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An Efficient Joint Formulation for Bayesian
Face Verification

Dong Chen, Xudong Cao, David Wipf, Fang Wen, and Jian Sun

Abstract—This paper revisits the classical Bayesian face recognition algorithm from Baback Moghaddam et al. and proposes
enhancements tailored to face verification, the problem of predicting whether or not a pair of facial images share the same
identity. Like a variety of face verification algorithms, the original Bayesian face model only considers the appearance difference
between two faces rather than the raw images themselves. However, we argue that such a fixed and blind projection may
prematurely reduce the separability between classes. Consequently, we model two facial images jointly with an appropriate prior
that considers intra- and extra-personal variations over the image pairs. This joint formulation is trained using a principled EM
algorithm, while testing involves only efficient closed-formed computations that are suitable for real-time practical deployment.
Supporting theoretical analyses investigate computational complexity, scale-invariance properties, and convergence issues. We
also detail important relationships with existing algorithms, such as probabilistic linear disciminant analysis (PLDA) and metric
learning. Finally, on extensive experimental evaluations, the proposed model is superior to the classical Bayesian face algorithm
and many alternative state-of-the-art supervised approaches, achieving the best test accuracy on three challenging datasets,
Labeled Face in Wild (LFW), Multi-PIE, and YouTube Faces, all with unparalleled computational efficiency.

Index Terms—Bayesian face recognition, face verification, EM algorithm
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1 INTRODUCTION

FACE verification and face identification represent
two sub-problems of face recognition. The former

involves verifying whether or not two given faces
belong to the same person, while the latter answers
the question of which identity should be assigned to
a probe face set given a gallery of candidates. In this
paper, we focus on the verification problem, which
is somewhat more widely applicable and lays the
foundation for challenging identification problems.

Bayesian face recognition [1] by Baback Moghad-
dam et al. represents one successful algorithm that
has been applied to face verification. It formulates the
verification task as a binary Bayesian decision prob-
lem. Let HI represents the intra-personal hypothesis
that two faces x1 and x2 belong to the same subject,
and HE is the extra-personal hypothesis that two faces
are from different subjects. Then, the face verification
problem amounts to classifying the difference ∆ =
x1 − x2 as intra-personal variation or extra-personal
variation using the log-likelihood ratio statistic

r(x1, x2) = log
P (∆ |HI )

P (∆ |HE )
. (1)

This ratio can be considered as a probabilistic measure
of similarity between x1 and x2 for the face verifica-
tion problem. In [1], the two conditional probabilities
in (1) are modeled as Gaussians and eigen-analysis is
used for model learning and efficient computation.
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Because of the simplicity and competitive per-
formance [2] of Bayesian face recognition, further
progress has been made along this line of research. For
example, Wang and Tang [3] propose a unified frame-
work for subspace face recognition which decompos-
es the face difference into three subspaces: intrinsic
difference, transformation difference, and noise. By
excluding the transform difference and noise and
retaining the intrinsic difference, better performance
is obtained. In [4], a random subspace is introduced to
handle the multi-model and high dimension problem.
The appearance difference can be also computed in
any feature space such as Gabor feature [5]. Instead of
using a naive Bayesian classifier, a SVM is trained in
[6] to classify the the difference face which is projected
and whitened in an intra-person subspace.

One commonality of all of these Bayesian face meth-
ods is that discrimination is based solely on the differ-
ence between a pair of face images. As illustrated by
a 2D example in Figure 1, modeling the difference can
be viewed as first projecting all 2D points onto a 1D
line (X-Y) and then performing classification in 1D.
While such a projection may retain some important
discriminative information, it may nonetheless reduce
the separability of the classes. Therefore, the power of
Bayesian face framework may be limited by discard-
ing the discriminative information when we view two
classes jointly in the original feature space.

In this paper, we propose to directly model the full
joint distribution of {x1, x2} for the face verification
problem in a similar Bayesian framework. We begin
by introducing an appropriate parametric prior on
face representations in Section 2, where each face
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Fig. 1: The 2-D data is projected to 1-D by x− y. The two classes,
which are separable in the original joint representation, become
inseparable after the projection. In the context of face verification,
“Class1” and “Class2” would refer to the two hypotheses HI and
HE .

feature is expressed as the summation of two indepen-
dent Gaussian latent variables, one related to identity,
and another that captures intra-personal variations.
This prior allows us to obtain the joint distributions
of {x1, x2} under either HI or HE , leading to a closed-
form expression for a log-likelihood ratio classification
rule analogous to (1).

Model parameters are estimated using the EM al-
gorithm in Section 3, while low-rank and invariance
properties germane to efficient training and testing are
rigorously explored in Section 4. In Section 5, we next
scrutinize similarities and differences between the
proposed algorithm and probabilistic linear discrimi-
nant analysis (PLDA) [7], [8], a widely-used technique
for face verification that is based on a related proba-
bilistic factor analysis model. This is followed by fur-
ther analytical comparisons with metric learning [9],
[10], [11], [12] and reference-based methods [13], [14],
[15], [16] in Section 6. Finally, extensive empirical val-
idations are presented in Section 7, where we demon-
strate state-of-the-art face verification performance on
challenging datasets: WDRef [17], Labeled Face in
Wild (LFW) [18], Multi-PIE [19], and YouTube Faces
[20]. All proofs are deferred to Section 8. Overall our
primary high-level contributions are summarized as
follows:

• The derivation and theoretical analysis of a
robust, practical face verification system that
is well-suited for large-scale, real-time environ-
ments.

• The detailed situating of this algorithm in the
context of existing methods and theory, pinpoint-
ing important distinctions that lead to improve-
ments in both accuracy and efficiency. For ex-
ample, we rigorously investigate the connection
with PLDA, highlighting previously unexamined
distinctions in the corresponding update rules
that can impact performance. We envision that

this analysis may have wider consequences in
probabilistic models with related parameteriza-
tions.

• The empirical demonstration of face verification
accuracy exceeding state-of-the-art algorithms on
challenging benchmark data.

Note that portions of this work appeared in recent
conference proceedings [17] and to a lesser extent [21];
however, here we include full proofs and algorithm
derivations, expanded empirical results, and new the-
oretical analyses and comparisons.

2 OUR APPROACH: A JOINT FORMULATION

In this section, we first present a naive joint formula-
tion and then introduce our proposed alternative and
attendant model learning algorithm.

2.1 A naive formulation
A straightforward joint formulation is to directly
model the joint distribution of {x1, x2} as a Gaus-
sian. Thus, we have P (x1, x2|HI) = N(0,ΣI) and
P (x1, x2|HE) = N(0,ΣE), where covariance matrixes
ΣI and ΣE can be estimated from a large canon of
intra-personal pairs and extra-personal pairs respec-
tively. The mean of all faces is first subtracted as a
preprocessing step. At test time, the log-likelihood
ratio between P (x1, x2|HI) and P (x1, x2|HE) is used
as the similarity metric just as in (1). As will be
seen in later experiments, such a naive formulation
is moderately better than the original Bayesian face
algorithm.

Estimating the covariance matrices ΣI and ΣE di-
rectly from the data may be ineffective though be-
cause of two factors. First, if face images x1 and x2 are
represented by d-dimensional features, then the naive
formulation requires the estimation of joint covariance
matrices of size 2d×2d. This size could be prohibitive-
ly large for robust estimation with limited training
samples. Secondly, because training samples may not
be entirely independent, the estimated ΣE may not be
block diagonal, although ideally it should be if x1 and
x2 are truly statistically independent samples from
different subjects. To address these issues, we next
introduce a simple prior on the face representation
to form a more robust joint Bayesian formulation.

