Location	Maps:
----------	-------

Index:

G-1: COVER

E-1: ELECTRICAL DIAGRAM & CALCULATIONS

E-2: ELECTRICAL LAYOUT

S-1: STRUCTURAL DIAGRAMS

S-2: ROOF PLAN

S-3: STRUCTURAL DETAILS

S-4: STRUCTURAL CALCULATION

Aerial View:

Installation Preview:

Permitting/Planning Notes:

SCOPE OF WORK:

INSTALLATION OF STRUCTURAL ATTACHMENTS AND RACKING FOR GRID-TIED PHOTOVOLTAIC SYSTEM

EXISTING COMMERCIAL BUILDING ALTERATION LEVEL 2

System Description

Roof type	Concrete			
System type		Grid-	Tied Photovoltaid	System
Total STC rated DC Power output			141750.00 W	
Inverter type	Enpł	nase IQ-7 Micro-I	nverter	
Inverter #			450	
PV module type		LG NeON 2 Black 315W		
PV module #				
Solar Breaker Box		Regular Load Center		
Service rating		600.00 A		
	Maximum	Power Point Tra	cking (MPPT)	
Inverter characteristic	Meets requirements of 3-P Power			
			Meets UL1741	
All elec	All electrical equipment installed are UL listed			
ltem	Mai	nufacturer	Model	Listing / Compliance

LG NeON 2 Black 315W

Enphase

Enphase

315W

IQ-7

DC & AC

UL 1703

UL 1741

UL LISTED

Point of Utility

Connection

Revenue

Meter

SYSTEM AUTOMATIC OPERATION

PV modules

Inverters

All overcurrent protection

Grid power is present, photovoltaic system feeds the load at day time.

Grid power is lost, photovoltaic system automatically disconnects from 2. the grid.

3. Photovoltaic system will automatically resume feeding power to the grid when the proper voltage and frequency is restored (IEEE Standards) and there is enough sunlight.

Wire ampacity and conduit size calculations	NOTE (1)		NOTE 2		NOTE 3				
	QTY	SIZE	TYPE	QTY	SIZE	TYPE	QTY	SIZE	TYPE
Raceway	1	1 inch.	PVC SCH 80	1	2-1/2 inch.	PVC SCH 80	1	1-1/2 inch.	EMT or PVC SCH 80
Current carrying conductors	8	#10	THWN-2 CU	3	3/0	THWN-2 CU	3	#1	THWN-2 CU
Neutral		Not applicable	9	1	3/0	THWN-2 CU		Not applicable	
EGC/GEC	1	#8	THWN-2 CU	1	#6	THWN-2 CU	1	#6	THWN-2 CU
OCPD	1	OCPD = 20A	Breaker	1	OCPD = 200A	Fuse	1	OCPD = 90A	Fuse
Conductor sizing calculation	Branch Circuit		Main AC Circuit 120/208V		Main AC Circuit 277/480V				
Maximum current:	Inverte	er circuit output	= 14.95A	Combine	ombined Inverter Output = 156.1A		Combined Inverter Output = 67.7A		
Continuous circuit current	Inv.	Output x 1.25 =	= 18.7A	Inv.	Inv. Output x 1.25 = 195.2A		67.7A x 1.25 = 84.6A		
Terminal Temperature requirements:	60° C: 310.15 (B)(16) = 30A ≥20A O.C.P.D.		75° C:	5° C: 310.15 (B)(16) = 200A ≥200A O.C.P.D.		75° C: 310.15 (B)(16) = 130A ≥ 90A O.C.P.D.			
Conductor ampacity:	90° C: 310.15 (B)(16) = 40A ≥20A O.C.P.D.		90° C	: 310.15 (B)(16) ≥200A O.C.P.D) = 225A).	90°C:	310.15 (B)(16) 90A O.C.P.D	= 145A ≥	
Ambient Temperature:	91°F (33°C)			91°F (33°C)			91°F (33°C)		
Temperature adder for conduit height per 310.15(B)(3)(C):	Distance between 3-1/2" & 12" = 30°F		Distan	Distance between 3-1/2" & 12" = 30°F		Distance between 3-1/2" & 12" = 30°F			
Temperature & Derate per 310.15(B)(2)(a):		121°F = 82%	D	121°F = 82%		121°F = 82%			
Conductors in raceway & Derate per 310.15(B)(3)(a):	8 C	urrent carrying	= 70%	3 Current carrying = 100%		3 Current carrying = 100%			
Total Conductor derate:	7	0% X 82% = 57	.4%	82% X 100% = 82%		82% X 100% = 82%			
Conductor derated ampacity	40A X	(57.4% = 22.96	5A > 20A	225A X 82% = 184.5A > 156.1A		> 156.1A	130A X 82% = 106.6 > 67.7A		
OCPD Size & Asso. EGC/GEC:	20A	OCPD W/ #8 EC	GC/GEC	200A OCPD W/ #6 EGC/GEC		90A OCPD W/ #6 EGC/GEC			
Conductor derated ampacity & OCPD ampacity	#10 WI	IRE IS OK ON A	20A OCPD	3/0 WIRE IS OK ON A 200A OCPD		#1 IS OK ON A 90A OCPD			

