC 0.31 HRC 0.25 HRC 0.4 HREW 0.41 HREW 0.35 HREW 0.44 HRFW 0.36 HRFW 0.36 HRFW 0.37 HRGW 0.32 HRGW 0.31 HRHW 0.31 HRHW 0.31 HRHW 0.31 HRHW	Rockwell Hardness Tester; ASTM E-18 with internal calibration procedure.

1899 L Street NW, Suite 1100-A, Washington, DC 20036

414-501-5494 www.anab.org

Page 3 of 11

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Standardized Rockwell Hardness Test Blocks	$ \begin{array}{r} \text{HR30N} & \geq 77 \\ (55 \text{ to } 77) \\ \leq 55 \\ \text{HR45N} & \geq 66 \\ (37 \text{ to } 66) \\ \leq 37 \\ \text{HR15TW} & \geq 87 \\ (81 \text{ to } 87) \\ \leq 81 \\ \text{HR30TW} & \geq 70 \\ (57 \text{ to } 70) \\ \leq 57 \\ \text{HR45TW} & \geq 53 \\ (33 \text{ to } 53) \\ \leq 33 \\ \text{HR15WW} & \geq 86 \\ < 86 \\ \text{HR15XW} & \geq 90 \\ < 90 \\ \text{HR15YW} & \geq 95 \\ < 95 \\ \end{array} $	0.4 HR30N 0.38 HR30N 0.37 HR30N 0.37 HR30N 0.37 HR45N 0.37 HR45N 0.5 HR15TW 0.46 HR15TW 0.46 HR15TW 0.44 HR30TW 0.48 HR30TW 0.48 HR30TW 0.46 HR45TW 0.37 HR45TW 0.37 HR45TW 0.33 HR45TW 0.35 HR15WW 0.32 HR15XW 0.34 HR15YW	Rockwell Hardness Tester; ASTM E-18 with internal calibration procedure.
Standardized Brinell Hardness Test Blocks	(2 to 5) mm	0.42 HR15YW 0.026 mm	Optical Scanning System Brinell Test Bar; ASTM E-18 with interna calibration procedure.

This Scope of Accreditation, version 012, was last updated on: November 19, 2024 and is valid only when accompanied by the Certificate.

1899 L Street NW, Suite 1100-A, Washington, DC 20036

414-501-5494 www.anab.org

Page 4 of 11

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Rockwell Hardness and Superficial Testers ¹	$ \begin{array}{c} \text{HRA} & \geq 80 \\ (60 \text{ to } 80) \\ \leq 60 \\ \text{HRBW} & \geq 80 \\ (60 \text{ to } 80) \\ \leq 60 \\ \text{HRC} & \geq 60 \\ (40 \text{ to } 60) \\ \leq 40 \\ \text{HRD} & \geq 61 \\ \leq 61 \\ \leq 61 \\ \text{HREW} & \geq 93 \\ (84 \text{ to } 93) \\ \leq 84 \\ \text{HRFW} & \geq 94 \\ (80 \text{ to } 94) \\ \leq 80 \\ \text{HRFW} & \geq 80 \\ (55 \text{ to } 80) \\ \leq 55 \\ \text{HRHW} & \geq 95 \\ \leq 95 \\ \text{HRKW} & \geq 75 \\ \leq 75 \\ \text{HRLW} & \geq 110 \\ < 110 \\ \end{cases} $	0.26 HRA 0.26 HRA 0.32 HRA 0.33 HRBW 0.33 HRBW 0.32 HRBW 0.26 HRC 0.33 HRC 0.33 HRC 0.56 HRD 0.62 HRD 0.33 HREW 0.48 HREW 0.23 HREW 0.26 HRFW 0.25 HRFW 0.25 HRFW 0.36 HRGW 0.42 HRGW 0.51 HRGW 0.33 HRHW 0.33 HRHW 0.32 HRHW 0.47 HRLW 0.47 HRLW 0.52 HRLW	Indirect verification per ASTM E18, ASTM E110 and internal calibration procedure; Rockwell Hardness Test Blocks.

This Scope of Accreditation, version 012, was last updated on: November 19, 2024 and is valid only when accompanied by the Certificate.