2.2 A joint formulation with face prior
As assumed by previous models [8], [22], [23], [24], the
appearance of a face can be well-approximated by two
additive factors: identity and intra-personal variation.
A face is represented by the sum of two independent
Gaussian variables

x = µ+ ε, (2)

where x is the observed face feature vector with
the mean of all faces subtracted, µ represents and
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identity component, and ε is remaining intra-personal
variations that reflect differences in lighting, pose,
and expression within a given identity. The latent
variables µ and ε are distributed independently as
N (0, Sµ) and N (0, Sε) respectively, where Sµ and Sε

are two unknown covariance matrixes. Together these
distributions constitute a prior distribution on faces.

Given this prior, the joint distribution of {x1, x2}
is Gaussian with zero mean under either HE or HI .
Based on the linear form of (2) and the independent
assumption between µ and ε, the covariance of two
faces is

cov(xi, xj) = cov(µi, µj) + cov(εi, εj),
i, j ∈ {1, 2}.

(3)

Under hypothesis HI , the identity µ1, µ2 of the pair
are the same and their intra-person variations ε1,
ε2 are independent. Consequently, P (x1, x2|HI) is a
zero-mean Gaussian with covariance

ΣI =

[
Sµ + Sε Sµ

Sµ Sµ + Sε

]
.

In contrast, assuming HE , both the identities and
intra-person variations are independent. Hence, the
covariance matrix of the distribution P (x1, x2|HE) is

ΣE =

[
Sµ + Sε 0

0 Sµ + Sε

]
.

Given these two conditional joint probabilities for
HI and HE , the log-likelihood ratio r(x1, x2) can be
obtained in closed-form after a series of linear algebra
manipulations resulting in

r(x1, x2) = log
P (x1, x2|HI)

P (x1, x2|HE)

= xT
1 Ax1 + xT

2 Ax2 − 2xT
1 Gx2,

(4)

where

A = (Sµ + Sε)
−1 − (F +G),

and F and G satisfy[
F +G G

G F +G

]
=

[
Sµ + Sε Sµ

Sµ Sµ + Sε

]−1

. (5)

Note that constant factors have been omitted from (4)
for simplicity.

From (4) we have a candidate test statistic for face
verification which only depends on estimating the
d × d covariance matrices Sµ and Sε, which are of
significantly lower dimension than the requirements
from the naive joint formulation. However, we still
require a careful learning procedure to ensure reli-
able estimates. In the forthcoming sections we will
derive an efficient algorithm along with complemen-
tary analyses and justifications. Highlights include the
following:

1) The matrices A and G in (4) produced by the
proposed training pipeline will ultimately be

negative semi-definite and low rank, enabling
a highly efficient testing implementation (see
Section 4.2).

2) Both the learning procedure for the matrices Sµ

and Sε, and the resulting log-likelihood ratio
metric r, are invariant to any invertible linear
transform of the face features, implying reduced
manual intervention (see Section 4.3).

3) While perhaps deceptively simple upon first
inspective, we carefully examine important char-
acteristics that differentiate the proposed Joint
Bayesian model from existing face verification
algorithms including PLDA, metric learning,
and reference-based methods (see Sections 5 and
6).

3 PARAMETERS ESTIMATION

As described in the previous section, the unknown
parameters that we need to learn are the covariance
matrices of identity and intra-person variation Θ =
{Sµ, Sε}. In this section, we develop an EM algorithm
to estimate the covariances by maximizing the log-
likelihood function.

3.1 The log-likelihood function

Due to the independence of each subject, the overall
log-likelihood function is the summation of the log-
likelihood function of each individual subject. There-
fore our goal will be to solve

min
Sµ,Sε

−
∑

i logP (xi|Sµ, Sε) (6)

s.t. Sµ ≽ 0, Sε ≽ 0

The likelihood term P (xi|Sµ, Sε) for subject i is de-
rived based on the following generative process. An
identity factor µi is first drawn from N(0, Sµ). Subse-
quently mi i.i.d. intra-person variations [εi1; ...; εimi

]
are drawn from N(0, Sε). The observed mi samples
are then given by the stacked vector xi = [µi +
εi1; ...;µi + εim]. In matrix notation we have

xi = Qihi, where Qi =


I I 0 · · · 0
I 0 I · · · 0
...

...
...

. . .
...

I 0 0 · · · I

 , (7)

where the identity and intra-person variations are
stacked into a column vector hi = [µi; εi1; · · · ; εimi ],
the distribution of which is a Gaussian with a block-
diagonal covariance matrix Σhi = diag(Sµ, Sε, ..., Sε).
From this generative process, it follows that the like-
lihood function of the ith subject is

P (xi|Sµ, Sε) = N(0,Σxi), where Σxi = QiΣhiQ
T
i , (8)

where the covariance matrix Σxi has been constructed
with the unknown parameters Θ = {Sµ, Sε}.
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Minimizing (6) with P (xi|Sµ, Sε) given by (8) is
challenging both because of the constraints needed to
enforce proper covariances and the underlying non-
convexity of the problem. Consequently, we develop
an EM algorithm for this purpose as described next.

3.2 EM algorithm
Instead of directly maximizing the log-likelihood us-
ing a brute force technique such as gradient descent,
the EM algorithm introduces additional hidden or la-
tent variables into the likelihood, the values of which,
if known, would greatly simplify the optimization
[25]. At each iteration, the expected log-likelihood
of both observed and hidden variables is computed
with respect to the conditional distribution of the
hidden variables (E-step), and then the parameters are
updated by maximizing the resulting functional (M-
step). We now unpack each step in detail.

E-step. For our purposes, we choose the identity
and intra-person variations hi = [µi; εi1; · · · ; εim] as
the hidden variables and consider the joint distribu-
tion P (xi,hi|Θ). As the observations xi are uniquely
determined by the hidden variables hi in (7), the joint
distribution can be simplified into P (hi|Θ). Therefore
the expected negative log-likelihood function over
hidden and observed variables reduces to

−
∑
i

EP (hi|xi,Θt) logP (hi|Θt+1), (9)

where the expectation is computed on the conditional
distribution of P (hi|xi,Θt) at iteration t. Note the pa-
rameters Θt in P (hi|xi,Θt) are known and used in the
E-step for calculating the expectation. This is unlike
the parameters Θt+1 in the distribution P (hi|Θt+1)
which are assumed to be unknown and updated in
the M-step below.

Given that the distribution of the hidden variables
is a Gaussian, we expand the expected log-likelihood
to produce the equivalent∑

i

log |Σhi |+ trace(Σ−1
hi

E[hih
T
i ]), (10)

where E[·] is an abbreviated form for representing the
expectation computed on the conditional distribution
P (hi|xi,Θt).

The expectation E[hih
T
i ] is the second-order mo-

ment of the conditional distribution P (hi|xi,Θt). As
shown in Section 8.1, the conditional distribution
P (hi|xi,Θt) is a Gaussian with first- and second-order
moments given by

E[hi] = ΣhiQ
T
i Σ

−1
xi

xi (11)

E[hih
T
i ] = Σh − ΣhQ

T
i Σ

−1
x QiΣh + E[hi]E[hi]

T .(12)

The second-order moments can be simplified further
using E[hih

T
i ] ≈ E[hi]E[hi]

T . While the full E-step
without this approximation can actually be calculated
using our model with limited additional computation,

in most practical situations we choose not to include
this extra term for several reasons. First, generalized
EM algorithms (of which this approximation is a
special case) enjoy similar convergence properties to
regular EM and are widely used in machine learn-
ing and signal processing [26]. Secondly, we have
observed empirically that the system performance is
essentially identical with or without this additional
covariance factor, largely because it tends to be negli-
gibly small (several orders of magnitude smaller than
E[hi]E[hi]

T , and in certain quantifiable conditions
provably equal to zero). And finally, removing this
covariance leads to much more transparent analysis
as discussed more in Section 4.2.

