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Hydrogels are cross-linked polymeric networks filled with high water content. They are used as tissue/cell culture 

scaffolds, biomedical devices and healthcare products. As the performance of hydrogels is significantly affected by 

their mechanical properties, it is required to tune hydrogels into desired mechanical systems. To provide guidance 

to the tuning process, it is important to evaluate and model the mechanical properties of hydrogels. However, due 

to the structural complexity of hydrogels, both tuning and modelling face challenges and uncertainties. This article 

briefly reviews the tuning methods and summarises key mechanical models that address linear elastic, hyperelastic, 

viscoelastic, poroelastic and hybrid mechanical behaviours of hydrogels.

1. Introduction
Hydrogels are widely used in healthcare industry and biomedical 
research.1,2 The most popular usages include drug-delivery systems,3–5 
diapers,6,7 contact lenses8–10 and scaffolds for tissue engineering.11–13 
The mechanical properties of hydrogels play an important role in all 
these applications. Stiffness/toughness provides mechanical integrity 
and easiness to handle,14,15 while softness allows flexibility, modulus 
matching with surrounding tissues and light weight.16 Furthermore, 
for many applications, the mechanical properties of hydrogels have 
to be in a desirable range for the achievement of functions. For 
example, cells may only spread, differentiate and survive on the 
hydrogel scaffolds of certain stiffness.17–22 To fulfill these demands, 
the mechanical properties of hydrogels need to be controlled. Not 
surprisingly, an in-depth understanding of the mechanical properties 
of hydrogels is required. This article summarises typical methods 
to tune the mechanical properties of hydrogels in the scope of 
mechanical engineering and reviews models that characterise the 
elastic mechanical properties of hydrogels.

2. Tuning methods
Since hydrogels are cross-linked polymeric networks (Figure 1(a)) 
with high water content,23 it is natural to tune their mechanical 

properties by adjusting the network structures. The common 
methods include altering the cross-link density of the network, 
adding fillers, adjusting the hydrophobicity of hydrogels, modifying 
the structure of the pores and so on.

2.1 Altering the cross-link density
Obviously, cross-link density changes with the weight percentage 
and molecular weight of monomers. A common way to produce 
stiffer hydrogels is to select monomers that have a lower molecular 
weight or simply increase the weight percentage of monomers.24,25 
However, decreasing the molecular weight could significantly 
downgrade the ductility of hydrogels26 while increasing the weight 
percentage of monomers obviously decrease the weight percentage 
of water content, which diminishes the benefits brought by the high 
water content such as nutrition supply to cells.

To fabricate the hydrogels with high modulus without sacrificing 
their ductility, double-networking (DN) method emerged out in 
the early twenty-first century.27–32 As implied by its name, the DN 
hydrogel consists of two networks formed by different types of 
monomers (Figure 1(b)). At first, a densely cross-linked hydrogel 
network was fabricated with polymer A. Then, the A-type network 
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Figure 1. A schematic representation of a (a) hydrogel; (b) double-

network (DN) hydrogel, where dots represent covalent bonds, red 

lines represent loosely cross-linked network, and black lines represent 

densely cross-linked network; (c) hydrogel with ionic bonds, where 

blue circles represent ionic bonds and black lines represent cross-

linked network; (d) hydrogel reinforced with fillers (yellow circles); (e) 

hydrogel with hydrophobic monomers, where dots represent covalent 

bonds, black lines represent hydrophilic monomers and red lines 

represent hydrophobic monomers that tend to shrink and aggregate 

in water; (f) hydrogel synthesised by amphiphilic monomers, where 

black bars represent hydrophilic groups and red bars represent 

hydrophobic groups that tend to aggregate in water

(a) (b)

(c) (d)

