Ontario Math Circles Second Annual ARML Team Selection Test Solutions

1. Determine the unit's digit of $222 \times 3333-7777777^{2}$.

3 It suffice to compute $2 \times 3-7^{2}=-43$. Therefore, the answer is 3 .
2. Determine the solutions to the equation $x^{2}-2 x+6=0$.
$1 \pm i \sqrt{5}$ By the quadratic formula,

$$
x=\frac{2 \pm \sqrt{2^{2}-4(6)}}{2}=1 \pm \sqrt{-5}=1 \pm i \sqrt{5}
$$

3. Determine the area of the triangle bounded by the y-axis and the following two lines:

$$
\begin{aligned}
& y=-x+1 \\
& y=2 x-2
\end{aligned}
$$

$\frac{3}{2}$ The intersection of these two lines is at $(1,0)$ and the y-intercepts are at $(0,1)$ and $(0,-2)$. Therefore, the area is $\frac{1}{2}(1)(3)=\frac{3}{2}$.
4. Thinula can make a contest in 40 minutes. Bill can make a contest in 30 minutes. Eddy hires both of them to make one contest, in how many hours does it take for the job to be done.
$\frac{2}{7}$

$$
\frac{1}{\frac{2}{3}}+\frac{1}{\frac{1}{2}}=\frac{1}{T}
$$

Solving for $T=\frac{2}{7}$.
5. In terms of area, a regular heptagon with side length 1 is compared to a regular octagon with side length 1. Determine the area of the larger one.
$2+2 \sqrt{2}$ The larger shape is obvious the octagon, which has area $2+2 \sqrt{2}$.
6. Let $f(x)=x^{4}-x^{3}+a x+b$ with $f(1)=4$ and $f(2)=6$. Determine the ordered pair (a, b) ?
$(-6,10)$ The two given points yields the system of equations

$$
\left\{\begin{array}{l}
a+b=4 \\
2 a+b=-2
\end{array}\right.
$$

Solving this yields $a=-6$ and $b=10$. Therefore, the answer is $(-6,10)$.
7. Determine the smallest positive integer which is divisible by all one digit positive integers.

2520 The LCM of these nine numbers is

$$
\operatorname{lcm}(2,3,4,5,6,7,8,9,10)=\operatorname{lcm}(8,5,7,9)=2520
$$

8. Let P be a point inside a convex quadrilateral $A B C D$. Determine the average of the following four angles: $\angle A P B, \angle P B C, \angle C P D, \angle D P A$.
90° The sum of the four angles is a constant, 360°. Therefore, the average is always 90°.
9. Determine the number of positive perfect square divisors of 10 !.

30 The prime factorization of 10 ! is $2^{8} 3^{4} 5^{2} 7$. The number of positive even divisors is

$$
\left(\left\lfloor\frac{8}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{4}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{2}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{1}{2}\right\rfloor+1\right)=(5)(3)(2)(1)=30
$$

10. The permutations of ELDYD are listed in lexigraphical order. Determine the $26^{\text {th }}$ permutation in this list. EDDYL Starting with D, there are $4!=24$ permutations. Therefore, the $25^{\text {th }}$ permutation is EDDLY and the desired permutation is EDDYL.
11. Consider all lattice points on the Cartesian plane that are of distance 5 from the origin. Determine the perimeter of this convex polygon.
$8 \sqrt{10}+4 \sqrt{2}$ In the first quadrant with the positive axises, the points are $(5,0),(4,3),(3,4),(0,5)$. The total length of these 3 segments is $\sqrt{10}+\sqrt{2}+\sqrt{10}=2 \sqrt{10}+\sqrt{2}$. Therefore, the perimeter of the convex polygon is $8 \sqrt{10}+4 \sqrt{2}$.
12. How many three digit numbers contain the digit " 9 " at least once?