M-step. In the M-step, we solve for the unknown
parameters Θt+1 by optimizing the expected log-
likelihood in (10). As the covariance of the hidden
variables Σhi

is a block diagonal matrix, the unknown
Sµ and Sε are effectively decoupled, and (10) can be
further simplified to∑

i

log |Sµ|+ trace(S−1
µ E[µiµ

T
i ]) (13)

+
∑
i

∑
j

log |Sε|+ trace(S−1
ε E[εijε

T
ij ])

where E[µiµ
T
i ] and E[εijε

T
ij ] are the block matrices at

the diagonal of E[hih
T
i ] in (11). We can then derive

the optimal parameters in a closed form by taking
derivatives with respective to Sµ and Sε and equating
with zero, leading to

Sµ = 1/n
∑
i

E[µiµ
T
i ] (14)

Sε = 1/k
∑
i

∑
j

E[εijε
T
ij ], (15)

where n is the number of subjects, and k =
∑

i mi

is the total number of all images of all subjects.
The solution is therefore very intuitive: the optimal
covariance matrices are the sample covariances of
the corresponding expected second-order moments
of the hidden variables. Overall then, the proposed
EM algorithm handles the aforementioned difficulties
in optimizing the raw log-likelihood of the observed
data by decoupling the unknown parameters using
hidden data. This ultimately produces straightfor-
ward, closed-form updates for the M-step.

3.3 Initialization

The proposed likelihood optimization problem (6) is
non-convex, and hence it is difficult to guarantee a
priori that the global solution can be found except in
special situations. The limiting case of large, equally-
distributed samples is one such example.

Lemma 1: If the number of samples per subject mi =
m is the same across all subjects, and m → ∞, then
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the global minimum of (6) is obtained by

Sε =
1

mn

∑
i

∑
j

(xij − x̄i)(xij − x̄i)
T

Sµ =
1

n

∑
i

x̄ix̄
T
i ,

where x̄i = 1/m
∑

j xij .

The proof is deferred to Section 8.2. The asymptotic
closed-form solution is similar to the M-step of the
aforementioned EM algorithm. The sample mean and
sample residual can be viewed as the empirical ap-
proximation of the true expected hidden identity and
intra-person variation. In the extreme case described
by Lemma 1, the sample mean and residual gradually
approach the true identity and intra-person variation,
and the optimal estimation is the sample covariance.

However in practical scenarios it is intractable to
collect infinite samples for each subject. Moreover,
it is rare to have an equivalent number of samples
from each subject, and inefficient to throw away extra
samples to artificially create such a balanced set. Con-
sequently, the proposed EM algorithm, even though
non-convex, provides better estimates of the hidden
data as well as the unknown covariances compared
to raw empirical estimates. And we are always free to
initialize with the raw empirical estimates and then
press for improvements through the EM iterations.
Intuitively, the fewer samples per subject, and the more
heterogeneous the distribution of samples between sub-
jects, the larger the margin of improvement afforded
by the proposed EM algorithm.

Of course ultimately the EM algorithm, and the
quality of the solutions it produces, is still potentially
initialization dependent. However, we have carefully
tested the robustness of Joint Bayesian to a wide
variety of initialization schemes for both Sµ and Sε,
e.g., different combinations of sample between-class,
sample within-class, and randomized covariance ma-
trices). In all cases the algorithm converges to a so-
lution with the same face verification accuracy, and
therefore local minima do not appear to be a problem.

4 TRAINING AND TESTING CONSIDERA-
TIONS

In this section we detail several ways of improving
efficiency such that Joint Bayesian can be scaled to
large-scale, practical application domains. We also
discuss an invariance property which simplifies the
feature selection process.

4.1 Efficient Training
The main computational cost of the EM algorithm
is from computing (11) in the E-step, which requires
both the inverse of a large covariance Σxi as well as
expensive matrix multiplications. The complexity of

computing the inverse of Σxi is O(d3m3
i ), where d

is the dimension of feature and mi is the number of
samples of the ith subject. For example, if d = 2, 000
and mi = 40, the size of covariance matrix Σxi is
80,000. It takes 25GB memory to store such a large
matrix and 9 hours to compute its inverse.

Herein, we present an algorithm to reduce the
cost by taking the advantage of block-wise structure
embedded in Σxi . Given that

Σxi
=


Sµ + Sε Sµ · · · Sµ

Sµ Sµ + Sε · · · Sµ

...
...

. . .
...

Sµ Sµ · · · Sµ + Sε

 .

it follows that Σ−1
xi

has the same block-diagonal struc-
ture

Σ−1
xi

=


F +G G · · · G

G F +G · · · G
...

...
. . .

...
G G · · · F +G


for some F and G. By plugging the above matrices
into the equation ΣxiΣ

−1
xi

= I , we can solve for the
unknown matrices giving

F = S−1
ε

G = −(miSµ + Sε)
−1SµS

−1
ε .

During training, we only need to compute and store
F and G. Compared to directly evaluating Σ−1

xi
, the

computational complexity is reduced from O(d3m3
i )

to O
(
d3
)

and the storage complexity from O(d2m2
i ) to

O
(
d2
)
, where d is the feature dimension. This leads to

substantial reductions, for example, if d = 2, 000 and
mi = 40, the running time is reduced from 9 hours
to 0.5 seconds and the storage cost is reduced from
25GB to 16MB.

We can also accelerate the required matrix mul-
tiplication by taking the advantage of this block-
wise structure. The expected hidden variables can be
efficiently computed as

E[µi] = Sµ(F +miG)
∑
j

xij

E[εij ] = SεFxij + SεG
∑
j

xij .

Here the multiplication of large square matrices (of
size dmi) have been decomposed into the multipli-
cation of the small block matrices (of size d), again
leading to significant computational savings. With all
of these considerations in mind, the overall training
pipeline of Joint Bayesian is shown in Table. 1.

4.2 Efficient testing
As described in Section 2.2, the closed-form solution
of the log-likelihood ratio test statistic is,

r(x1, x2) = xT
1 Ax1 + xT

2 Ax2 − 2xT
1 Gx2. (16)
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Input

• The training samples {xij}; The number of subjects n; The
number of the samples of the ith subject mi; The total
number of the samples of all subjects k.

Output

• Joint Bayesian model parameters Θ = {Sµ, Sε}.

Joint Bayesian Learning

1) Initialize Sµ and Sε with the sample covariances.
2) Calculate the expectation of the hidden variables of each

subject (E step):

F = S−1
ε

G = −(miSµ + Sε)
−1SµS

−1
ε

E[µi] = Sµ(F +miG)
∑
j

xij

E[εij ] = SεFxij + SεG
∑
j

xij

E[µiµ
T
i ] = E[µi]E[µi]

T

E[εijε
T
ij ] = E[εij ]E[εij ]

T

3) Update the model parameter (M step):

Sµ =
1

n

∑
i

E[µiµ
T
i ]

Sε =
1

k

∑
i,j

E[εijε
T
ij ]

4) Repeat step 2) and step 3) until convergence (5 iterations
is usually sufficient).

TABLE 1: Efficient training pipeline of Joint Bayesian algorithm.
Note the matrix F and G can be pre-computed to speed up the
training. These matrices only depend on the number of samples
of a given subject, and we can pre-compute all possible F and G
(for all unique values of mi) at the beginning of each iteration, and
retrieve the right one to use according to the number of samples of
each subject. This saves considerable computation whenever many
of the subjects share the same number of training instances.