(e) (f)
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was merged into the precursor of polymer B so a loosely cross-
linked B-type network was formed and interpenetrated with the 
A-type network. Gong and co-workers29 are the pioneers who 
produced the DN hydrogel. Compared to the individual networks, 
the DN hydrogel showed an optimised stiffness, a good ductility and 
a significantly enhanced failure stress33 (Figure 2). Furthermore, 
they also suggested that the A-type network dominates the modulus 
enhancement while the B-type network maintains ductility, and 
the molar ratio between the two monomers could highly influence 
the properties of the DN hydrogel. In addition, compared to the 
conventional interpenetrating (IPN) hydrogel,34–36 the DN hydrogel 
also shows better mechanical properties.28 By optimising the 
combination of mechanical properties, the DN technique provides 
opportunities to fabricate hydrogels with patterned and gradient 
structures,37–39 which will definitely benefit the research on cell 
differentiation and 3D scaffold construction. However, although 
the DN hydrogel is tough under monotonic loading, its fatigue 
properties are not satisfactory because the breakage of covalent 
bonds is not reversible.32

Another method to tune the mechanical properties of hydrogels by 
altering their cross-link density is to form more bonds between the 
monomers by introducing ionic bonds (Figure 1(c)). Henderson 
et al.40 introduced ions, such as Zn2+ and Ca2+, into a poly(methyl 
methacrylate)–poly(methacrylic acid)–poly(methyl methacrylate) 
(PMMA–PMAA–PMMA) hydrogel. By two disparate cross-
linking mechanisms, the monomers were linked not only covalently 
(monomer–monomer) but also ionically (monomer–ion–
monomer). From the results of uniaxial tensile tests,40 it is clear that 
the stiffness of these hydrogels highly depends on the ion type, ion 
concentration and the pH value of the surrounding environment. 
For example, the modulus of the hydrogel with Zn2+ is higher 

than that of the hydrogel with Ca2+ at the same concentration. The 
modulus increases with an increase in the concentration of Ca2+ 
but increases dramatically at the beginning and decreases slightly 
afterwards with the increase in the concentration of Zn2+ at pH = 
6. However, at pH = 4, the modulus exhibits a monotone increase 
for both Zn2+ and Ca2+. Although there is just one single polymer 
network, the hydrogel with ionic bonds is cross-linked twice, just 
like the DN hydrogel.32 However, the ionically cross-linked ones 
show a much better fatigue resistance since the ionic bonds are 
reversible41 and even self-healable.42

2.2 Adding fillers
Numerous works have been performed to tune the mechanical 
properties of hydrogels by adding fillers (Figure 1(d)). The fillers 
could be ceramics such as silica and titania,43–47 metals and their 
oxides such as silver and magnetic particles,48–50 polymers,51,52 
carbon nanotubes and graphenes.53–57 The size of the fillers varies 
from micrometre to nanometre scale.24,43,55 Generally speaking, 
the higher the filler contents, the higher the mechanical properties 
were achieved43,44,58 (Table 1). The smaller the filler size, the more 
efficient the enhancement on mechanical properties would be.59–62 
However, the experimental results also suggest that the mechanical 
properties, especially strength and toughness, could drop when 
the filler content is over a certain threshold,63–65 which could be 
explained by the non-uniform distribution and aggregation of 
the fillers43,63,64 (Figure 3), and weak bonds between the hydrogel 
network and fillers.44,66 The dispersion status of the hydrogel/
filler composites could be improved by magnetic stirring and 
ultrasonication methods. The bonds between the hydrogel network 
and fillers could be strengthened with particle surface treatment. 
These methods could significantly enhance the modulus and 
strength of the hydrogel/filler composites.65,67

To model and predict the influence of fillers on the mechanical 
properties of polymer/filler composites, many mathematical models 
were developed. Table 2 summarises several classical ones,68–77 
which are widely adopted on polymer composites. Although they 
were mostly applied to the composites with much stiffer matrix, 
the authors still list them here in the light of providing possibilities 
to gain a better understanding and prediction on the modulus of 
hydrogel/filler composites.