1899 L Street NW, Suite 1100-A, Washington, DC 20036

414-501-5494 www.anab.org

Page 5 of 11

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard Method, and/or Equipment
	HRMW		
	≥ 105	0 <mark>.67</mark> HRMW	
	< 105	0 <mark>.77</mark> HRMW	
	HRPW		
	\geq 90	0.67 HRPW	
	< 90	0.7 HRPW	
	HRRW		
	≥ 120	0.59 HRRW	
	< 120	0.62 HRRW	
	HRSW		
	≥115	0.56 HRSW	
	< 115	0.61 HRSW	
	HR15N	0.36 HR15N	
	≥ 90	0.36 HR15N 0.26 HR15N	
	(80 to 90) < 80	0.32 HR15N	Indinant wanification m
	HR30N	0.32 HK13IN	ASTM E18,
Rockwell Hardness and	≥77	0.33 HR30N	ASTM E10, ASTM E110 and intern
Superficial Testers ¹	(55 to 77)	0.36 HR30N	calibration procedure
Supernetar resters	≤ 55	-0.39 HR30N	Rockwell Hardness Te
	HR45N	0.5) 11(501)	Blocks.
	≥66	0.33 HR45N	DIOCKS.
	(37 to 66)	0.33 HR45N	
	≤ 37	0.32 HR45N	
	HR15TW		
	≥ 87	0.38 HR15TW	
	(81 to 87)	0.48 HR15TW	
	≤ 81	0.51 HR15TW	
	HR30TW		
	\geq 70	0.48 HR30TW	
	(57 to 70)	0.51 HR30TW	
	≤ 57	0.45 HR30TW	
	HR45TW		
	≥ 53	0.26 HR45TW	
	(33 to 53)	0.33 HR45TW	
	≤ 33	0.47 HR45TW	

This Scope of Accreditation, version 012, was last updated on: November 19, 2024 and is valid only when accompanied by the Certificate.

1899 L Street NW, Suite 1100-A, Washington, DC 20036

414-501-5494 www.anab.org

Page 6 of 11

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Rockwell Hardness and Superficial Testers ¹	$HR15WW \geq 86 < 86 HR15XW \geq 90 < 90 HR15YW \geq 95 < 95 < 95 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 $	0.33 HR15WW 0.45 HR15WW 0.36 HR15XW 0.25 HR15XW 0.42 HR15YW 0.29 HR15YW	Indirect verification per ASTM E18, ASTM E110 and internal calibration procedure; Rockwell Hardness Test Blocks.
Macro Vickers Hardness Testers ¹	(1) kg ≤ 545 ≥ 545 (2) kg ≤ 545 ≥ 545 (3) kg ≤ 545 ≥ 545 (5) kg ≤ 545 ≥ 545 (10) kg ≤ 545 ≥ 545 (20) kg ≤ 545 ≥ 545 (20) kg ≤ 545 ≥ 545 (30) kg ≤ 545 ≥ 545 (50) kg ≤ 545 ≥ 545 ≤ 545 ≥ 545 ≤ 545 ≥ 545 ≤ 545 ≤ 545 ≥ 545 ≤ 545	19 HV 7 HV 13 HV 6.4 HV 9.7 HV 6.6 HV 9.2 HV 5.7 HV 7.5 HV 3 HV 6.4 HV 3.2 HV 5.5 HV 2.6 HV 4.9 HV 3.2 HV	Indirect verification per ASTM E92, ASTM E384, and internal calibration procedure; Macro-Vickers Hardness Test Blocks.

This Scope of Accreditation, version 012, was last updated on: November 19, 2024 and is valid only when accompanied by the Certificate.

1899 L Street NW, Suite 1100-A, Washington, DC 20036

414-501-5494 www.anab.org

Page 7 of 11

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(10 to 50) gf $\leq 540 \text{ HV}$ $\geq 540 \text{ HV}$ (100) gf	36 HV 13 HV	
	$(100) gr$ $\leq 540 HV$ $\geq 540 HV$ $(200) gf$	25 HV 11 HV	Indirect verification per ASTM E92,
Vickers Hardness Testers ¹	$ \leq 540 \text{ HV} \\ \geq 540 \text{ HV} \\ (300) \text{ gf} $	18 HV 7.7 HV	ASTM E384, and internal calibration procedure;
	$\leq 540 \text{ HV}$ $\geq 540 \text{ HV}$ (500) gf	16 HV 8.5 HV	Vickers Micro- indentation Hardness Test Blocks.
	$\leq 540 \text{ HV}$ $\geq 540 \text{ HV}$ (1 000) gf $\leq 540 \text{ HV}$	12 HV 6.9 HV 11 HV	
	2540 HV $\geq 540 \text{ HV}$ (10 to 50) gf	6.3 HV	
	$\leq 540 \text{ HK}$ $\geq 540 \text{ HK}$ (100) gf $\leq 540 \text{ HK}$	28 HK 15 HK 24 HK	
		16 HK 19HK 12 HK	Indirect verification per ASTM E92, ASTM E384, and
Knoop Hardness Testers ¹	(300) gf ≤ 540 HK ≥ 540 HK (500) gf	16 HK 11 HK	internal calibration procedure; Knoop Micro-indentation Hardness Test Blocks.
	\leq 540 HK \geq 540 HK (1 000) gf	15 HK 9.9 HK	
	≤ 540 HK ≥ 540 HK	19 HK 12 HK	
Brinell Hardness Testers ¹	(> 0 to 6) mm	0.034 mm	Indirect verification per ASTM E10 and internal calibration procedure; Hardness Test Bars.