Direct calculation requires computations of order
O(d2), where d is the feature dimension. This can
be prohibitively high in many practical scenarios that
require comparing a query image with all of the refer-
ence images in a large database. Fortunately, the Joint
Bayesian framework provides a natural mechanism
for accelerating testing calculations considerably. This
is ultimately possible because estimates of Sµ tend to
be low rank, which then leads to low rank values for A
and G, culminating in potentially orders of magnitude
reductions in computational complexity.

We will now justify these claims in detail. To begin
we have the following:

Lemma 2: The matrices A and G satisfy

A = −PAP
T
A , with rank[PA] ≤ rank[Sµ]

G = −PGP
T
G , with rank[PG] ≤ rank[Sµ]

for some matrices PA and PG respectively.

The proof of this lemma is included in Section 8.3.
Consequently, if Sµ happens to be low rank, then

Input

• Joint Bayesian model parameters Θ = {Sµ, Sε}, and two
testing samples x1 and x2.

Output

• The similarity of two testing samples r(x1, x2).

Pre-computation

1) Calculate the matrices A and G used in the log-likelihood
ratio function:

A = (Sµ + Sε)
−1 −

[
(Sµ + Sε)− Sµ(Sµ + Sε)

−1Sµ
]−1

G = −(2Sµ + Sε)
−1SµS

−1
ε

2) Decompose −A and −G into two low rank matrices PA

and PG ({PA, PG} ∈ Rd×s and s < d) using SVD to
produce:

PAPT
A ≈ −A

PGPT
G ≈ −G

Computing Log-Likelihood Ratio

1) Project testing samples with PA and PG:

ai = PT
A xi

gi = PT
Gxi

2) Calculate the log-likelihood ratio of two samples to mea-
sure similarity:

r(x1, x2) = 2gT1 g2 − aT1 a1 − aT2 a2

TABLE 2: Efficient testing pipeline of Joint Bayesian algorithm.

both A and G can be expressed using convenient low-
rank factorizations to reduce the complexity of testing.
Specifically, we plug the low-rank factorization into
the log-likelihood ratio statistic (16) and end up with
the modified decision function

r(x1, x2) = 2gT1 g2 − aT1 a1 − aT2 a2, (17)

where ai = PT
Axi, and gi = PT

Gxi (for i = 1, 2) are low-
dimensional features obtained by linear projection.
Define s = rank[Sµ]. Then the complexity of this
linear projection is no more than O(ds), and the
complexity of the new decision function is at most
O(s). Therefore the overall complexity is O(ds), which
can be considerably smaller with respect to O(d2).

Importantly, the speedup will be even more signif-
icant in the task of face identification and face search,
where we need to compute the log-likelihood ratio as
a measurement of similarity between an input query
sample and all reference samples in the database. In
this situation, we can off-line pre-compute the low-
dimension features for all samples in the reference
database. Given a query sample, we only need to on-
line compute its low-dimension feature once and then
the new low-cost decision function (similarity metric)
from (17) across the entire reference database. This
can lead to multiple orders of magnitude speedup if
there are many samples in the reference dataset. For
example, if d = 2000, s = 200, and N = 1, 000, 000,
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its takes 2 hours for the direct implementation to
go through the entire database, but it only takes 7
seconds for the efficient testing, over one thousand
times speedup. A single end-to-end verification test
on a pair of images can be done in milliseconds using
standard hardware. The efficient testing pipeline of
the Joint Bayesian is shown in Table 2.

But of course these efficiencies hinge on Sµ actually
being low rank. Consequently, for this overall line
of reasoning to have merit it is essential that we
quantify why this property is likely to hold. For this
purpose we introduce some additional notation. Let
X denote the d × k matrix of all image features from
all subjects, with the j-th column xj representing the
feature vector of image j. Also, define Φ to be the n×k
matrix with i-th row given by all zeros except a vector
of mi ones starting at element index ei =

∑i−1
r=1 mr+1.

We may then express the relationship between all
latent and observed variables using X = E+MΦ. We
now have the following:

Lemma 3: With E[hih
T
i ] = E[hi]E[hi]

T , the iter-
ations from Table 1 are guaranteed to reduce (or
leave unchanged once a fixed point is reached) the
minimization problem

min
E,M

n log |Sµ|+ k log |Sε| (18)

s.t. X = E+MΦ,

Sµ = 1
nMMT , Sε =

1
kEE

T .

The proof can be found in the supplementary mate-
rial from [21]. As discussed previously (and supported
by a vast battery of empirical tests), the approximation
E[hih

T
i ] ≈ E[hi]E[hi]

T does not significantly affect
estimation results. Hence the Joint Bayesian estimator
can be well-characterized by a linearly constrained
optimization problem, with log-det penalties on the
respective covariances Sµ and Sε. Such a penalty
function favors low-rank solutions given that it is
a concave, nondecreasing function of the embedded
singular values [21]. However, even with the exact
computation for E[hih

T
i ], it can be shown that Join-

t Bayesian still includes a concave, nondecreasing
penalty function on the singular values of Sµ (albeit
the constraint surface is no longer linear), so regard-
less of any approximation singular values of Sµ are
favored to be shrunk to zero where possible.

To summarize then, the EM algorithm adopted by
Joint Bayesian is likely to produce low-rank estimates
for Sµ, which subsequently leads to low-rank esti-
mates for A and G, which then ultimately facilitates
extremely efficient testing via simple low-dimensional
projections.

4.3 Invariance to Invertible Linear Transforms

We conclude this section by formalizing how the pro-
posed Joint Bayesian training and testing pipelines,

as implemented via Table 2 and Table 1 respectively,
display a desirable form of feature invariance.

Lemma 4: Let W denote an arbitrary invertible lin-
ear transform of the d-dimensional face features, and
let Wi = diag(W, . . . ,W ) denote a block diagonal
matrix with mi+1 blocks. Then we have the following:

1) Training invariance: If Sµ and Sε represent a glob-
al minimum of (6), then WSµW

T and WSεW
T

are an optimal solution to

min
Sµ,Sε

−
∑

i logP (Wixi|Sµ, Sε) (19)

s.t. Sµ ∈ H+, Sε ∈ H+.

2) Testing invariance: The likelihood ratio statistic
from (4) satisfies r(x1, x2) = r(Wx1,Wx2).

The proof of this lemma is included in Section 8.4.
This result, which is equally valid with or without the
approximation E[hih

T
i ] = E[hi]E[hi]

T , then implies
that we need not be concerned about linear transfor-
mations of the features, nor with motivating what the
optimal feature representation actually is. It is worth
noting that these desirable invariance properties are
quite unlike other sparse or low-rank models that
incorporate, for example, convex penalties such as the
ℓ1 norm or the nuclear norm. With these penalties an
invertible linear transform would lead to an entirely
different decision rule and therefore different classifi-
cation results. Hence significant manual involvement
may be required to determine the optimal W .

5 CONNECTIONS WITH PLDA
Probabilistic linear discriminant analysis (PLDA) [8] is
a widely used technique for face verification and other
computer vision tasks. Although derived from the
perspective of factor analysis models, it shares many
commonalities with the Joint Bayesian framework
described herein. Consequently, this section outlines
similarities and differences that practically affect be-
havior both in the context of face verification and
beyond.

5.1 Cost Function Comparisons
Joint Bayesian and PLDA training both involve min-
imizing the negative log-likelihood of the training
samples under Gaussian distributional assumptions
and with independence across subjects. Specifically,
we must solve

min
Θ∈C

−
∑
i

logP (xi|Θ), (20)

where as before, xi denotes the stacked vector of all
training exemplars from subject i, and Θ agglomerates
all model parameters, and C is a potential constraint
set. For the Joint Bayesian model, Θ = {Sε, Sµ}, and
P (xi|Θ) is given by (8).
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In contrast, the PLDA model is parameterized as
follows. The j-th sample from subject i is expressed
as

xij = Bzi +Rwij + νij , (21)

where

P (zi) = N(0, I), P (wij) = N(0, I), P (νij) = N(0, Sν).

