## THE <br> NIGHT SKY




## Finding the North Star

- The North Star is not an especially bright star
- There are not a lot of stars near it that are bright enough to confuse the observer.
- Asterisms that are easily found serve as pointers.

$$
\because
$$

$$
. . .:
$$

Cassiopeia


Bio Dinner

## Finding the North Star

$$
\begin{aligned}
& \star \\
& \star \\
& \star \\
& \star
\end{aligned}
$$

Alaska State Flag

## Finding Your Way Around the Night Sky

- Star Chart
- Planisphere
- Planetarium programs and apps
- Smart Telescope


## The Evening Sky Map

1 Last Quarter Moon at 23:11 UT.
Moon near Saturn ( $86^{\circ}$ from Sun, morning sky) at 7h UT. Mag. +0.5.
7 Moon near Venus ( $23^{\circ}$ from Sun, morning sky) at 9h UT. Mag. -3.9.
Moon near Mercury ( $13^{\circ}$ from Sun, moming sky) at 3h UT. Mag. -0.6 .
8 Jupiter at opposition at 11h UT. Best time to observe the largest planet in the solar system. Mag. -2.6.
9 New Moon at 1:54 UT. Start of lunation 1153.
9 Total Solar Eclipse along a path from Indonesia to across the Pacific Ocean. Greatest eclipse at 1:57 UT Partial eclipse visible from SE Asia, China, Japan, and parts of Australia.
10 Moon at perigee (closest to Earth) at 7h UT (359,510 km; angular size 33.2').
13 Moon near the Pleiades (evening sky) at 21h UT.
14 Moon very near Aldebaran (evening sky) at 14 h UT. Occultation visible from central Asia.

15 First Quarter Moon at 17:03 UT.
18 Moon near Beehive cluster (evening sky) at 23 h UT.
20 Vernal equinox at 4:30 UT. The time when the Sun reaches the point along the ecliptic where it crosses into the northern celestial hemisphere marking the start of spring in the Northern Hemisphere and autumn in the Southern Hemisphere.

20 Moon near Regulus (evening sky) at 18 h UT.
22 Moon near Jupiter (evening sky) at 3h UT. Mag. -2.5.
23 Penumbral Lunar Eclipse from 9:39 to 13:55 UT, mid-eclipse at $11: 47$ UT. Just visible around mid-eclipse.
23 Full Moon at 12:01 UT.
25 Moon near Spica (morning sky) at 5h UT.
25 Moon at apogee (farthest from Earth) at 14h UT (distance $406,125 \mathrm{~km}$; angular size 29.4').

28 Moon near Mars (morning sky) at 20h UT. Mag. -0.4.
29 Moon near Saturn (morning sky) at 15h UT. Mag. +0.4.
31 Last Quarter Moon at 15:17 UT.
More sky events and links at http://Skymaps.com/skycalendar/ All times in Universal Time (UT). (USA Eastern Summer Time $=$ UT -4 hours.)






## Constelations

- Arbitrary Designations
- 88 Modern constellations
- Northern Constellations are named after Greet Myths with Latin Names
- Southern Constellation named by early Mariners
- Although the stars are all moving, they are so far apart that the basic patterns have stayed the same over the last few thousand years.
- If seen three dimensionally, the patterns no longer exist.


STARS

# WHERE DOES OUR SUN AND NW OTHER STATS GET ENERGY? 

NUCLEAR FUSION

## The Fusion Process

${ }^{2} \mathrm{H}$

## The Fusion Process

## The Fusion Process

$\left(\begin{array}{l}2 \\ 1\end{array}\right.$


## The Fusion Process



## The Fusion Process

## The Fusion Process

## The Fusion Process

## The Fusion Process

## The Fusion Process



## The Fusion Process



## The Fusion Process


$\operatorname{sinspr}_{\mathrm{Py}}$

## The Fusion Process

(in)

ENERGY

## $\mathrm{E}=\mathrm{MC}^{2}$

Energy ( $E$ ) is equal to Mass (m) multiplied by the Speed of Light (c)
squared

- This tells us that a small amount of mass can be converted into a very large amount of energy because the speed of light (c) is an extremely large number
- When Hydrogen Fuses into Helium, a small amount of mass is converted to energy.