252 The number of three digit numbers is 900 . The number of three digit numbers that does not contain 9 is $(8)(9)(9)=648$. Therefore, the answer is $900-648=252$.
13. Let a and b be the solutions to $x^{2}-2 x+6=0$. Determine the value of $a^{6}+b^{6}$. 352

$$
\begin{aligned}
& a^{6}+b^{6} \\
= & \left(a^{3}+b^{3}\right)^{2}-2(a b)^{3} \\
= & \left((a+b)\left(a^{2}-a b+b^{2}\right)\right)^{2}-2(a b)^{3} \\
= & \left((a+b)\left((a+b)^{2}-3 a b\right)\right)^{2}-2(a b)^{3} \\
= & \left((2)\left((2)^{2}-3(6)\right)\right)^{2}-2(6)^{3} \\
= & 352
\end{aligned}
$$

14. Determine all positive integer solutions (x, y, z) to the system of equations

$$
\left\{\begin{array}{l}
x y+y z=63 \\
x z+y z=23
\end{array}\right.
$$

$(2,21,1),(20,3,1)$ The second equation implies that either $z=1$ or $z=23$. If $z=23$ then $x+y=1$. This is not possible because x and y must be positive integers. If $z=1$ then

$$
\left\{\begin{array}{l}
x y+y z=63 \\
x+y=23
\end{array}\right.
$$

Substituting the second equation into the first yields

$$
x^{2}-22 x+40=0
$$

This has solutions $x=2$ and $x=20$. The corresponding y value are 21 and 3 , respectively. Therefore, the possible integer solutions are $(2,21,1)$ and $(20,3,1)$.
15. Determine the sum of all positive real numbers x for which $\log _{4} x-\log _{x} 16=\frac{7}{6}-\log _{x} 8$. $8+\frac{1}{2} \sqrt[3]{2}$

$$
\begin{aligned}
\frac{\log _{2} x}{2}-\frac{4}{\log _{2} x} & =\frac{7}{6}-\frac{3}{\log _{2} x} \\
\left(\log _{2} x+\frac{2}{3}\right)\left(\log _{2} x-3\right) & =0 \\
x & =2^{-\frac{2}{3}}, 8 \\
& =\frac{\sqrt[3]{2}}{2}, 8
\end{aligned}
$$

16. Determine the number of real solutions to $\log _{4} x=2 \sin x$.

5 For $x>16$, there are no solutions. A reasonably sketch will show that there are 5 points of intersection.
17. The distance between the centers of two circles is 15 . One has radius 4 and the other has radius 5 . What is the length of their common internal tangent?
12 Consider the following diagram: . By similar triangles the answer is 12 .
18. Let $F_{0}=F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for all $n \geq 2$. Compute the value of $\sum_{n=1}^{\infty} \frac{F_{n}}{F_{n-1} F_{n+1}}$.

2 Note $F_{n}=F_{n+1}-F_{n-1}$ so

$$
\sum_{n=1}^{\infty} \frac{F_{n}}{F_{n-1} F_{n+1}}=\sum_{n=1}^{\infty} \frac{F_{n+1}-F_{n-1}}{F_{n-1} F_{n+1}}=\sum_{n=1}^{\infty}\left(\frac{1}{F_{n-1}}-\frac{1}{F_{n+1}}\right)
$$

Therefore,

$$
\sum_{n=1}^{\infty} \frac{F_{n}}{F_{n-1} F_{n+1}}=\sum_{n=1}^{\infty} \frac{1}{F_{n-1}}-\sum_{n=1}^{\infty} \frac{1}{F_{n+1}}=F_{0}+F_{1}+\sum_{n=2}^{\infty} \frac{1}{F_{n}}-\sum_{n=2}^{\infty} \frac{1}{F_{n}}=2
$$

19. Let $f(x)=\frac{x}{\sqrt{1+x^{2}}}$ and define $f^{(n)}(x)=\underbrace{f(f(f \cdots f}_{n}(x)))$. Determine $f^{(99)}(1)$. $\frac{1}{10}$ By induction, it can be shown that $f^{(n)}(x)=\frac{x}{\sqrt{n x^{2}+1}}$. Therefore, $f^{(99)}(1)=\frac{1}{\sqrt{99+1}}=\frac{1}{10}$.
20. If the sum of all positive divisors of 30^{120} which are multiples of 30^{118} is $30^{118} N$, compute the value of N.
2821 Note each such divisor is of the form $2^{a} 3^{b} 5^{c}$ where $118 \leq a, b, c \leq 120$. The desired sum is then

$$
\begin{aligned}
& \left(2^{118}+2^{119}+2^{120}\right)\left(3^{118}+3^{119}+3^{120}\right)\left(5^{118}+5^{119}+5^{120}\right) \\
& =30^{118}\left(1+2+2^{2}\right)\left(1+3+3^{2}\right)\left(1+5+5^{2}\right) \\
& =30^{118}(7)(13)(31)
\end{aligned}
$$