Here B and R are low-rank matrices while Sν is
a diagonal covariance. Per these specifications, the
input signal xij is considered to consist of two parts:
an identity component Bzi, and intra-personal varia-
tions Rwij + νij . Given the above, xij and xi are also
Gaussians given by

P (xij |B,R, Sν) = N(0, BBT +RRT + Sν) (22)

and

P (xi|B,R, Sν) = N(0, QΨΨTQT +Σν). (23)

respectively, where Σν = diag(Sν , . . . , Sν) and Ψ =
diag(B,R, . . . , R). While technically Q, Ψ, and Σν

all depend on i, we omit this subscript to simplify
notation.

The likelihood function (23) is closely connected
with the Joint Bayesian counterpart from (8). In par-
ticular, after a few linear algebra manipulations, it
is easily shown that when Sµ = BBT and Sε =
RRT +Sν , then QΨΨTQT +Σν = QΣhQ

T , and hence
the overall likelihoods and underlying cost functions
become exactly equivalent. Consequently, in this re-
spect PLDA can be formally viewed as applying a
more constrained parameterization to the same Joint
Bayesian cost function,1 and for training purposes
both rely on the EM algorithm. At the testing phase
this relationship is also equivalently maintained. We
will now examine previously unexplored reasons for
why the looser parameterization and associated EM
algorithm adopted by Joint Bayesian may be prefer-
able for many applications such as face verification.
Later in Section 7 we will present complementary
empirical evidence for these claims.

5.2 The Effects of Different Parameterizations
The PLDA model requires that we choose the dimen-
sionality, or number of columns, in B and R. Conse-
quently, additional user involvement may be required
for optimizing these factors. In contrast, the Joint
Bayesian model implicitly assumes that Sµ and Sε,
and therefore equivalently B and R, are of unrestrict-
ed and unknown rank. The natural mechanism for fa-
voring lower rank estimates, to the extent allowed by
the data as discussed in Section 4.2, then effectively al-
lows the Joint Bayesian model to learn the appropriate
dimensionality without user tuning. Therefore, unless

1. Note that we are assuming the data have zero-mean after a
standard centering operation, so the extra mean factor from [8] can
be omitted here.

we somehow know the true intrinsic dimensionality a
priori, the less-constrained parameterization used by
Joint Bayesian may be advantageous.

Of course we could always consider running the
PLDA algorithm and its associated EM algorithm with
B and R initialized to be full rank. In this context,
we might expect PLDA and its now equivalent log-
likelihood function to inherit the same rank minimiza-
tion properties from Section 4.2 as Joint Bayesian lead-
ing to similar performance and efficiencies. However,
even when B and R are full rank, there remain im-
portant differences in the underlying EM algorithms
that minimize the Joint Bayesian and PLDA objectives
as we will now describe.

First, we note that if R is full rank in the PLDA
model, it follows that Sν is then formally uniden-
tifiable in the strict statistical sense, meaning that
multiple parameterizations lead to an equivalent like-
lihood model and associated intra-personal variation
component. Hence we will consider the behavior of
PLDA in the limit as Sν → 0, equivalent to the as-
sumption employed by Joint Bayesian. In this regime,
Joint Bayesian and PLDA cost functions are essentially
identical, with Sµ = BBT and Sε = RRT both
full rank by assumption at initialization. However,
while the cost functions are the same, the partitioning
into hidden data, as required by the associated EM
algorithms, are not. In particular, the hidden data
of PLDA, denoted as yi = [zi;wi1; · · · ;wiJ ] for the
i-th subject, is related to that of Joint Bayesian via
hi = Ψyi, ∀i. This leads to different upper bounds
for minimizing the negative log-likelihood functions
at each iteration of PLDA.

To see this, we carefully revisit the E and M steps
as derived in [8] for PLDA in the limit as Sν → 0. The
relationship between the latent variables yi and the
observations xi for the i-th subject is defined by

xi = Ayi

A =


B R 0 · · · 0
B 0 R · · · 0
...

...
...

. . .
...

B 0 0 · · · R

 ,

and we again omit a subscript i on A here for sim-
plicity. For the E-step, the required moments are

E[yi] = AT (AAT )−1xi (24)

E[yiy
T
i ] = I −AT (AAT )−1A+ E[yi]E[yi]

T , (25)

where the expectation is with respect to P (yi|xi,Θ).
These are related to those of Joint Bayesian via

E[hi] = ΨE[yi] and E[yiy
T
i ] = ΨE[hih

T
i ]Ψ

T , (26)

and equivalent to those in [8] after application of the
matrix inversion lemma. For the M-step, PLDA must
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update the model parameters to find some new B̃ and
R̃ that maximize

E

[∑
i

logP (yi, xi|B̃, R̃)

]
≡
∑
i

E
[
logP (xi|yi, B̃, R̃)

]
.

(27)
This is then equivalent to minimizing∑

i

E
[
∥xi − Ãyi∥

2
2

]
=
∑
i

trace(xixTi − 2xiE[yi]
T ÃT + ÃE[yiy

T
i ]Ã

T )

=
∑
i

trace(xi − ÃE[yi])(xi − ÃE[yi])
T )

+ ntrace(Ã(I −AT (AAT )−1A)ÃT )

(28)

over Ã defined analogously to A but using B̃ and R̃.
It is easily shown that both (xi−ÃE[yi])(xi−ÃE[yi])

T

and Ã(I−AT (AAT )−1A)ÃT are positive semi-definite
matrices. Therefore, the value of (28) is greater than
or equal to zero for any Ã. However, when Ã = A,

xi −AE[yi] = xi −AAT (AAT )−1xi = 0

and
A(I −AT (AAT )−1A)AT = 0,

where the second equality follows from the fact that
I−AT (AAT )−1A is a projection operator to the orthog-
onal complement of range[AT ]. Therefore, both the
first and second term in (28) are minimized by Ã = A.
Moreover, it can be shown that this minimizer is
unique when there are a sufficient number of training
examples in general position. Hence {B̃ = B, R̃ = R}
uniquely optimizes the M-step for all B and R, and
the EM-algorithm stalls upon a single iteration.

Note that there exists a pervasive perception that
the EM algorithm is guaranteed to converge to a local
optimum of the log-likelihood function, which seems
to contradict the claim here of zero convergence away
from any starting point. However, the paradox is
resolved once we understand that EM is only actually
guaranteed to produce a series of iterates satisfying

log p(x|θt) ≤ log p(x|θt+1) (29)

for any general likelihood function p(x|θ). Strict con-
vergence to local minima (or stationary points) re-
quires further assumptions [27]. In particular, the
conditions for Zangwill’s Global Convergence Theo-
rem must be satisfied [28]. These conditions require,
among other things, that

log p(x|θt) < log p(x|θt+1) (30)

for all θt which are not local minima. This then explains
why, with Sν → 0, the PLDA algorithm becomes
immediately stuck after a single iteration even though
the gradient of the log-likelihood is far from zero.
Additionally, even with Sν > 0, if Sν is small the
convergence rate becomes prohibitively slow.

To summarize then, for face verification (as well as
many other applications) it may be valuable to allow
the data to determine the appropriate dimensional-
ity of the approximate low-dimensional subspaces
relevant for maximal discrimination, as opposed to
requiring heuristic manual selections. This then favors
the looser parameterization of Joint Bayesian, which
subsequently requires the Joint Bayesian variant of
EM to better ensure convergence to meaningful so-
lutions. Note that this previously unexamined dis-
tinction between parameterizations and attendant EM
algorithms, and the convergence issues that result,
likely has wide-ranging implications in numerous
other applications of Bayesian-inspired factor analysis
models.