2.3 Adjusting the hydrophobicity
The stiffness of hydrogels increases with the enhancement of 
their hydrophobicity.78 Hence, researchers added hydrophobic 
monomers into the highly hydrophilic network of hydrogels in 
the hope of promoting their stiffness. Cui et al.79,80 formed such a 
hybrid hydrogel by linking poly(ethylene glycol) (PEG) monomer 
and poly(dimethylsiloxane) (PDMS) monomer with a cross-linker 
(Figure 1(e)). The hydrophobicity of the hydrogel was controlled 
by adjusting the weight percentage of PDMS monomer (Figure 4). 
The uniaxial compression tests (Figure 5) were then performed and 

Figure 2. Stress–strain curves of PHA, D-3-0·05 and PHA/D-3-0·05 

DN hydrogels obtained from uniaxial compression testsReprinted from 

Weng et al.33
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the experimental results demonstrated that the stiffness of the PEG/
PDMS hybrid increased with the elevation of the hydrophobicity. 
Different from the Cui’s approach, Liu et al.81 synthesised 
amphiphilic monomers before gelation. The synthesised monomers 
had both hydrophobic and hydrophilic groups (Figure 1(f)). The 
stiffness of the hydrogel formed by this type of monomer could 
be tuned by controlling the degree of esterification (DE) of the 
hydrophobic and hydrophilic groups.82 And the results indicated 
that the higher degree of DE led to higher stiffness.

In summary, high hydrophobicity could lead to high stiffness and 
high toughness, and it could enhance the therapeutic performance 
of hydrogels, such as increasing the encapsulation efficiency 
of a partially hydrophobic model drug.81 But increasing the 
hydrophobicity will definitely decrease the water content, which 
may sacrifice the benefits of high water content.

2.4 Modifying the porous structures
It is also possible to tune the stiffness of hydrogels by modifying their 
porous structures since the pore size and density highly influence 
the mechanical properties of porous hydrogels.83–85 One method 
to achieve porous structure is solvent casting/particle leaching, 
which is simple and could control the pore size by controlling 
pore-foaming agent size.86 Delaney et al.87 dispensed droplets of 
sodium alginate solution into a hardening bath of calcium chloride 
to form calcium alginate beads (pore-foaming agent) as shown in 

Figure 6(a). The beads were then added into other types of hydrogel 
precursor (solvent casting). After polymerisation, the beads were 
embedded into the hydrogel. When the hydrogel embedded with 
beads was washed by trisodium ethylene diamine tetraacetic acid 
solution, the calcium alginate beads dissolved (particle leaching) 
(Figure 6(b)) and eventually formed a macroporous matrix. 
Another method called polymer-phase separation88 is similar to 
solvent casting/particle leaching. The pore-foaming agent is a 
removable phase. Tokuyama and Kanehara89 added oil droplets 
(pore-foaming agent) into N-isopropylacrylamide (NIPA) hydrogel 
precursor. After polymerisation, the oil droplets were washed out by 
methanol and the porous NIPA hydrogel was obtained. In addition, 
frontal polymerisation is yet another method to fabricate porous 
hydrogels. Lu et al.90 used sodium bicarbonate as a foaming agent 
to fabricate porous polyacrylamide hydrogel, and they also studied 
the effect of the concentration of foaming agent. In summary, these 
methods increase the pore size and density and produce soft but 
light hydrogels. Furthermore, the high surface-to-volume ratio and 
enlarged vacancy are in favour for the construction of a cell culture 
scaffold.12

3. Mechanical modelling
To tune hydrogels into the desired mechanical system, it is 
important to evaluate and model their mechanical properties.

3.1 Modulus
Although most hydrogels have non-linear stress–strain curves 
(Figure 2), modulus is still popular to quantify the elastic 
mechanical properties of hydrogels for its simplicity.43,44,58,91 The 
modulus can be defined piece-wisely43 or at a specific strain.91,92 
For the indentation-based experiments, Hertzian contact model 
is widely adopted to transform external loading into stress status. 
However, the Hertzian model is based on spherical or cylindrical 
indenters and does not consider the adhesive forces between the 
indenter and the hydrogel. Sneddon93 provided a better alternative, 
especially for the indenters in shape of a paraboloid, cone or 
other sharp and axisymmetric geometries. Meanwhile, Derjaguin 
et al.94 and Johnson et al.95 addressed the adhesion behaviour by 
interpreting the adhesion acting outside or/and inside the contact 
region into additional terms of contact radius or/and indentation 
depth when dealing with the experimental data.96 The models are 
well-known Derjaguin–Muller–Toporov (DMT) and Johnson–
Kendall–Roberts (JKR) models.

