

MODEL ROSS RCV ROTARY CONE VALVE

P.O.BOX 595 TROY NY 12181 518.274.0961 WWW.ROSSVALVE.COM

00000

WHY CHOOSE A CONE VALVE...

- Practically Zero Maintenance
- Energy Efficient
- High Flow Coefficient
- Lowest Cost of Ownership
- No More Head Loss than an Equivalent Length of Pipe

Applying Today's Engineering Technology to a 90 Year Old Design

- Utilizing Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD)
- Newly designed trunnion bearings with "Figure 8" grease channels (Standard)
- External lubrication ports for both upper and lower bushings (Standard)
- Modified Scotch Yoke design to enhance lift and torque capabilities (Standard)
- Lubrication and inspection port in valve operating mechanism (Standard)
- Plug position indicator pinned directly to operating shaft (Standard)
- •Anti-cavitation trim is available, call the factory at 1-855-ROSSVALVE

ROSS RCV TOTAL COST OF OWNERSHIP

QUALITY & INNOVATION

- Available in sizes 6" to 60"
- Ribbed body design
- Full port valve body
- Fully skirted plug
- Metal to metal seats: Monel
- Ductile iron body, head cover and plug
- No lead bronze
- Hydraulic, Electric, Electro- Hydraulic Actuators

MUNICIPAL WATER WASTE WATER FIRE PROTECTION MARINE HYDRO MINING INDUSTRIAL SPECIALTY

BENEFITS

- Energy Efficiency
- Long Life
- Minimal Maintenance
- Fully Skirted Plug
- Precision control
- Drop tight shut off
- Anti cavitation Trim
- ▶ No Lead Bronze
- Lubricated Trunnion

HOW DOES A ROSS CONE VALVE OPERATE ?

STEP 1.

Fully Closed and Seated: The Ross Valve Rotary Cone Valve (RCV) seals/seats with four (4) matching Monel seats (two (2) in body & two (2) on plug) machined, ground and precision matched taper to form a drop tight seal.

STEP 2.

Lifting Only: The first motion of the valve operating mechanism lifts the plug up from the body sufficiently to separate the seats so there is no contact of the seats during plug rotation, see chart on page 8.

STEP 3.

25% Open Plug: Plug rotation begins when the Traveling Nut (Crosshead) contacts the Rotator Lever. The plug is still being lifted at this stage of stroke.

STEP 4.

75% Open Plug: In the last stages of rotating to fully open. Plug continues to lower.

STEP 5.

Fully Open and Seated: Plug has stopped rotating and plug has reseated, thus sealing the waterway in the fully open position with a 100% full port opening throughout entire length of valve resulting in no more head loss than an

ROSS - ROTARY CONE VALVE

Cutaway View

ROSS - ROTARY CONE VALVE

Exploded View - Operating Mechanism

ROSS - ROTARY CONE VALVE

Exploded View - Valve Body

ROSS CONE VALVE - OPERATORS

IN FULL COMPLIANCE WITH ALL THE LATEST AWWA STANDARDS AND SPECIFICATIONS

3,200

4,500 6.000

8,500

14,000

20,000

35.000

44,000

64,000

81.000

1 1/2

2

21

48 2 1/4

17 1/8

19 1/4 49 47 19 1/8 20 7/8 21 15 21 1 3/4

22 1/4 49 48 23 24 3/4 21 21 30 1 3/4

26 1/4 49 51

34 1/2 57 59 32

39 57 62 34

45 3/4

48 3/4

54

61

37

67 70 38

67 92 43 45 1/4

N/A

37

N/A 51 3/4 54 N/A 48 48 2 1/4

25 1/2

28

30 1/2

36

43

50

57

65

N/A

N/A

19

34

35 5/8 29

40 1/4 40

15 15

21 21 30 13/4

29 30 39

40 48 48 2 1/4

30 39 2

39

48 48 2 1/4

17 1/2

N/A N/A 56 1/2 58 3/4 N/A

25 1/8 26 7/8

IZE	E	F	ESTIMATED WEIGHT (LB)		SIZE	E	F	ESTIMATED WEIGHT (LB)	
6	24	34	750		6	42	27	850	F (APPROX)
8	24	35	900		8	42	28	950	
10	24	36	1,200		10	42	29	1350	
2	28	41	2,100		12	56	35	2400	
4	28	42	2,600		14	56	36	2700	
6	28	43	3,000	F (APPROX)	16	56	37	3300	
8	32	48	4,400		18	71	47	4600	E (/
)	32	49	5,500		20	71	48	6100	
4	32	52	8,000		24	71	51	8600	
)	36	70	14,000		30	87	59	14150	
3	36	73	19,000		36	87	62	20150	
2	48	80	34,000	▏╫╢╔(─┼╴)╕╢╔═╫╶┼╊╴─┴	42	105	70	35175	▏╫╢╤ੑੑੑੑੑੑ┼╴ <u></u> ╞╡║ ═ ╫┼┼┣╴╴
8	48	96	43,000		48	105	92	44175	
4	N/A	N/A	60,000		54	N/A	N/A	60,000	
50	N/A	N/A	75,000		60	N/A	N/A	75,000	

16

18

20

24

30

36

42

48

54

60

39

41 3/4

47

56

64

78

83 1/4

93

101

119 1/2

40 5/8

43 3/8

48 5/8

57 3/4

65 3/4

80

90

99 1/2

N/A

N/A

1 7/16

1 9/16

1 11/16

1 7/8

2 1/8

2 3/8

2 5/8

2 3/4

3

3 1/8

2 1/4

2 3/8

2 1/2

2 3/4

3

3 3/8

3 11/16

4.0000

N/A

N/A

23 1/2

25

27 1/2

32

38 3/4

46

53

59 1/2

66 1/4

73

Stroke vs. Plug Angle and Plug Lift

Traveling Nut / Crosshead Stroke [in.]