Therefore, $N=(7)(13)(31)=2821$.
21. Let a and b be positive integers such that $a>b+1>2$. If $\binom{13}{5}+\binom{13}{6}=\binom{a}{b}$, compute the maximum possible value of $a+b$.
154 Note $\binom{13}{5}+\binom{13}{6}=\binom{14}{6}=77 \times 39=\binom{78}{2}=\binom{78}{76}$. To prove that the pair $(a, b)=(78,76)$ is the desired maximum, note that if $a \leq 78$, there is no other possible maximum. However, if $a>78$, since $b>1$, it follows that $\binom{a}{b}>\binom{79}{2}=79 \times 39>\binom{14}{6}$, a contradiction. Hence, our desired values are $a=78$ and $b=76$ so $a+b=154$.
22. If $\sin x+\cos x=\frac{1}{5}$ and $0 \leq x<\pi$. Determine $\tan x$. $-\frac{4}{3}$ Squaring the given quantity yields

$$
1+2 \sin x \cos x=\frac{1}{25}
$$

Hence, $\sin x$ and $\cos x$ are the roots of $25 t^{2}-5 t-12=0$. Therefore, $\sin x=\frac{4}{5}$ and $\cos x=-\frac{3}{5}$. Therefore, $\tan x=-\frac{4}{3}$.
23. A fair die is rolled repeatedly. Given that 6 is obtained for the first time on the second roll, compute the expected number of rolls to obtain a 5 for the first time.
$\frac{33}{5}$ The probability that 5 appears on the first roll is $\frac{1}{5}$. The probability that 5 appears for the first time on the $n^{\text {th }}$ roll where $n>2$ is $\frac{4}{5} \cdot\left(\frac{5}{6}\right)^{n-3} \cdot \frac{1}{6}$. Therefore, the answer is

$$
\frac{1}{5}+\sum_{n=3}^{\infty} n \cdot \frac{4}{5} \cdot\left(\frac{5}{6}\right)^{n-3} \cdot \frac{1}{6}=\frac{33}{5}
$$

24. A point P is inside unit square $A B C D$. Let a, b, c, d be the area of $\triangle A P D, \triangle D C P, \triangle B C P$, and $\triangle A B P$, respectively. Determine the length of the curve of points of P such that

$$
\begin{aligned}
& a x+b y=2017 \\
& c x+d y=2018
\end{aligned}
$$

does not have a distinct solution.
$\sqrt{2}$ It suffice to let a, b, c, d to represent the distance from P to $A D, C D, B C, A B$, respectively. Thus, $c=1-a$ and $b=1-d$. For a system of equations to not have a distinct solution, $a d-b c=0$. This implies that $a d-(1-d)(1-a)=0$, which is $a+d=1$. This represents the points on the diagonal $B D$, which has length $\sqrt{2}$.
25. Let $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Determine the value of $\sum_{n=0}^{\infty} \frac{F_{n}}{4^{n}}$.
$\frac{4}{11}$ Let $f(x)=\sum_{n=0}^{\infty} F_{n} x^{n}$ then

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} F_{n} x^{n} \\
& =\sum_{n=2}^{\infty}\left(F_{n-1}+F_{n-2}\right) x^{n}+x \\
& =x^{2} \sum_{n=2}^{\infty} F_{n-2} x^{n-2}+x \sum_{n=2}^{\infty} F_{n-1} x^{n-1}+x \\
& =x^{2} f(x)+x f(x)+x \\
& =\frac{x}{1-x-x^{2}}
\end{aligned}
$$

Therefore, $f\left(\frac{1}{4}\right)=\frac{\frac{1}{4}}{1-\frac{1}{4}-\left(\frac{1}{4}\right)^{2}}=\frac{4}{11}$
26. Evaluate $\sqrt[3]{20+14 \sqrt{2}}+\sqrt[3]{20-14 \sqrt{2}}$.

