Name:

Score: 0 / 17 points (0%) [1 open-ended question not graded]

Chapter 15 Practice Exam

Multiple Choice

Identify the choice that best completes the statement or answers the question.

 \square 1. The value of K_{eq} for the equilibrium

$$H_2(g) + I_2(g) \longrightarrow 2 HI(g)$$

is 794 at 25°C. What is the value of K_{eq} for the equilibrium below?

$$1/2 H_2(g) + 1/2 I_2(g) \longrightarrow_n HI(g)$$

- a. 397
- b. 0.035
- c. 28
- d. 1588
- e. 0.0013

ANSWER: C

POINTS: 0/1

2. Consider the following chemical reaction:

$$H_2(g) + I_2(g) = 2HI(g)$$

At equilibrium in a particular experiment, the concentrations of H_2 , I_2 , and HI were $\boxed{\text{2mc}}$ mc0 and mc0 respectively. The value of K_{eq} for this reaction is ______

- a. 23
- b. 111
- c. 9.0×10^{-3}
- d. 6.1
- e. 61

ANSWER: E

POINTS: 0/1

3. At elevated temperatures, molecular hydrogen and molecular bromine react to partially form hydrogen bromide:

$$H_2(g) + Br_2(g) \longrightarrow 2HBr(g)$$

A mixture of 0.682 mol of H_2 and 0.440 mol of Br_2 is combined in a reaction vessel with a volume of 2.00 L. At equilibrium at 700 K, there are 0.566 mol of H_2 present. At equilibrium, there are _____ mol of Br_2 present in the reaction vessel.

- a. 0.000
- b. 0.440
- c. 0.566
- d. 0.232
- e. 0.324

ANSWER: E POINTS: 0 / 1

4. At 22°C, $K_p = 0.070$ for the equilibrium:

$$NH_4HS(s)$$
 NH₃(g) + H₂S(g)

A sample of solid NH₄HS is placed in a closed vessel and allowed to equilibrate. Calculate the equilibrium partial pressure (atm) of ammonia, assuming that some solid NH₄HS remains.

- a. 0.26
- b. 0.070
- c. 0.52
- d. 4.9×10^{-3}
- e. 3.8

ANSWER: A POINTS: 0/1

- 5. Which one of the following is true concerning the Haber process?
 - a. It is a process used for shifting equilibrium positions to the right for more economical chemical synthesis of a variety of substances.
 - b. It is a process used for the synthesis of ammonia.
 - c. It is another way of stating LeChatelier's principle.
 - d. It is an industrial synthesis of sodium chloride that was discovered by Karl Haber.
 - e. It is a process for the synthesis of elemental chlorine.

ANSWER: B POINTS: 0 / 1

6. Which of the following expressions is the correct equilibrium-constant expression for the equilibrium between dinitrogen tetroxide and nitrogen dioxide?

 $N_2O_4(g)$ 2NO₂ (g) a. 2.jp_ξ

- d. $[NO_2][N_2O_4]$
- e. $[NO_2]^2[N_2O_4]$

ANSWER: B

POINTS: 0/1

7. Given the following reaction at equilibrium, if $K_c = 6.44 \times 10^5$ at 230.0°C, $K_p =$

 $2NO(g) + O_2(g) \longrightarrow_n 2NO_2(g)$

a.
$$3.67 \times 10^{-2}$$

b.
$$1.56 \times 10^4$$

c.
$$6.44 \times 10^5$$

d.
$$2.66 \times 10^6$$

e.
$$2.67 \times 10^7$$

ANSWER: B

POINTS: 0/1

8. Which of the following expressions is the correct equilibrium-constant expression for the reaction below?

 $(NH_4)_2Se(s)$ 2NH₃(g) + H₂Se(g)

a.
$$[NH_3][H_2Se]/[(NH_4)_2Se]$$

b.
$$[(NH_4)_2Se] / [NH_3]^2[H_2Se]$$

c.
$$1 / [(NH_4)_2Se]$$

d.
$$[NH_3]^2[H_2Se]$$

e.
$$[NH_3]^2[H_2Se] / [(NH_4)_2Se]$$

ANSWER: D

POINTS: 0/1

9. The equilibrium constant for the gas phase reaction

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

is
$$K_{eq} = 4.34 \times 10^{-3}$$
 at 300°C. At equilibrium, _____.

- a. products predominate
- b. reactants predominate

- c. roughly equal amounts of products and reactants are present
- d. only products are present
- e. only reactants are present

ANSWER: B POINTS: 0/1

____ 10. The equilibrium constant for reaction 1 is K. The equilibrium constant for reaction 2 is

(1) $SO_2(g) + (1/2) O_2(g) \longrightarrow_n SO_3(g)$

(2)
$$2SO_3(g) \longrightarrow_n 2SO_2(g) + O_2(g)$$

- a. K^2
- b. 2K
- c. 1/2K
- d. $1/K^2$
- e. -K²

ANSWER: D

POINTS: 0/1

 $\underline{\hspace{1cm}}$ 11. The equilibrium expression for K_p for the reaction below is $\underline{\hspace{1cm}}$.