This Explosion burns about $1 / 2$ a pound of Hydrogen

The Sun burns 600
Million Tons of Hydrogen per second.

## Table of Elements

| 1 <br> Hydrogen <br> H |  |  | 6 Carbon C |  |  | - Atomic Number (Number of Protons) <br> Chemical Name <br> Chemical Symbol |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 2 \\ & \text { Helium } \\ & \text { Ho } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3 \\ & \text { Lithium } \end{aligned}$ $\mathrm{Li}$ | Beryllium Be |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} 5 \\ \text { Boron } \\ \text { B } \end{gathered}$ | $\begin{gathered} 6 \\ \text { Carbon } \\ \text { C } \end{gathered}$ | $\begin{array}{\|c} 7 \\ \text { Nitrogen } \\ \mathbf{N} \end{array}$ | $\begin{aligned} & 8 \\ & \text { oxygen } \\ & \mathbf{O} \end{aligned}$ | $\begin{aligned} & 9 \\ & \text { Fluorine } \end{aligned}$ $F$ | $\begin{gathered} 10 \\ \hline \text { Neon } \\ \mathrm{Ne} \end{gathered}$ |
| $\begin{array}{\|l\|} \hline 11 \\ \text { Sodium } \end{array}$ $\mathrm{Na}$ | 12 <br> Magnesium <br> Mg |  |  |  |  |  |  |  |  |  |  | 13 <br> Aluminum <br> AI | $\begin{array}{\|l} 14 \\ \text { Silicon } \\ \mathrm{Si} \end{array}$ | 15 <br> Phosphorus <br> P | $\begin{aligned} & 16 \\ & \text { Sulfur } \\ & S \end{aligned}$ | 17 <br> Chlorine Cl | $\begin{aligned} & 18 \\ & \mathrm{Argon} \\ & \mathrm{Ar} \end{aligned}$ |
| 19 <br> Potassium <br> K | 20 <br> Calcium <br> Ca | 21 <br> Scandium Sc | $\begin{array}{\|l\|} \hline 22 \\ \text { Titanium } \end{array}$ Ti | 23 <br> Vanadium V | 24 <br> Chromium Cr | 25 Manganese Mn | $\stackrel{26}{\substack{\text { Iron } \\ \text { Fe }}}$ | $\begin{aligned} & 27 \\ & \text { Cobalt } \\ & \text { Co } \end{aligned}$ | $\underset{\text { Nickel }}{28}$ $\mathrm{Ni}$ | $\begin{aligned} & 29 \\ & \text { Copper } \\ & \mathbf{C u} \end{aligned}$ | $\begin{gathered} 30 \\ \text { Zinc } \\ \mathbf{Z n} \end{gathered}$ | $\begin{gathered} 31 \\ \text { Gallium } \\ \text { Ga } \end{gathered}$ | 32 <br> Germanium Ge | $\begin{aligned} & 33 \\ & \text { Arsenic } \\ & \text { As } \end{aligned}$ | 34 <br> Selenium Se | 35 Bromine Br | 36 Krypton Kr |
| 37 <br> Rubidium Rb | 38 Strontium Sr | 39 <br> Yttrium Y | 40 zirconium Zr | $\begin{aligned} & 41 \\ & \text { Niobium } \\ & \mathrm{Nb} \end{aligned}$ | 42 Molybdenum Mo | 43 <br> Technetium Tc | 44 <br> Ruthenium <br> Ru | 45 <br> Rhodium <br> Rh | 46 <br> Palladium Pd | $\begin{gathered} 47 \\ \text { Siver } \\ \mathbf{A g} \end{gathered}$ | 48 <br> Cadmium Cd | $\begin{aligned} & 49 \\ & \text { Indium } \\ & \text { In } \end{aligned}$ | $\begin{gathered} 50 \\ \text { Tin } \\ \mathrm{Sn} \end{gathered}$ | 51 <br> Antimony Sb | 52 <br> Tellurium Te | $53$ I | $\stackrel{54}{\stackrel{\text { Xenon }}{ }} \begin{gathered} \text { Xe } \end{gathered}$ |
