

UTAH DEPARTMENT of ENVIRONMENTAL QUALITY

WASTE MANAGEMENT & RADIATION CONTROL

EnergySolutions'
Request for Exemption
from R313-25-9(5)

What Does Energy Solutions Want?

 To dispose <u>more</u> than 1 metric ton of depleted uranium (DU) metal without doing a performance assessment specifically addressing DU metal

What Does EnergySolutions Have to Demonstrate to the Board to Receive an Exemption?

- That disposal of DU metal does not result in an undue hazard to:
 - Public health and safety
 - Environment
- That the performance objectives will be met

How Can EnergySolutions Show There Are No Undue Hazards Without a Specific DU Metal Performance Assessment?

What Has EnergySolutions Provided to the Board?

- Referenced eight previous technical documents / reports (EnergySolutions claimed to be performance assessments)
- Exemption request letter dated August 24, 2018
- Response to Division's questions dated September 11, 2018
- Presentation to the Board dated September 13, 2018
- Response to the Division's technical consultant's questions dated September 13, 2018
- Letter dated October 15, 2018

Eight Reports

- History and context
- Purpose
- Scope
- Relevance
- Applicability

Rogers & Associates 1990 EnergySolutions Document #1

- Contracted by the State of Utah
- Evaluation of potential health impacts associated with radioactive waste disposal at Clive
 - Included isotopic, diffuse uranium and diffuse DU (U238, U235, U234)
 - Did not address disposal of concentrated DU including DU metal
 - Exclusive to LARW embankment (NORM-type waste, contaminated soil, structural material)
 - LARW embankment is closed with a final cover

Adrian Brown 1998 EnergySolutions Document #2

- Evaluation of infiltration of precipitation through LARW embankment and transport of contaminants in groundwater
 - Groundwater discharge permit renewal
 - Included isotopic, diffuse uranium (U238, U235, U234)
 - Did not address disposal of concentrated DU including DU metal
 - Exclusive to LARW embankment (NORM and similar wastes)
 - LARW embankment is closed with a final cover

Whetstone LARW 2000 EnergySolutions Document #3

- Evaluation of infiltration of precipitation through Western LARW embankment and transport of contaminants in groundwater
 - Change in waste to be disposed: NORM to Class A LLRW
 - Included isotopic, diffuse uranium (U238, U235, U234)
 - Did not address disposal of concentrated DU including DU metal
 - Used in the design for the original Class A embankment

Whetstone Class A, B, C Embankment 2000 EnergySolutions Document #4

- Evaluation of infiltration of precipitation through Class A, B, C embankment and transport of contaminants in groundwater
 - Change in waste to be disposed: to include Class A, B, and C
 - Included isotopic, diffuse uranium (U238, U235, U234) for Class A only
 - Did not address disposal of concentrated DU including DU metal
 - Embankment never constructed to dispose of Class B and C wastes
 - Used in the design for the Class A North embankment

Whetstone (2006) EnergySolutions Document #5

- Evaluation of infiltration of precipitation through Class A Combined embankment (Class A with Class A North) and transport of contaminants in groundwater
 - Did include isotopic, diffuse uranium (U238, U235, U234)
 - Did not address disposal of concentrated DU including DU metal
- Embankment application withdrawn prior to approval

Whetstone 2007 Energy Solutions Document #6

- Evaluation of infiltration of precipitation through Class A South embankment and transport of contaminants in groundwater
 - Hybrid disposal embankment for LLRW and uranium mill tailings (11e.(2)/LLRW)
 - Did include isotopic, diffuse uranium (U238, U235, U234)
 - Did not address disposal of concentrated DU including DU metal
- No comprehensive review withdrawn by Energy Solutions

Whetstone 2011 Energy Solutions Document #7

- Evaluation of infiltration of precipitation through Class A West embankment and transport of contaminants in groundwater
 - Combined (Class A and Class A North) disposal cells for Class A West proposing a new design
 - Did include isotopic, diffuse uranium (U238, U235, U234)
 - Did not address disposal of concentrated DU including DU metal
- Revised and resubmitted as Whetstone 2012