4

$$
\begin{aligned}
& \sqrt[3]{20+14 \sqrt{2}}+\sqrt[3]{20-14 \sqrt{2}} \\
= & \sqrt[3]{(2+\sqrt{2})^{3}}+\sqrt[3]{(2-\sqrt{2})^{3}} \\
= & 2+\sqrt{2}+2-\sqrt{2} \\
= & 4
\end{aligned}
$$

27. In $\triangle A B C, \angle A=90^{\circ}, A C=1, A B=5$. Point D lies on ray $\overrightarrow{A C}$ such that $\angle D B C=4 \angle C B A$. Compute $A D$.

$$
\frac{719}{95} \text { Since }(5+i)^{5}=1900+2876 i \text { then } A D=5 \times \frac{2876}{1900}=\frac{719}{95} \text {. }
$$

28. Let x be the smallest real value such that $\left\lfloor x^{2}\right\rfloor-\lfloor x\rfloor^{2}=2017$. Determine $\lfloor x\rfloor$.

1009 Let $x=n+a$ where n is an integer and $0 \leq a<1$. Substituting this into the equation yields

$$
\left\lfloor 2 n a+a^{2}\right\rfloor=2017
$$

To find the smallest n, a needs to be as large as possible. If $a=1$ then $n=\frac{2017-1}{2}=1008$ will suffice. However, since a cannot be 1 then $1009<x<1010$. Therefore, $\lfloor x\rfloor=1009$.
29. Let $f(n)=n(n+1)(n+2)(n+3)(n+4)$. If $T=\sum_{n=1}^{2016} f(n)$, and S is the sum of all factors of T, compute the value when S is divided by 50 .
0 Note that $f(n)=120\binom{n+4}{5}$. We then seek to compute $120\left(\binom{5}{5}+\binom{6}{5}+\cdots+\binom{2020}{5}\right)$. By the hockey-stick formula, this is equal to $120\binom{2021}{6}$, which has a prime factorization of

$$
2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 43 \cdot 47 \cdot 101 \cdot 673 \cdot 1009 \cdot 2017
$$

This means that
$S=\left(1+2+2^{2}+2^{3}+2^{4}\right)(1+3)(1+5)(1+7)(1+43)(1+47)(1+101)(1+673)(1+1009)(1+2017) \equiv 0 \bmod 50$
there both 25 and 2 divide the product. Therefore, the remainder when S is divided by 50 is 0 .
30. Determine all ordered triples (x, y, z) of nonnegative real numbers such that $x y+y z+x z=12$ and $x y z=x+y+z+2$.
$(2,2,2)$ Let $t=\sqrt[3]{x y z}$. Using AM-GM on the first equation implies that $12 \geq 3 t^{2}$ or $t \leq 2$. By AMGM on the second equation, we have $t^{3} \geq 3 t+2$. This re-arranges to $0 \leq t^{3}-3 t-2=(t-2)(t+1)^{2}$. Since $t \geq 0$ we know that this inequality implies $t \geq 2$. Therefore, $2 \leq t \leq 2$ so $t=2$. This means $x y z=8, x y+y z+x z=12$ and $x+y+z=6$. Note that x, y, z are the three roots of the polynomial $0=r^{3}-6 r^{2}+12 r-8=(r-2)^{3}$ which implies $(x, y, z)=(2,2,2)$ is the only solution.
31. Let $f(x)=x^{3}-2018 x+1$ and $g(x)=\frac{x-1}{x^{2}}$. Compute the number of, not necessarily distinct, real solutions to $f(g(x))=0$.
44 It can be shown that $f(-45)<0<f(0), f(0)>0>f\left(\frac{1}{4}\right)$ and $f(1)<0<f(45)$. Therefore the roots α, β, γ of $f(x)$ must satisfy $-45<\alpha<0,0<\beta<\frac{1}{4}$ and $1<\gamma<45$. Note if $g(x)=a$, then $a x^{2}-x+1=0$ which has discriminant $1-4 a$. Therefore, $g(x)=a$ will have two real solutions if $0 \neq a \leq \frac{1}{4}$ and zero solutions if $a>\frac{1}{4}$. Since $0 \neq \alpha, \beta<\frac{1}{4}$ and $\gamma>\frac{1}{4}$, there will be $2 \times 2=4$ real solutions to $f(g(x))=0$.
32. Let n be a natural number and let $S(n)$ denote the sum of the digits of n in its base 10 representation. Determine all natural numbers n such that $n^{3}=8 S(n)^{3}+6 n S(n)+1$.
17 We can rewrite the given condition as $n^{3}+(-2 S(n))^{3}+(-1)^{3}=3 n(-2 S(n))(-1)$. Note that this is in the form $x^{3}+y^{3}+z^{3}=3 x y z$ which happens if and only if $x+y+z=0$. Therefore, $n=2 S(n)+1$. It is easy to see that the number of digits in n cannot be more than 2 . Since $n=2 S(n)+1 \leq 18 k+1$ where k is the number of digits of n. Then, if n has at least3 digits, $n>33 k$ so that yields $33 k \leq 18 k+1$, a contradiction. Therefore, n has at most 2 digits and it clearly does not have 1 digit since $S(n)=n$ in that case. Thus, n must have 2 digits. Let $n=10 a+b$. Then, $S(n)=a+b$ so we have $10 a+b=2 a+2 b+1$ meaning $8 a=b+1$. Since a and b are digits, this implies $a=1$ and $b=7$ which implies $n=17$ is the only solution.
33. A portion of Thinula's test paper is cut off and he can only see the first three terms of $f(x)=$ $x^{10}-10 x^{9}+45 x^{8}$. Given that all the roots of the polynomial are real, determine the product of the roots.
11 Note $\sum_{i=1}^{10} r_{i}^{2}=10^{2}-2(45)=10$. Therefore, $10 \sum_{i=1}^{10} r_{i}^{2}=100$ which implies $\frac{r_{1}}{1}=\frac{r_{2}}{1}=\ldots=\frac{r_{10}}{1}$ by Cauchy-Schwarz. Therefore, $\left(r_{1}, r_{2}, \ldots, r_{10}\right)=(1,1, \ldots, 1)$ is the only possible ordered 10 -tuple of roots so the desired product is 1 .
34. In $\triangle A B C, A D$ is an angle bisector, D is on $B C$. A circle centred at O is inscribed in $\triangle A B D$. Let E be on $A B$ such that $O E$ is perpendicular to $A B$. If $B E=2, B D=3, A E=4$, compute $A C$.
$\frac{50}{9}$ Note that E is the point of tangency with the circle and $A B$. By equal tangents, $A D=5$. Let $\overline{D C}=a$ and $A C=b$. By angle bisector theorem, $b=2 a$. By Stewart's Theorem,