3.2 Hyperelastic models
The hyperelasticity was first modelled in the 1940s by Ronald 
Rivlin97 and Melvin Mooney98 for non-linear elastic solids such 
as rubbers. A mechanistic Neo-Hookean model was developed 
by Rivlin, and a phenomenological Mooney–Rivlin model was 
proposed by Mooney in 1940 and expressed by Rivlin in 1948. 
In the late 60s and early 70s, Fung developed a 1D exponential 

Hydrogels
Young’s 

modulus: 
kPa

References

5% PEG + 0% silica NP ~3 43

5% PEG + 1% silica NP ~3

5% PEG + 2·5% silica NP ~5

5% PEG + 5% silica NP ~5

5% PEG + 10% silica NP ~6

6% PDMA + 0% silica NP ~25 58

6% PDMA + 1·5% silica NP ~50

6% PDMA + 3·4% silica NP ~75

6% PDMA + 5·4% silica NP ~115

6% PDMA + 6·7% silica NP ~175

6% PAAm + 0% silica NP ~25 44

6% PAAm + 1·5% silica NP ~28

6% PAAm + 3·1% silica NP ~30

6% PAAm + 5·1% silica NP ~35

6% PAAm + 6·8% silica NP ~40

Table 1. Young’s moduli of hydrogels and hydrogel–silica 

nanocomposites. Data were obtained from uniaxial tensile tests
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Figure 3. Cryo-SEM (scanning electron microscope) image 

of (a) PEG hydrogel and PEG–silica hydrogel nanocomposites 

with silica concentration of (b) 1%, (c) 5% and (d) 10%. The 

aggregations of silica nanoparticles were obvious at a higher silica 

concentrationReprinted from Gaharwar et al.43

10 µm
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Table 2. Models to predict the Young’s modulus of composites
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constitutive equation for soft tissues,99 while Ogden established a 
hyperelastic model, which could be reduced to the Neo-Hookean 
and Mooney–Rivlin models under certain material constants.100 
Other phenomenological models including the reduced polynomial 
Yeoh model101 were also developed. The uniaxial forms of the 

above models are summarised in Table 3. Though widely adopted, 
except the Neo-Hookean model, they are all phenomenological, 
which means they may be able to fit the experimental data well 
but lack the capacity to explain the physical insights of polymer 
network structures and detailed physical processes involved in 
the deformation of hydrogels, nor predict the behaviour of the 
materials.

Mechanistically, the most significant advancement in the model 
development for hyperelastic materials was achieved by Arruda 
and Boyce102 in 1993. Since the Arruda–Boyce model was derived 
by applying statistical mechanics to a cubic representative volume 
element (RVE), which contains eight chains connecting the centre 
with the vertexes, it is also called an eight-chain model. It is 
expressed in the following equation.

1. 

where N represents the number of chains in the network of a 
cross-linked polymer, k

B
 represents the Boltzmann constant, θ 

represents the temperature in Kelvin, n represents the number 
of chain segments, β represents the inverse Langevin function, 
β λ= ( )−L n1

chain , where the Langevin function is defined 

as L β β β( ) = − ( )coth , and λ
chain

 represents the chain stretch, 
λchain = I1 3 , where I

1
 represents the first invariant of stretch.