ANSWER: E

POINTS: 0/1

____ 12. At 400 K, the equilibrium constant for the reaction

$$Br_2(g) + Cl_2(g)$$
 2BrCl(g)

is $K_p = 7.0$. A closed vessel at 400 K is charged with 1.00 atm of $Br_2(g)$, 1.00 atm of Cl_2

- (g), and 2.00 atm of BrCl (g). Use Q to determine which of the statements below is true.
- a. The equilibrium partial pressures of Br₂, Cl₂, and BrCl will be the same as the initial values.
- b. The equilibrium partial pressure of Br₂ will be greater than 1.00 atm.
- c. At equilibrium, the total pressure in the vessel will be less than the initial total pressure.
- d. The equilibrium partial pressure of BrCl (g) will be greater than 2.00 atm.
- e. The reaction will go to completion since there are equal amounts of Br_2 and Cl_2 .

ANSWER: D **POINTS: 0/1**

- ____ 13. How is the reaction quotient used to determine whether a system is at equilibrium?
 - a. The reaction quotient must be satisfied for equilibrium to be achieved.
 - b. At equilibrium, the reaction quotient is undefined.
 - c. The reaction is at equilibrium when $Q < K_{eq}$.
 - d. The reaction is at equilibrium when $Q > K_{eq}$.
 - e. The reaction is at equilibrium when $Q = K_{eq}$.

ANSWER: E POINTS: 0/1

- ____ 14. Of the following equilibria, only _____ will shift to the left in response to a decrease in volume.
 - a. $H_2(g) + Cl_2(g)$ \longrightarrow_n 2 HCl (g)
 - b. $2 SO_3(g) \longrightarrow 2 SO_2(g) + O_2(g)$
 - c. $N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$
 - d. $4 \text{ Fe (s)} + 3 O_2 \text{ (g)} \supseteq 2 \text{ Fe}_2 O_3 \text{ (s)}$
 - e. $2HI(g) \mapsto H_2(g) + I_2(g)$

ANSWER: B POINTS: 0/1

____ 15. Consider the following reaction at equilibrium:

 $2NH_3(g) \longrightarrow_n N_2(g) + 3H_2(g)$

Le Chätelier's principle predicts that the moles of H₂ in the reaction container will increase

- a. some removal of NH₃ from the reaction vessel (V and T constant)
- b. a decrease in the total pressure (T constant)
- c. addition of some N_2 to the reaction vessel (V and T constant)
- d. a decrease in the total volume of the reaction vessel (T constant)
- e. an increase in total pressure by the addition of helium gas (V and T constant)

ANSWER: B

POINTS: 0/1

____ 16. Consider the following reaction at equilibrium:

$$2\text{CO}_2(g) = 2\text{CO}(g) + O_2(g) \Delta H^\circ = -514 \text{ kJ}$$

Le Chätelier's principle predicts that an increase in temperature will .

- a. increase the partial pressure of O_2 (g)
- b. decrease the partial pressure of CO_2 (g)
- c. decrease the value of the equilibrium constant
- d. increase the value of the equilibrium constant
- e. increase the partial pressure of CO

ANSWER: C POINTS: 0/1

- ____ 17. The effect of a catalyst on an equilibrium is to
 - a. increase the rate of the forward reaction only
 - b. increase the equilibrium constant so that products are favored
 - c. slow the reverse reaction only
 - d. increase the rate at which equilibrium is achieved without changing the composition of the equilibrium mixture
 - e. shift the equilibrium to the right

ANSWER: D POINTS: 0/1

Short Answer

18. A 40.0-g sample of solid ammonium carbonate is placed in a closed, evacuated 3.00-L flask and heated to 673 K. It decomposes to produce ammonia, water, and carbon dioxide according to the equation:

$$(NH_4)_2CO_3$$
 (s) $\Leftrightarrow 2NH_3$ (g) + H_2O (g) + CO_2 (g)

The equilibrium constant, K_p , for the reaction is 0.295 M^4 at 673 K.

- Write the K_p expression for the reaction. a.
- b. Calculate K_c at 673 K.
- Calculate the partial pressure of NH₃ (g) at equilibrium at 673 K. c.
- Calculate the total pressure inside the flask at equilibrium. d.
- Calculate the number of grams of solid ammonium carbonate in the flask at e.

equilibrium.

f. What is the minimum mass of solid $(NH_4)_2CO_3$ that is necessary to be placed in the flask in order for the system to reach equilibrium?

RESPONSE: ANSWER:

a.
$$K_p = P_{NH3}^2 P_{H2O} P_{CO2}$$

f.
$$>2.72$$
 g

POINTS: -- / 1