$$
6^{2} a+3 b^{2}=5^{2}(a+3)+3 a(a+3)
$$

Solving this yields $a=\frac{25}{9}$ and, thus, $b=\frac{50}{9}$. Therefore, $A C=\frac{50}{9}$.
35. Let $f(x)$ be a degree 8 polynomial such that $f(k)=2^{k}$ for $k=0,1,2, \ldots, 8$, compute the value of $f(9)$. 511 Since it is in an integer at all integer inputs, $f(x)$ can be written as a linear combination of the binomial coefficients $\binom{x}{0},\binom{x}{1}, \ldots,\binom{x}{n}$. Therefore, $f(x)=\binom{x}{0}+\binom{x}{1}+\ldots+\binom{x}{8}$ so $f(9)=2^{9}-\binom{9}{9}=$ $2^{9}-1=511$.
36. Thinula has some coins $C_{1}, C_{2}, \ldots, C_{n}$. Each coin is biased so that the probability of getting heads on $\operatorname{coin} C_{k}$ is $\frac{1}{k+2}$ for all $1 \leq k \leq n$. When Thinula tosses all the coins, the probability of getting an odd number of heads is $\frac{2015}{4032}$. How many coins does Thinula have?
62 Consider the polynomial $f(X)=\prod_{k=1}^{n}\left(\left(1-\frac{1}{k+2}\right)+\frac{1}{k+2} X\right)$. Note the coefficient of X^{m} represents the probability of flipping exactly m heads. We wish to compute the sum $S=a_{1}+a_{3}+\ldots$. Note that

$$
2 S=f(1)+f(-1)=1-\prod_{k=1}^{n}\left(\frac{k}{k+2}\right)=1-\frac{2}{(n+1)(n+2)}=\frac{2015}{2016}
$$