Among all these hyperelastic models, in many cases, Ogden model 
could best fit the uniaxial experimental data as long as enough 
terms are used. Sasson and co-workers103 evaluated the hyperelastic 
behaviour of chitosan hydrogel. The Moony–Rivlin, Neo-Hookean, 
Yeoh and Ogden models were all applied to fit the data. The five-
term Ogden model provided the best fit for the experimental data. 
However, since there could be too many terms in the Ogden model, 
it is complicated mathematically and hard to be implemented 
into a computational framework. Hence, hyperelastic models 
other than the Ogden model are also widely adopted to describe 
the hyperelasticity of hydrogels. Faghihi et al.104 evaluated the 
hyperelasticity of the graphene oxide/poly(acrylic acid)/gelation 
nanocomposite by fitting the uniaxial experimental data into the 
Neo-Hookean, Yeoh and Mooney–Rivlin models. The results 
indicated that the Yeoh model accurately defined the non-linear 
behaviour of this type of hydrogel. The Arruda–Boyce model was 
adopted by Zhao105 to analyse the damage of the IPN hydrogel 
under large deformation. Under the framework constructed by the 
Arruda–Boyce model, Zhao quantitatively illustrated the basic 
mechanism of Mullins effect and necking instability in the IPN 
hydrogel. He also implanted it into the finite-element analysis, 
which showed a good agreement with the experimental data. 
However, due to the complexity of the Arruda–Boyce model, it is 
not as widely used in hydrogel modelling as the Ogden and Yeoh 
models.

W Nk n nB= −














θ βλ β

βchain ln
sinh

Figure 4. Swelling ratio (Q) and equilibrium water content (WC) 

against volume fraction of PDMSReprinted from Cui et al.80
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To interpret the experimental data obtained from indentation 
experiments, the above models are to be transformed into a 
force–displacement relationship, rather than in a strain-energy 
form. Lin et al.92,106 extended the hyperelastic models into 
spherical indentation and provided the analytical solutions of 
these hyperelastic models. The transformation analogy was first 
proposed by Tabor107,108 in the following forms:

2. 

3. 

where σ*
 represents the indentation stress, ε*

 represents the 
indentation strain, a represents the indentation contact radius and R 

σ
π

* =
F

a2

ε* = ⋅0 2
a

R

Figure 6. (a) Forming process of calcium alginate beads;  

(b) bead-dissolving processReprinted from Delaney et al.87
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represents the radius of indenter. The approach of Lin et al. is valid 
when the ratio of indentation depth to indenter radius (h/R) is smaller 
than 0·2.92 However, when performing an atomic force microscopy-
based indentation, the tip radius is usually so small that a low ratio of 
indentation depth to indenter radius may preclude the measurement 
accuracy. Zhang et al.109 overcame this limitation by extending the 
ratio from 0·2 to 1 with dimensional analysis and finite-element 
method. Their work included the Neo-Hookean, Mooney–Rivlin, 
Fung and Arruda–Boyce models. In their approach, the force–
displacement relationship was given in the following form:

4. 

where G
0
 represents the initial shear modulus, R represents the 

radius of indenter, h represents the indentation depth, Π represents 
a dimensionless function and C represents a parameter of different 
model. By applying the finite-element method, the coefficients of Π 
for h/R varying from 0·01 to 1 were all obtained. In this manner, the 
force–displacement relationship was expressed in an explicit form 
and the range of h/R was extended to 1.

3.3 Viscoelastic models
As soft polymeric materials, hydrogels exhibit viscoelasticity, 
which is induced by the change in molecular conformation and the 
sliding between polymer chains. The common method to describe 
viscoelasticity is to combine springs and dashpots in various sequences 
and determine the parameters by fitting the experimental data. The 
most widely adopted models include the Maxwell, Viogt, Zernar, four-
element, general Maxwell models and so on. Equation 5 provides an 
empirical Prony series to represent the general form of these models.

5. 

In Equation 5, G represents the shear modulus, G∞ represents the 
long-term modulus, N represents the number of Maxwell models 
in parallel, G

i
 represents the shear modulus of each Maxwell 

model, t represents time and τ
i
 represents the relaxation time in 

different orders. Because the hydrogels are usually regarded as 
incompressible, the Young’s modulus, E, is just three times of shear 
modulus G. Hence, it is not listed it out in this article.