This Scope of Accreditation, version 012, was last updated on: November 19, 2024 and is valid only when accompanied by the Certificate. Page 8 of 11

1899 L Street NW, Suite 1100-A, Washington, DC 20036

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Portable Hardness Tester – Leeb ¹	≤ 850 HLD	3.2 HLD	Indirect verification per ASTM A956 and internal calibration procedure; Calibration Standard Test Blocks.
Optical Scanning Systems ¹	(> 0 to 6) mm	16 μm	Comparison to Brinell Test Bar, B.O.S.S. Certified Calibration Standard
Rockwell Hardness Testers ¹ Test Force Depth Measurement	(3 to 15) kgf (30 to 45) kgf (60 to 150) kgf (> 0 to 25) mm	10 gf 51 gf 0.11 kgf 0.3 μm	Direct verification per ASTM E18 and internal calibration procedure; Master Load Cell, Ceramic gage Blocks, Heidenhain Indicator
Hysteresis	(100 to 130) HR	0.15 ⁻ HR	
Brinell Hardness Tester ¹ Force	(500 to 3 000) kgf	2 kg	Direct verification per ASTM E10 and internal calibration procedure;
Measuring System	(> 0 to 6) mm	11 µm	Master Load Cell, Ceramic Gage Blocks
Balances and Scales ^{1,3} (SI)	Up to 6 kg	0.000 4 % of reading + 1.8 mg	ASTM E617 Class 1 Weights and internal calibration procedure utilized for the calibration of the weighing system.
Balances and Scales ^{1,3} (SI)	Up to 100 g 101 g to 15 kg	0.9 mg 0.000 1 % of reading + 12.6 mg	NIST Class F Weights and internal calibration procedure utilized for the calibration of the weighing system.
Balances and Scales ^{1,3} (Avoirdupois)	(1 to 480) lb	0.000 2 % of reading + 0.000 2 lb	NIST Class F Weights and internal calibration procedure utilized for the calibration of the weighing system.

This Scope of Accreditation, version 012, was last updated on: November 19, 2024 and is valid only when accompanied by the Certificate.

1899 L Street NW, Suite 1100-A, Washington, DC 20036

414-501-5494 www.anab.org

Page 9 of 11

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force – Compression ¹	(5 to 50) lbf (50 to 100) lbf (100 to 10 000) lbf	0.031 % of reading 0.11 % of reading 0.067 % of reading	Master Weight Sets, Master Load Cells

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Relative Humidity – Measuring Equipment ¹	(45 to 95) °F (10 to 90) %RH	1.2 °F 2.4 %RH	Comparison to Temperature/Humidity Monitor
Dew Point ¹ (Ambient Air, Compressed Air, Dry Nitrogen)	(-61 to 10) °F (10 to 60) °F	2.8 °F 1.5 °F	Comparison to Dew Point Analyzer
Thermal Installations – System Accuracy Test ¹	(0 to 1 093) °C (1 093 to 1 200) °C	1.1 °C 2 °C	Thermocouple Calibrator and Reference Thermocouple Probe; In accordance with AMS 2750, AIAG CQI-9 or internal calibration procedure.
Thermal Installations – Temperature Uniformity Surveys ¹	(100 to 1 999) °F (2 000 to 2 200) °F	2.2 °F 3.8 °F	Data Logger with Calibrated "Type K" Thermocouple Wire; In accordance with AMS 2750, AIAG CQI-9 or internal calibration procedure.

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Timers ¹	Up to 86 400 s	0.53 s	Comparison to Stopwatch or NIST Phone System

This Scope of Accreditation, version 012, was last updated on: November 19, 2024 and is valid only when accompanied by the Certificate. Page 10 of 11

1899 L Street NW, Suite 1100-A, Washington, DC 20036

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%. Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. L =length in inches.
- 3. The CMC for scales and balances is highly dependent upon the resolution of the unit under test. The CMC presented here does not include resolution of the unit under
- test. The resolution will be included in the reported measurement uncertainty (MU) at the time of calibration (0.58*R*, where *R* equals the resolution of the unit under test.
- Unless otherwise specified in the far-right column, the calibration procedure or method has been written internally.
 This scope is formatted as part of a single document including Certificate of Accreditation No. AC-1360.
- AA

Jason Stine, Vice President

This Scope of Accreditation, version 012, was last updated on: November 19, 2024 and is valid only when accompanied by the Certificate. Page 11 of 11

1899 L Street NW, Suite 1100-A, Washington, DC 20036