6 RELATIONSHIPS WITH OTHER WORKS

In this section, we discuss the connections between
our joint Bayesian formulation and two other types of
leading supervised methods which are widely used in
face recognition.

6.1 Connection with metric learning
Metric learning [9], [10], [11], [12], [29] applied to face
recognition has recently attracted significant attention.
The goal of metric learning is to find a new metric
under which two classes are more separable. One
important example involves learning a Mahalanobis
distance

(x1 − x2)
T
M (x1 − x2) , (31)

where M is a positive definite matrix. However, this s-
trategy shares the same drawback of the conventional
Bayesian faces. Both first project the joint representa-
tion to a lower dimension using the transform [I,−I].
As already discussed, this transformation may reduce
the separability and degrade the accuracy.

In contrast, the proposed joint formulation metric
from (4) faces no analogous restriction. To clarify this
picture, we reformulate (4) as

(x1 − x2)
TA (x1 − x2) + 2x1

T (A−G)x2. (32)

Comparing (31) and (32), we observe that the joint for-
mulation provides additional freedom for construct-
ing the discriminant surface. Consequently, the new
metric could be viewed as a more general distance
which better preserves the separability.

Ultimately, there are two components in the pro-
posed metric from (4): the cross inner term xT

1 Gx2

and two norm terms x1
TAx1 and x2

TAx2. To in-
vestigate the differing roles these terms may occupy,
we performed a preliminary experiment under five
conditions with changing conditions for A and G:
a) use the original A and G as estimated by Joint
Bayesian; b) set A → 0; c) set G → 0 ; d) set
A → G; e) set G → A. The experimental design and
resulting classification percentages are shown in Table
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Experiments Accuracy
A and G 87.5%
A → 0 84.93%
G → 0 55.63%
A → G 83.73%
G → A 84.85%

TABLE 3: Roles of A and G in the log-likelihood ratio metric. Both
training and testing are conducted on LFW data following the unre-
stricted protocol. SIFT features are used followed by dimensionality
reduction to d = 200 via PCA. Readers can refer to Section 7 for
more detailed information and testing of Joint Bayesian.

3. Rigorous empirical validation of Joint Bayesian is
deferred to Section 7.

Not surprisingly, most of discriminative informa-
tion lies with the inner product term x1

TGx2; howev-
er, the norms x1

TAx1 and x2
TAx2 also play significant

roles. They serve as image-specific adjustments to the
decision boundary.

In summary, a variety of different algorithms
have been designed for learning discriminative Ma-
halanobis distances, but relatively few investigate
more general forms such as that produced by Join-
t Bayesian. Other recent research explores a useful
metric based on cosine similarity by discriminative
learning [30]. As future work we plan to consider
learning a log-likelihood ratio metric in a similar
discriminative fashion.

6.2 Connection with Reference Based Methods

Reference-based methods [13], [14], [15], [16] gauge a
face by its similarities to a set of reference faces. For
example, in [13], each reference is represented by a
SVM classifier which is trained from multiple images
of the same person, and the SVM score is used as the
similarity.

From a Bayesian viewpoint, if we model each
reference as a Gaussian with mean µi and a com-
mon covariance, then the similarity from a face
x to each reference is the conditional likelihood
P (x |µi ). Given n references, x can be represented
as [P (x |µ1 ) , ..., P (x |µn )]. With this reference-based
representation, we can define the similarity between
two faces {x1, x2} as the log-likelihood ratio

log

(
1
n

∑n
i=1 P (x1|µi)P (x2|µi)(

1
n

∑n
i=1 P (x1|µi)

) (
1
n

∑n
i=1 P (x2|µi)

)) . (33)

If we consider that the references are infinite and
independently sampled from a distribution P (µ), the
above equation can be rewritten as

log

( ∫
P (x1|µ)P (x2|µ)P (µ)dµ∫

P (x1|µ)P (µ)dµ
∫
P (x2|µ)P (µ)dµ

)
. (34)

Now furthermore assume that

P (µ) = N (0, Sµ) (35)
P (x|µ) = N (µ, Sε)

Then we have∫
P (x|µ)P (µ)dµ = P (x) = N (0, Sµ + Sε)∫

P (x1|µ)P (x2|µ)P (µ)dµ = P (x1, x2) = N(0,Σ)

Σ =

(
Sµ + Sε Sµ

Sµ Sµ + Sε

)
. (36)

It is now obvious from (36) that the numerator of (34)
is equal to logP (x1, x2|HI) and the denominator of
(34) is equal to logP (x1, x2|HE). Therefore the two
metrics are equivalent, and Joint Bayesian can be
considered as a kind of probabilistic reference-based
method, with infinite Gaussian references.

7 EXPERIMENTS

In this section, we compare our Joint Bayesian ap-
proach with conventional Bayesian faces and other
competitive supervised methods on the four bench-
marks LFW [18], WDRef [17], Multi-PIE [19], and
YouTube Faces [20] datasets. We use LBP features [31]
and high-dimensional LBP features [32] in all experi-
ments.
LBP feature. We first normalize the image to 100×100
pixels using an affine transformation calculated based
on 5 landmarks (two eyes, noise and two mouth tips).
Then the image is divided into 10×10 non-overlapped
cells, and each cell within the image is mapped to
a vector using LBP descriptors. All descriptors are
concatenated to form the final feature.
High-dimensional LBP feature. We first rectify im-
ages using a similarity transformation based on five
landmarks (two eyes, nose, and mouth corners). Then
we extract patches centered around 27 landmarks in
5 scales. The side lengths of the image in each scale
are 300, 212, 150, 106, and 75. The patch size is fixed
to 40×40 in all scales. We divide each patch into 4×4
non-overlapped cells. Each cell is then mapped to a
vector using an LBP descriptor. Next all descriptors
are concatenated to form the final feature.

The feature dimensions of LBP and high-
dimensional LBP are 5,900 and 127,440 respectively.
We apply PCA to reduce the dimensionality of
the raw feature to a feasible range for subsequent
supervised learning.

7.1 Comparison with other Bayesian face meth-
ods
In the first experiment, we compare conventional
Bayesian face recognition [1], Wang and Tang’s u-
nified subspace work [3], the naive formulation dis-
cussed in Section 2.1, and our Joint Bayesian algorith-
m. The first two methods are based on the difference
between a given face pair while the last two model the
full joint distribution. All algorithms are tested on two
datasets: LFW and WDRef. When testing with LFW,
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Fig. 2: Comparison with other Bayesian face related works. The joint Bayesian method is consistently better other a wide range of different
training data sizes and on two databases: LFW(left) and WDRef(right).

all identities in WDRef are used for the training. We
vary the number of identities n in the training data
from 600 to 3000 to examine performance with respect
to training data size. When testing with WDRef, we
split the data into two mutually exclusive parts: 300
different subjects are used for testing, the others are
for training. Similar to the standard LFW protocol,
the test images are divided into 10 cross-validation
sets and each set contains 300 intra-personal and
extra-personal pairs. We use LBP features and re-
duce the feature dimension by PCA to the algorithm-
dependent dimension that performed best (d = 2000
for joint Bayesian and unified subspace, d = 400 for
Bayesian faces and naive formulation methods).

As shown in Fig. 2, by enforcing an appropri-
ate prior on the face representation, our proposed
joint Bayesian method performs substantially better
on various training data sizes. The unified subspace
algorithm is the next best by taking advantage of
subspace selection over face differences, i.e. retain-
ing the identity component and excluding the intra-
person variation component and noise. We also note
that when the training data size is small, the naive for-
mulation displays the worst performance, the reason
being that it must estimate more parameters in higher
dimension using only sample averages. However, as
training data increases, the performance of conven-
tional Bayesian and unified subspace method (which
both rely only on the difference of face pair) gradually
begin to saturate. In contrast, the performance of the
naive joint formulation keeps increasing as the train-
ing data increases. Its performance surpasses that of
the conventional Bayesian method and is approaching
that of the unified subspace method. The trend of the
joint Bayesian method shares the same pattern as the
naive joint formulation but at a higher discrimination
level demonstrating its overall efficacy.