Roberts et al.110 performed relaxation tests to compare the 
viscoelasticity of agarose and PEG hydrogels. A Prony series was 
applied to interpret the experimental data. The fitted parameter 
G G∞ ( )/ 0  was adopted as an indicator of the level of the stress 
relaxation. The comparison indicated that the agarose hydrogel 
displayed larger stress relaxation than the PEG hydrogel. A 
dynamic mechanical analysis (DMA) test was also performed 
in their work, and the results demonstrated that the storage 
modulus of agarose was more correlated to frequency. They 
suggested that the phenomena were due to the different cross-
linking mechanisms of the two hydrogels. The agarose was cross-
linked physically and the PEG was cross-linked covalently. The 
physical cross-linking is easier to slip, which explained the larger 
stress relaxation and higher dependency of storage modulus on 
frequency of agarose.

Small-scale indentation experiments are popular to characterise 
the viscoelasticity of hydrogels because they do not have a strict 
request upon the shape of the sample. For the spherical indenter, the 
load–displacement equation could be expressed by combining the 
Hertzian contact model and Boltzmann hereditary integrals.111–113

6. 

where P represents the load, h represents the displacement, R 
represents the radius of the indenter and G t( ) represents the 

P G Rhh C
h
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= 
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G t G G
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Hyperelastic models Strain energy density functions
Uniaxial stress–
stretch equations
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I1 and I2 represent the strain invariants; λ represents the stretch; C, C1, C2, b, Ci and αi represent the fitting parameters.

Table 3. Hyperelastic models
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normalised shear modulus, which could once again be expressed 
by the Prony series as follows:

7. 

8. 

Shapiro and Oyen114 applied Equation 6 to characterise 
the viscoelasticity of poly(ethylene glycol) dimethacrylate 
(PEGDMA)/alginate hydrogel composite, single-component 
PEGDMA hydrogel and single-component alginate. The model 
fitted the experimental data well and provided indication to the 
viscoelasticity effectively.

Although the models discussed in this section described 
viscoelasticity successfully, they were less successful in interpreting 
the physical processes and polymer structures of hydrogels.115

3.4 Poroelastic models
The time-dependent elasticity of hydrogels is not only contributed 
by the viscosity of polymer chains, but also induced by the migration 
of viscous fluids inside the hydrogels, known as poroelasticity. The 
general concept of poroelasticity for hydrogels was first proposed 
by Biot116 and developed by several research groups in the last 
decade.117–120 The hydrogel is considered as a linear elastic polymer 
matrix drained by water, and the stress could be given by Equation 9.121

9. 

where G represents the shear modulus, ν  represents the Poisson’s 
ratio, µ represents the chemical potential of the solvent, Ω represents 
the volume per solvent molecule, which is constant, σ

ij
 represents 

the stress and ε
ij
 represents the strain. When fully swelled in 

solvent, the chemical potential of the solvent in hydrogel, µ, is 
equal to the chemical potential of the solvent in environment, µ

0
. 

When the hydrogel deforms, the equilibrium is upset. Hence, a flux 
is driven by the chemical potential gradient according to Darcy’s 
law, J k xi i= −( )∂ ∂/ /η µΩ2

, in pursuit of a new equilibrium 
state. In Darcy’s law, J represents the flux, k represents the 
permeability and η represents the viscosity of the solvent. Besides, 
∂ ∂ = −∂ ∂C t J xk k/ /  according to the conservation of solvent 
molecules, where C represents the concentration of the solvent 
in gel, and εkk C C= −( )Ω 0  according to the incompressible 
assumption of solvent molecules. Based on the equations above, 
the stress σ

ij
 is related to time t, so that the hydrogel exhibits a time-

dependent behaviour. Besides, combining these equations together, 
the diffusion equation could be obtained as follows121:

10. 

where D Gk= −( ) −( ) 2 1 1 2ν ν η/ /  represents the diffusivity.