Whetstone 2012 Energy Solutions Document #8

- Revised and resubmitted analysis of infiltration of precipitation through Class A West embankment and transport of contaminants in groundwater
 - Combined (Class A and Class A North) disposal cells for Class A West embankment
 - Did include isotopic, diffuse uranium (U238, U235, U234)
 - Did not address disposal of concentrated DU including DU metal
 - "The CAW Embankment LAR does not involve concentrated depleted uranium." URS 2012 SER

Performance Objectives

- Protection of the general population from releases of radioactivity
- Protection of individuals from inadvertent intrusion
- Protection of individuals during operations
- Stability of the disposal site after closure

Performance Assessment Essential Elements

- Description of the site and engineered system
- Understanding of events likely to affect long-term facility performance
- Description of processes controlling the movement of radionuclides from LLW disposal units to the general environment
- Computation of doses to members of the general population
- Evaluation of uncertainties in the computational results

NRC (2000) NUREG 1573, p. I-6

Report	Site & Engineered System	Events Affecting Long-term Performance	Fate and Transport Modeling	Estimation of Dose to Population	Uncertainty Evaluation	Status of the Embankment
Rogers and Associates 1990 LARW	✓	X	GW and other Pathways	✓	X	Closed
Adrian Brown 1998 LARW	✓	X	GW Only	X	X	Closed
Whetstone 2000 LARW/Class A	✓	X	GW Only	X	X	LARW Closed Class A part of CAW
Whetstone 2000 Class A, B and C	✓	X	GW Only	X	X	Not built however design used for Class A North
Whetstone 2006 Class A Combined	✓	X	GW Only	X	X	Withdrawn
Whetstone 2007 Class A South	✓	X	GW Only	X	X	Withdrawn
Whetstone 2011 Class A West	✓	X	GW Only	X	X	Revised
Whetstone 2012 Class A West	✓	x	GW Only	X	x	Active

What Do We Know?

- DU metal is geochemically unstable
- DU metal is particularly reactive in a moist, carbonate-rich environment, such as at Clive
- In such an environment, DU metal can form relatively soluble carbonate compounds
- These soluble carbonate compounds or species tend to be relatively mobile in the subsurface
- DU metal can react to form pyrophoric or explosive substances
- At least two fires associated with handling depleted uranium took place at the Clive Waste Disposal Facility (2002, 2007)

DU Penetrators Can Disintegrate

Armor-piercing DU penetrator after three years in natural environment

https://www.hzdr.de/db/Cms?pOid=26451&pNid=0

DOE Analysis of DU Metal

U.S. Department of Energy Programmatic Environmental Impact Statement (PEIS) on land disposal of DU metal (EIS-0269) (DOE, 1999):

- Reacts with water
- Forms oxides
- Produces heat
- Swells
- Breaks down
- DOE did not allow the disposal of DU metal at its disposal sites

Unresolved Questions

- Is there a potential for DU-metal reaction with water or other waste, or create gases in the Clive embankment?
- Is there a potential for long-term erosion of the cover system and radon gas release?
- What are the uncertainties with the performance of disposal of DU metal in a Clive embankment?
- What are the doses to the general populations and site workers?
- How would fate and transport modeling fit actual disposal embankment conditions for concentrated DU metal and related soluble compounds?

Unresolved Questions

- How do the prohibitions of R313-15-1009(2)(a)(v)
 through (vii) and License conditions 16 B. through D.,
 which address waste reactive and pyrophoric
 characteristics, apply to DU metal?
- Are there unresolved issues relative to the DU oxide performance assessment, currently under review, that are applicable to DU metal?
- Are there other unresolved legal issues?

In Order to Grant the Exemption, What Does the Board Need to Find?

- That Energy Solutions has provided sufficient technical evidence, without a specific DU metal performance assessment, to demonstrate that the performance objectives will be met
- That the disposal of DU metal will not create an undue hazard to public health and safety or the environment

Recommendation

The Director recommends the Board deny the exemption request

Basis for Recommendation

- Energy Solutions has failed to demonstrate, without a specific DU metal performance assessment, that there are no undue hazards to public health and safety or the environment
- Energy Solutions has failed to demonstrate, without a performance assessment, that the performance objectives will be met
- There are significant data gaps in the information provided to the Board and the Director
- There are significant unresolved questions

QUESTIONS?