7.2 Comparison with LDA and PLDA
In this experiment, we compare Joint Bayesian with
two subspace learning methods, LDA [22] and PL-

DA [8]. We use the same experimental setting as
described in section 7.1. LDA is based on our own
implementation and PLDA is from the authors’ im-
plementation [8]. In the experiments, the original LBP
features are reduced to the best dimension by PCA for
each method (2000 for all methods).

We also study the verification accuracy while vary-
ing the sub-space dimensions. For PLDA, the sub-
space dimensions are determined by the user-defined
column number of the matrices F and G in (21).
For Joint Bayesian, the sub-space dimension is de-
termined automatically by initializing the algorithm
with full-rank covariance matrices. However, we can
artificially truncate the singular values of PA and PG

in (17) for the purpose of comparing with PLDA and
LDA. Of course such truncation has no effect once
we reach the range of zero-valued singular values
learned by the Joint Bayesian with its preference for
low-rank representations. However, it is important
to emphasize that PLDA and LDA have a distinct
advantage by explicitly learning a new subspace for
each dimension. In contrast, for Joint Bayesian we
have learned only a single model with mostly zero
valued (or nearly so) singular values in the learned
PA and PG, which then automatically determines the
intrinsic dimensionality.

As shown in Fig. 3, if the sub-space dimensionality
is too high or too low, the results of both LDA
and PLDA will degrade. In the case of PLDA, this
demonstrates that when the subspace dimensionality
is too low, the model is underfitting, and when it
is too high, the EM algorithm is no longer well-
posed for reasons described in Section 5. LDA also
displays a similar sensitivity and fails to fully exploit
higher dimensional features. On the other hand, with
Joint Bayesian once the dimensionality is sufficiently
high such that we are no longer artificially truncating
significant singular values, the performance remains
constant. Overall, Joint Bayesian is independent of
any such manual tuning in a pracitcal setting and
operates naturally to learn appropriate discriminative
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Fig. 3: Comparison with LDA and PLDA on LFW(left) and WDRef(right).

Algorithms LBP High-dim LBP
Bayesian Face [1] 82.65% 89.97%

LDA [22] 84.20% 91.37%
PLDA [8] 84.67% 92.38%

Joint Bayesian 86.47% 92.95%

TABLE 4: Comparison over Multi-PIE dataset. Proposed method
achieves the best result with both LBP and High-dim LBP features.

subspaces. This property makes it very convenient for
deployment.

7.3 Comparison on Multi-PIE dataset
We now further evaluate the generalization ability
of our method. All algorithms are evaluated on the
Multi-PIE dataset and trained on WDRef. Unlike the
previous LFW and WDRef datasets, Multi-PIE data
is collected in a controlled laboratory environment
and displays considerable differences from image data
collected from the Internet such as LFW and WDRef.

We follow the settings in [32] and [33] which are
similar to the LFW protocol. We randomly select 49
test identities. Each identity contains 7 different pose
categories and 4 illumination conditions. The pose
categories range from -60% to +60% and the four illu-
mination conditions are no-flash, left-flash, right-flash
and left-right-flash. Then we randomly select 3000
intra-personal and 3000 extra-personal pairs that are
placed in 10 folders for cross-validation evaluation. As
shown in Table 4, we achieve 92.95% which is above
the other supervised learning methods.

7.4 Comparison on YouTube Faces dataset
In this section, we validate the proposed Joint
Bayesian method on the task of video-level verifica-
tion. Joint Bayesian measures the similarity of two
images. To extend Joint Bayesian to measuring the
similarity of two videos, we use the maximum sim-
ilarity of all image pairs between the two videos as
the video-level similarity.

The YouTube Faces dataset [20] is a common bench-
mark for evaluating video-level face verification. It

contains 3,425 videos of 1,595 different people. On
average, a face track from a video clip consists of
181.3 frames of faces. We report comparative results
under two settings: a) the Youtube dataset is split for
training and testing consistent with previous works
[20][34][35]; b) the WDRef dataset is used for training
while the Youtube dataset is reserved for testing.

When training on the YouTube dataset, we follow
the unrestricted protocol in [20]. We divide 5000 video
pairs into 10 splits, with each split containing 250
intra-personal pairs and 250 inter-personal pairs. The
subject identity labels are accessible during training.
We randomly selected 10 frames from each training
video to construct the training set. On average there
are around 30k frames of 1,400 persons for training in
each round. When training on the WDRef dataset, we
follow the same setting as described in section 7.1.

During testing, given a pair of videos, we extract
high-dimensional LBP features for all frames of the
two videos and compute the pairwise similarities
between the frames of the two videos. Finally, we
keep the maximum similarity. It is worth mention-
ing that by applying the efficient testing methods in
Section 4.2, all image-level similarities can be com-
puted in around one millisecond, indicating that our
method is applicable to real-time video-level verifica-
tion on both PC and mobile devices.

Table 5 shows the results of our method along
with LDA and PLDA under the aforementioned two
settings using our high-dimensional LBP features for
consistency, as well as the results of recent state-
of-the-art algorithms. Joint Bayesian achieves 84.40%
when training on Youtube, and 87.12% when training
on WDref, surpassing all other methods. Moreover,
we emphasize that although PLDA performs second
best, this requires both tuning of the subspace di-
mension via cross-validation and an extremely large
training cost for each trial dimension without the
tailored analytical simplifications described in Sec-
tion 4. Considering the simplicity of the extension
from image-level similarity to video-level similarity,
these results provide additional compelling evidence
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Fig. 4: Comparison with state-of-the-art methods on LFW. Without outside training data(left) and with outside training data(right).
Note that Joint Bayesian automatically determines the subspace dimension and here we artificially truncate singular values to produce
lower-dimensional models merely for purposes of comparison.

Algorithms Accuracy
MBGS+LBP [20] 76.40%

STFRD+PMML [34] 79.48%
APEM (fusion) [35] 79.06%

LDA (Train on Youtube) [22] 82.20%
PLDA (Train on Youtube) [8] 83.60%

Joint Bayesian (Train on Youtube) 84.40%
LDA (Train on WDRef) [22] 85.06%
PLDA (Train on WDRef) [8] 86.54%

Joint Bayesian (Train on WDRef) 87.12%

TABLE 5: Performance comparison on YouTube Faces Dataset.
Joint Bayesian significantly outperforms existing state-of-the-art
algorithms, as well as LDA and PLDA carefully tuned with high-
dimensional LBP features.

for the efficacy of the proposed Joint Bayesian method.

7.5 Comparison with LFW state-of-the-art

This section presents the best performance of Joint
Bayesian on the LFW dataset, along with existing
state-of-the-art methods for comparison, under two
settings: supervised learning without and with out-
side training data.
Without outside training data. In order to fairly
compare with other approaches published on the LFW
website [8], [11], [14], [36], [37], we follow the LFW
unrestricted protocol, using only LFW for training.
With outside training data. Our purposes here are
twofold: 1) verify the generalization ability from one
dataset to another dataset; 2) see what improvement
is possible using limited outside training data. We
follow the standard restricted protocol in LFW us-
ing the high-dimensional LBP features and compare
with other top-performing algorithms that use outside
training data [13], [15], [38], [39], [40].