Hu et al.121 applied the poroelasticity theory into indentation 
relaxation tests on an alginate hydrogel. The indentation load F(t) 
was given in the following form:

11. 

where a represents the contact radius for different indenters. 
Equation 11 is in a quite simple form, which could be directly 
used to obtain poroelastic coefficients by fitting the experimental 
data. Cai et al.122 from the same research group led by Zhigang 
Suo at Harvard University derived F(t) by performing compressive 
relaxation tests on the same hydrogel. Although a little more 
complex to express, the result agreed well with that derived from 
the indentation tests. To study the poroelasticity under geometrical 
confine, Hu et al.123 and Chan et al.124 derived F(t) of indentation 
relaxation on a thin gel layer, and indentation tests of different 
indentation depths were conducted on the PDMS gel in an organic 
solvent and PEG hydrogel in water, respectively. The poroelastic 
coefficients obtained from different indentation depths agreed with 
each other well, which validated their models.

The Dt  has a dimension of length, which stands for the length of 
solvent migration over time t.125 So the poroelastic relaxation time 
scale is related to the length scale of experiments.119 In practice, 
it may take hours for an experiment with millimetre scale to fully 
relax,119 which may lead to degradation of material. To shorten 
the time scale of relaxation, a possible method is to change the 
length scale of experiments. Kalcioglu et al.119 performed contact 
experiments under both micro- and macro-size scales. Based on 
their results, the time scale was successfully shortened into seconds 
when the experimental length scale was in several micrometres 
and the poroelastic coefficients obtained from the microscopic 
experiments were in excellent agreement with those obtained from 
the macroscopic indentation tests.

In summary, compared to the viscoelasticity models that neglect the 
effects of solvent, poroelasticity models counts the time-dependent 
mechanical behaviour induced by the diffusion of the solvent in 
hydrogels. However, it is hard to find analytical solutions for the 
governing equations with complex loading, boundary and initial 
conditions. Therefore, computational methods are usually required 
to solve poroelastic problems.

3.5 Hybrid elastic models
The constitutive behaviour of hydrogels could be captured by 
hyperelasticity, viscoelasticity or poroelasticity models. However, 
they are either phenomenological or only consider part of the 
deformation mechanism. For instance, the Arruda–Boyce hyperelastic 
model considered the deformation of polymer chains but did not 

G t G G
t

i
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include the time-dependent behaviour. Various viscoelastic models 
considered the time effect by counting the portion contributed by the 
polymer matrix but excluded the solvent’s diffusion. Meanwhile, the 
poroelastic theory studied time dependence induced by the solvent 
inside the hydrogels but did not combine it with the viscosity of the 
polymer matrix. Hence, researchers were interested in combining 
or at least linking these models together in order to provide a 
comprehensive understanding on the constitutive behaviour of 
hydrogels, though only in elastic regime.

3.5.1 Visco-hyperelastic models
To combine viscoelasticity and poroelasticity together, Crichton et 
al.126 provided a simple method. Although the studied object is skin 
instead of hydrogels, the methodology is universal. In their work, a 
two-term Prony series shown in Equation 13, which represents the 
viscoelasticity, was plugged into a single-term Ogden hyperelastic 
model (Equation 12) for contact problem with spherical indenter.

12. 

13. 

Another method to combine viscoelasticity and hyperelasticity 
together was proposed by Fung99 and is known as quasi-linear 
viscoelasticity (QLV) theory. In Fung’s approach, the viscoelastic 
part is represented by a normalised shear modulus, G t( ), called 
reduced relaxation function. And the hyperelastic part could be 
represented as a function of stretch, F

e λ( ) . By assuming that the 
hydrogel could be evaluated by the Boltzmann hereditary integrals, 
the load–stretch relationship under uniaxial tensile loading could 
be written as follows:

14. 

The function of stretch could be any hyperelastic models. G t( ) 
could be written as a normalised Prony series, which is the same as 
Equations 7 and 8. Researchers127–130 applied this method to evaluate 
the visco-hyperelasticity of not only hydrogels but also soft tissues 
by adopting various kinds of hyperelastic models under uniaxial 
loading directions for both monotonic, fatigue and load-relaxation 
experiments. Furthermore, after obtaining the coefficients of 
QLV model from one type of experiment, the QLV model could 
predict the force response of the experiment with another loading 
condition.127,128

Although the visco-hyperelastic models could not only fit the 
experimental data well even under complex loading conditions, 

but also predict the response in another loading scheme after the 
coefficients are obtained in one experiment, none of them counts 
for the migration of solvent.