Therefore, $\frac{2}{(n+1)(n+2)}=\frac{1}{2016}$ so $(n+1)(n+2)=4032=63(64)$ so $n=62$.
37. Define the sequence a_{1}, a_{2}, \ldots to be a sequence such that $a_{1}=1$ and for $n \geq 1$,

$$
16 a_{n+1}=1+4 a_{n}+\sqrt{1+24 a_{n}}
$$

Evaluate $\sum_{n=1}^{\infty}\left(a_{n}-\frac{1}{3}\right)$.
$\frac{11}{9}$ Let $b_{n}=\sqrt{1+24 a_{n}}$ then $b_{1}=5$

$$
16\left(\frac{b_{n+1}^{2}-1}{24}\right)=1+4\left(\frac{b_{n}^{2}-1}{6}\right)+b_{n} \Longrightarrow\left(2 b_{n+1}\right)^{2}=\left(b_{n}+3\right)^{2}
$$

Since $b_{n}>0$ then

$$
b_{n+1}=\frac{1}{2} b_{n}+\frac{3}{2} \Longrightarrow b_{n}=2^{2-n}+3
$$

Thus, $a_{n}=\frac{1}{3}+\frac{2}{3}\left(\frac{1}{4}\right)^{n}+\left(\frac{1}{2}\right)^{n}$. Therefore,

$$
\sum_{n=1}^{\infty}\left(a_{n}-\frac{1}{3}\right)=\sum_{n=1}^{\infty}\left(\frac{2}{3}\left(\frac{1}{4}\right)^{n}+\left(\frac{1}{2}\right)^{n}\right)=\frac{11}{9}
$$

38. Rhombus $A R M L$ has its vertices on the graph of $y=2\lfloor x\rfloor-x$. Given that the area of $A R M L$ is 8 , compute the least upper bound for $\tan A$.
$\frac{100}{621}$ This is the same question as 2017 ARML individual $\# 10$. You looked at the solution after the
contest right?!?!?
39. Let N be the number of polynomials such that its coefficients belong to the set $\{1,2, \ldots, 2018\}$ and $2(P(x)+1)=P(x+1)+P(x-1)$. Compute the remainder when N is divided by 1000.
324 Let $Q(x)=P(x)-P(x-1)-2 x$. Rearranging the original condition yields

$$
P(x+1)-P(x)=P(x)-P(x-1)+2
$$

Subtracting $2 x+2$ from both sides yield

$$
P(x+1)-P(x)-(2 x+2)=P(x)-P(x-1)-2 x
$$

so $Q(x+1)=Q(x)$ for every x. Since Q is a polynomial, it must be constant so

$$
P(x)=P(x-1)+2 x+k
$$

for some $k \in \mathbb{R}$. Next, let $T(x)=P(x)-x^{2}-(k+1) x$ so $P(x)=T(x)+x^{2}+(k+1) x$ and $P(x-1)=T(x-1)+(x-1)^{2}+(k+1)(x-1)$. This means

$$
P(x)-P(x-1)=2 x+k=T(x)-T(x-1)+2 x+k
$$

Therefore, $T(x)=T(x-1)$ so $T(x)=m$ for some $m \in \mathbb{R}$. Hence

$$
P(x)=T(x)+x^{2}+(k+1) x=x^{2}+(k+1) x+m
$$

Therefore, $P(x)=x^{2}+a x+b$ where $a, b \in\{1,2, \cdots, 2018\}$. Hence,

$$
N \equiv 2018^{2} \equiv 18^{2} \equiv 324 \quad(\bmod 1000)
$$

40. Let $d(P, M N)$ denote the smallest distance between point P and line segment $M N$. Let G be the centroid of $\triangle A B C$ and let X be the point in the plane such that $\frac{d(X, A C)}{A C}=\frac{d(X, A B)}{A B}=\frac{d(X, B C)}{B C}$. Let G_{a}, G_{b}, G_{c} be the feet of the perpendiculars from G to $B C, A C$ and $A B$ respectively. Similarly, let X_{a}, X_{b}, X_{c} be the feet of the perpendiculars from X to $B C, A C$ and $A B$ respectively. If O_{1} and O_{2} are the circumcenters of $\triangle G_{a} G_{b} G_{c}$ and $\triangle X_{a} X_{b} X_{c}$ respectively, compute the value of $\frac{O_{1} G+O_{2} X}{2 X G}$.
 $O_{1}=O_{2}=M$, the midpoint of $X G$. Therefore, the desired ratio is $\frac{1}{2}$.