This Unique Valve Operating Mechanism employs a linear Traveling Nut/Crosshead powered by an actuator to impart a 90° rotation of the Valve Plug. A Modified Scotch Yoke Rotator Lever along with a Link/Lever Offset Slider-Crank Mechanism provide the required lifting and lowering of plug prior to, during, and following plug rotation as depicted in the Unique Valve Operating Mechanism Rotation vs. Lift Figure shown above.

HEAD LOSS AND FLOW COEFFICIENTS

RCV Cv VALUES FOR CLOSED LOOP SYSTEMS

VALVE SIZE	PLUG ANGLE IN DEGREES FROM CLOSED									
	5	15	25	35	45	55	65	75	85	90
6	11	41	80	140	224	354	558	1019	2830	3568
8	19	72	143	248	398	629	993	1812	5031	7547
10	30	113	224	388	622	983	1551	2831	7861	12708
12	43	162	322	559	896	1415	2233	4077	11320	19485
14	59	221	438	761	1219	1927	3040	5550	15408	27202
16	77	288	572	993	1592	2516	3970	7248	20125	36785
18	98	365	724	1257	2015	3185	5025	9174	25470	48693
20	121	450	894	1552	2488	3932	6203	11326	31445	60268
24	174	648	1288	2235	3583	5662	8933	16309	45280	88968
30	271	1013	2012	3492	5598	8847	13958	25483	70750	148696
36	391	1458	2898	5029	8061	12739	20099	36695	101880	216459
42	532	1985	3944	6845	10972	17339	27357	49946	138671	312804
48	694	2592	5152	8940	14331	22647	35731	65236	181121	420624
54	879	3281	6520	11315	18138	28663	45222	82564	229231	549057
60	1085	4050	8049	13969	22393	35387	55830	101931	283001	669889
HEADLOSS COEFFICIENT (K _v)	9800	703	178	59.1	23	9.21	3.7	1.11	0.144	0.037

Flow Coefficient Equation:

$$C_{\nu} = 29.83094 \sqrt{\frac{1}{k_{\nu}}(D_{\nu}^2)}$$

Example Solution: (24 inch, 85° from closed)

$$C_v = 29.83094 \sqrt{\frac{1}{0.144}(24 \ in^2)} = 45280$$

Head Loss Equation:

$$\Delta H = k_{\nu} \frac{V^2}{2g}$$

Example Solution: (24 inch, 25° from closed)

$$\Delta H = 178 \frac{\left(16 \frac{ft}{sec}\right)^{2}}{2\left(32.174 \frac{ft}{sec^{2}}\right)} = 708.2 \ ft$$

 \ast See chart below for fully open C_{v} values

Where,

Cv - Flow coefficient

 ΔH – Head loss

D_v - Valve size

K_v - Head loss coefficient

V - Full line velocity through valve

RCV k, VALUES VS. PLUG ROTATION ANGLE OF OPENING

RCV HEADLOSS CO	DEFFICIENT k,				
(FULLY OPEN VALVE)					
VALVE SIZE	k _v				
6	0.091				
8	0.064				
10	0.055				
12	0.049				
14	0.046				
16	0.043				
18	0.039				
20	0.039				
24	0.037				
30	0.033				
36	0.032				
42	0.028				
48	0.027				
54	0.025				
60	0.026				

Contact Our Local Representative:

Technical Resources: 1-855-ROSS-VALVE

At Ross Valve, we pride ourselves in providing a truly engineered product. With nearly 130 years of industry experience, Ross Valve offers a variety of in-house resources to ensure all your product requests are met:

- Computational Fluid Dynamic Modeling
- Finite Element Analysis
- Pattern Shop & Two (2) Foundries
- Machine Shop, WaterJet & CNC Centers
- Hydrostatic Test Facilities
- Pre-Packaged Vault Design/Build Center

PROUDLY MADE IN

Design Engineering Installation Recommendations:

- Metal to metal seated Rotary Cone Valves and adjoining piping must be independently supported by appropriately designed support and concrete support pad.
- Rotary Cone Valve concrete valve supports (pads) are not intended to be utilized as anchors.
- Horizontal and vertical alignment of Rotary Cone Valve and adjoining pipe must be stress free. Therefore, it is strongly recommended that a flexible connection, such as a sleeve coupling, be incorporated in the adjoining piping in close proximity to the Rotary Cone Valve.

NOTE: Ross Valve Mfg. Co., Inc. reserves the right to modify valve construction which will result in equal or superior performance to existing designs. These modifications may be made at any time and at the sole discretion of the manufacturer.

This print contains confidential information which is property of Ross Valve Mfg. By accepting this information, the borrower agrees that it will not be used for any purpose other than that which it is loaned.