| 55 Cesium Cs | $\begin{gathered} 56 \\ \hline \text { Barium } \\ \mathrm{Ba} \end{gathered}$ | $57-71$ | $\begin{aligned} & 72 \\ & \text { Hatnium } \end{aligned}$ Hf | 73 <br> Tantalum Ta | $\begin{aligned} & 74 \\ & \text { Tungsten } \end{aligned}$ W | 75 <br> Rhenium Re | $\begin{aligned} & 76 \\ & \text { Osmium } \\ & \text { Os } \end{aligned}$ | $\begin{gathered} 77 \\ \text { Iridium } \\ \text { Ir } \end{gathered}$ | 78 <br> Platinum Pt | $\begin{aligned} & 79 \\ & \text { Gold } \\ & \mathbf{A u} \end{aligned}$ | 80 Mercury Hg | $\begin{aligned} & 81 \\ & \text { Thallium } \end{aligned}$ $\mathrm{Tl}$ | $\begin{gathered} 82 \\ \text { Lead } \\ \mathbf{P b} \end{gathered}$ | 83 Bismuth Bi | 84 <br> Polonium Po | 85 Astatine At | $\begin{aligned} & 86 \\ & \text { Radon } \\ & \text { Rn } \end{aligned}$ |
| 87 <br> Francium Fr | $\begin{aligned} & 88 \\ & \text { Radium } \\ & \text { Ra } \end{aligned}$ | 89-103 | 104 Rutherfordium Rf | $\begin{aligned} & 105 \\ & \text { Dubnium } \\ & \text { Db } \end{aligned}$ | 106 Seaborgium Sg | 107 Bohrium Bh | $\begin{aligned} & 108 \\ & \text { Hassium } \end{aligned}$ Hs | 109 Meitnerium Mt | $\begin{gathered} 110 \\ \text { Daamstatium } \\ \text { Ds } \end{gathered}$ | 111 <br> Roentgenium <br> Rg | 112 Ununbium Uub | 113 <br> Ununtrium <br> Uut | 114 Ununquadium Uuq |  |  | $117$ <br> Unusertium <br> Uus | 118 Ununoctium Uuo |
|  |  | * | 57 Lanthanum La | $\begin{array}{\|c} 58 \\ \text { Cerium } \\ \mathrm{Ce} \end{array}$ | $\begin{array}{\|c\|} \hline 59 \\ \hline \text { Prasedumium } \\ \text { Pr } \end{array}$ | 60 Neodymium Nd | $\begin{aligned} & 61 \\ & \text { Prometium } \\ & \text { Pm } \end{aligned}$ | 62 <br> Samarium <br> Sm | 63 Europium Eu | 64 Gadolinium Gd | 65 Terbium Tb | 66 Dysprosium Dy | 67 <br> Holmium <br> Ho | 68 Erbium Er | 69 Thulium Tm | 70 Ytterbium Yb | 71 <br> Lutetium Lu |
|  |  | ** | 89 <br> Actinium Ac | 90 Th | $\begin{array}{\|c\|} \hline 91 \\ \hline \text { Protactinium } \\ \mathrm{Pa} \end{array}$ | 92 <br> Uranium U | 93 <br> Neptunium Np | 94 <br> Plutonium <br> Pu | 95 Americium Am | 96 Curium Cm | 97 <br> Berkelium <br> Bk | 98 Californium Cf | 99 <br> Einstenium <br> Es | $\begin{aligned} & 100 \\ & \text { Fermium } \\ & \text { Fm } \end{aligned}$ | 101 Mendelevium Md | 102 Nobelium No | $\begin{array}{\|l\|} \hline 103 \\ \text { Lawencium } \end{array}$ |

## Fusion Reactions



## The Interior of the Sun



## The Interior of an Older Star

# mi NITROGEN 

 ,
## iut CALCIUM iw

OUR TEETH,


THE


WERE MADE IN THE INTERIORS OF COLLAPSING STARS

## WE ARE MADE O'F <br> STAR STUFF

## Life of a Butterfly



Eggs

## Life of a Sun-like Star



## Life of a Massive Star




## Supernova in <br> Our <br> Neighborhood

Which stars?

Orion's stars likely to go supernova!


## Designating Stars

- About 600 have names
- Cataloged by Brightness and Constellation
- A large number pf star catalogs exist.