We achieve 93.18% under the LFW unrestricted
protocol (known identity information) without out-
side training data. At the time of submission, this
represented the top performing algorithm; however,
very recently two new hand-crafted features lead

to a bit higher performance(see for example [42]).
Although feature development is not our focus here,
it is of course likely that our Joint Bayesian pipeline
could equally benefit from such features as well. Note
that without labeled outside training data, DNN-
based features are not competitive under this protocol.
Using WDRef as outside training data, we achieve
95.17%. As shown in Fig. 4, Joint Bayesian achieves
state-of-the-art performance under both settings. Ad-
ditionally, we are able to push the accuracy even
further to 96.33% (approaching human performance)
if transfer learning [21] is applied to alleviate the
distributional differences between the outside training
data (WDRef) and the testing data (LFW). At the time
of original submission, this represented the highest
published result on the challenging LFW data satisfy-
ing all the requirements for the unrestricted protocol,
and yet this accuracy is nonetheless still achievable
with an extremely fast and scalable algorithm.

Since the time of our original submission, a far
more complex set of face verification features have
been derived using a deep learning architecture [41].
When these features are then substituted into our
Joint Bayesian framework, performance can be fur-
ther improved to 99.15%, which to our knowledge
represents the first method to break the 99% barrier
and essentially saturate the LFW benchmark under
the unrestricted protocol. This is further compelling
evidence that Joint Bayesian represents a useful gener-
ic tool for incorporation in face verification pipelines
irrespective of the specific features that are used.
Moreover, it especially speaks to the continued rel-
evance of this methodology even in the emerging era
of deep learning.

8 PROOFS AND DERIVATIONS

8.1 Conditional distribution P (h|x,Θ)

We omit the subject-indicator subscript i here for
convenience, and then introduce an auxiliary variable
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z defined as

z =

[
h
x

]
=

[
I
Q

]
h.

The distribution of h is N(0,Σh), hence any linear
transformation such as z is also Gaussian, in this case
given by

P (z|Θ) = N(0,Σz)

Σz =

[
Σh ΣhQ

T

QΣh QΣhQ
T

]
.

Given the joint Gaussian distribution, any conditional
distribution is likewise a Gaussian and can be easily
derived using standard identites producing

P (h|x,Θt) = N(µ,Σ)

where

µ = ΣhQ
T (QΣhQ

T )−1x

Σ = Σh − ΣhQ
TQΣhQ

TQΣh.

From the mean and covariance, we can easily derive
the first- and second- order moments of the condition-
al distribution in Equation (11).

8.2 Proof of Lemma 1

If each subject has the same number of samples, then
the log-likelihood function

−
∑
i

logP (xi|Sµ, Sε)

can be simplified to

n(m− 1) log |Sε|+ n log |mSµ + Sε|

+
∑
i

∑
j

trace(Sε(xij − x̄i)(xij − x̄i)
T )

+
∑
i

trace(m(mSµ + Sε)x̄ix̄
T
i ),

(37)

where n is the number of subjects and m is the
number of samples per subject, and x̄i is the sample
mean of the ith subject. This result follows using the
identity |Σx| = |mSµ + Sε||Sε|m−1. We can then ob-
tain an unconstrained closed-form solution by taking
derivatives of (37) with respect to Sµ and Sε and
equating to zero which gives

Sε =
1

n

1

m− 1

∑
i

∑
j

(xij − x̄i)(xij − x̄i)
T

Sµ =
1

n

∑
i

x̄ix̄
T
i − 1

m
Sε.

As an unconstrained optimal solution, it is clear
that Sµ will not necessarily satisfy the positive semi-
definite requirement of a covariance matrix. However,

in the limit as m → ∞, the term 1
mSε will converge

to zero. The limiting solutions

Sε =
1

mn

∑
i

∑
j

(xij − x̄i)(xij − x̄i)
T

Sµ =
1

n

∑
i

x̄ix̄
T
i

now satisfy the necessary positive semi-definite con-
straint and are also symmetric as required. As these
unconstrained solutions now satisfy the constraints
and are globally optimal, they must then now rep-
resent globally optimal constrained solutions.

8.3 Proof of Lemma 2

From Equation (5) and the standard formulae for the
inverse of a block partitioned matrix, it is straightfor-
ward to show that

F +G =
(
U − SµU

−1Sµ)
−1
)−1

(38)

where U = Sµ + Sε. It follows then that

A = U−1 − (U − SµU
−1Sµ)

−1.

We may then apply the Woodbury matrix inversion
identity and arrive at

A = −U−1Sµ(U − SµU
−1Sµ)

−1SµU
−1. (39)

From the Shur Complement Lemma, U −SµU
−1Sµ ≽

0. Consequently, the matrix A is a negative semi-
definite symmetric matrix and hence can be expressed
as A = −PAP

T
A for some matrix PA.

For the matrix G, also from (5), it follows that[
F +G G

G F +G

] [
Sµ + Sε Sµ

Sµ Sµ + Sε

]
= I, (40)

which can easily be solved to find that

G = −(2Sµ + Sε)
−1SµS

−1
ε . (41)

We then define V such that Sµ = V V T , which is al-
ways possible since Sµ is a covariance. Again, we use
the Woodbury matrix inversion identity to reexpress
G as

G = −S−1
ε V (I + 2V TS−1

ε V )−1V TS−1
ε (42)

from which it is immediately apparent that G is a
negative semi-definite symmetric matrix, and hence
G = −PGP

T
G for some PG.

Finally, regarding matrix rank, in (39) and (41) the
matrices A and G include Sµ in product form. Given
that rank[XY ] ≤ rank[Y ], it immediately follows that

rank[A] = rank[PA] ≤ rank[Sµ]

rank[G] = rank[PG] ≤ rank[Sµ].
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8.4 Proof of Lemma 4
We first consider Equation (18) and let E∗ and M∗
denote an optimal solution. With an invertible linear
transform the constraint becomes WX = E + MΦ or
equivalently X = W−1E + W−1MΦ. Defining Ẽ =
W−1E and M̃ = W−1M, (18) becomes

min
Ẽ,M̃

n log |Sµ|+ k log |Sε|

s.t. X = Ẽ+ M̃Φ,

Sµ = 1
nWM̃M̃TWT , Sε =

1
kW ẼẼTWT .

However, since log |AB| = log |A|+ log |B| for square
matrices A and B, this is equivalent to solving

min
Ẽ,M̃

n log
∣∣∣M̃M̃T

∣∣∣+ k log
∣∣∣ẼẼT

∣∣∣
s.t. X = Ẽ+ M̃Φ,

Sµ = 1
nWM̃M̃TWT , Sε =

1
kW ẼẼTWT ,

which is obviously minimized when Ẽ = E∗ and
M̃ = M∗, directly leading to the stated result. With
some additional effort, a similar result can be shown
when we do not adopt the assumption E[hih

T
i ] =

E[hi]E[hi]
T ; however, we omit the details here for

brevity.
Regarding the second invariance, by plugging the

new optimal covariances into (5), we arrive at

Ã = (WT )−1AW−1

G̃ = (WT )−1GW−1

By plugging the above equations into the log-
likelihood ratio test, we get

r (x̃1, x̃2) = x̃T
1 Ãx̃1 + x̃T

2 Ãx̃2 − 2x̃T
1 G̃x̃2

= xT
1 Ax1 + xT

2 Ax2 − 2xT
1 Gx2

= r (x1, x2)

9 CONCLUSION

In this paper we have revisited the classical Bayesian
face recognition algorithm and proposed a joint for-
mulation in the same probabilistic framework. The
resulting modifications retain much of the practicality
and scalability of the original, while enhancing perfor-
mance above existing state-of-the-art face verification
algorithms on a wide battery of tests even without a
tuning parameters for determining the latent dimen-
sion. Ultimately, this demonstrates that given modern,
low-level features and training data of moderate size,
a strikingly simple algorithm can prove to be highly
competitive.
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