3.5.2 Visco-poroelastic models
Both viscoelasticity and poroelasticity consider the time-
dependent behaviour but on different aspects. Viscoelasticity is 
based on the change of molecular conformation and the sliding 
between polymer chains. Hence the relaxation time constant τ is 
independent of the length scale of the tested sample and contact 
area of indentation.125,131 Unlike viscoelasticity, poroelasticity is 
characterised by the effective diffusivity D of the solvent in the 
network and depends on the type of the material and length scale 
of the material and experiment.119 This difference could be used to 
decouple viscoelasticity and poroelasticity within a time-dependent 
framework.

As stated in the previous section, Dτ  represents the length 
of solvent migration within a time comparable to viscoelastic 
relaxation time constant τ.125 In an experiment with a time scale 
t and a length scale L, the comparison of t with τ and L2/D could 
interpret whether the viscoelastic and poroelastic relaxations are 
completed or started, respectively, as summarised in Figure 7.125 
For example, if t >> τ  and t L D~ /2 , the viscoelastic relaxation 
is already finished but poroelastic relaxation could be observed. 
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Figure 7. The verticle line t ~ τÅ  and diagonal t L D~ /2  represent 

the viscoelasticity and poroelasticity under relaxing, respectively. These 

two lines separate the plane into four parts where each part represents 

a relaxation condition of the material. V represents viscoelasticity and P 

represents poroelasticityReprinted from Hu and Suo125
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When t << τ  and t L D<< 2 / , both the viscoelastic and poroelastic 
relaxations have just started.

Hu et al.132 and Strange et al.133 studied the viscoelasticity and 
poroelasticity simultaneously by adjusting the indentation contact 
radius, which is one of the methods to change the length scale of 
the experiment. The viscoelastic and poroelastic parameters as 
well as elastic constants were obtained by comparing the stress-
relaxation curves of different indentation contact radius with 
the theoretical models they derived. Wang et al.118 separated the 
viscoelasticity and poroelasticity of the polyacrylamide–alginate 
IPN hydrogel apart by controlling the sample size and the length 
scale of the experiment. The two types of relaxation occurred one 
after the other. The finite-element calculation was performed to 
validate their method.

The combination of viscoelasticity and poroelasticity could describe 
the time-dependent constitutive behaviour of hydrogels well in 
simple loading conditions. But it is difficult to be executed under 
complex loading conditions due to the complexity in implementing 
the poroelastic theory.

4. Conclusions
In this review, the methods to tune the mechanical properties 
of hydrogels were briefly summarised. First, the mechanical 
properties were tuned based on the demands of versatile 
applications of hydrogels. Generally speaking, since most 
hydrogels are fragile and hard to handle, numerous efforts were 
devoted to fabricate tough hydrogels. However, hydrogels with 
higher porosity and lower modulus are also in favour for certain 
applications. Second, although it is the mechanical properties to 
be tuned, the effort is an interdisciplinary one, which involves 
physical, chemical, biological and many other science and 
engineering areas. Third, although due to the complexity of the 
structure of hydrogels, every tuning method may bring unexpected 
effects that are deviated from the original plan, optimisation can 
still be achieved by a smart design, which balances the structural 
properties and functionalities.

The constitutive models in elastic regime were reviewed in this 
article. Some of them are originate from other fields, such as models 
to predict the Young’s modulus based on filler contents; some of 
them are phenomenological descriptions of observed behaviours, 
such as invariant-based and stretch-based hyperelastic models; and 
some of them are intrinsic models that provide mechanistic and 
physical principles, such as the Arruda–Boyce model. They all 
contributed in interpreting the experimental results and providing 
guidance to the mechanical tuning of hydrogels. However, because 
of the complexity of the hydrogel system, a universal model and/
or framework that could capture and predict the comprehensive 
mechanical behaviour of hydrogels is still in hunt by the scientists 
and engineers. To achieve this goal, not only the macroscopic 

behaviours of hydrogels but also the detailed structure and the basic 
deformation mechanism should be considered.
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