A #6 grounding conductor is specified by NEC 250.120(C), but a #8 conductor may be used if protected from physical damage.

Point of interconnection				
Type of connection	Line side tap			
Install	Perform a Line Side Tap at the line side of the Main Breaker. Use Insulated cable connectors.			
Supply-Side connection (Line-side connection): Section 705.12 (A) allows for the interconnection of power production sources to the supply side of the service disconnecting means. The condition is that the sum of the overcurrent protection devices (OCPDs) from the PV system connected to the service conductors cannot exceed the rating of the service conductors. Section 705.12 (D)(2) is intended to protect the busbar from overcurrents and it will be only apply when a Load side tap is performed.				
Solar OCPD rating	90 A			
Rating of service conductors (Table 310.15 (B)(16))335 A				
Rating of service conductors > Solar OCPD rating				

Labels in accordance with NEC 690.64 (B)(7)

Rapid Shutdown of PV System by NEC 2014 Section 690.12:

- Enphase Microinverter Systems fully meet the rapid shutdown requirement without the need to install additional electrical equipment. Properly labeling the PV system power source and rapid shutdown ability is required per NEC Section 690.56 (B) and (C). Solar electrical PV systems with Enphase Microinverters have one

utility-interactive inverter directly underneath each solar module, converting low voltage DC to utility grid-compliant AC. When the utility grid is available and the sun is shining, each microinverter verifies that the utility grid is operating within the IEEE 1547 requirements. Only then does it export AC power into the electric service for use by loads onsite or export power to the utility grid for others to use. When the utility grid has a failure, or the PV system AC circuits are disconnected from the utility service via an AC breaker, AC disconnect, or removal of the solar or main utility service meter, the microinverters stop producing AC power in fewer than six AC cycles. Enphase Microinverters are not capable of operating as an AC voltage source. This means that without an AC utility source, Enphase Microinverters are not able to energize connected wiring and no AC voltage or current can be injected into the inverter output circuits or the grid.

NOTES:

- 1. Type of connection: Line Side Tap
- 2. All conduits running on the roof surface will have a distance greater than 3-1/2 inch from roof to bottom of conduit.
- 3. Splice/Taps in gutter shall comply with NEC 376 4. Conductors in Parallel shall comply with NEC 310.10 (H)
- 5. Refer to E-2 for location of Junction boxes and equipments. 6. Every branch circuit will be protected by a 2P- 20A Breaker
- unless otherwise specified. 7. Electrical conduits could be installed inside the building by using flexible metal conduits or outside the building by using PVC SCH80 conduits. (If running outside, distance above roof to bottom of conduit shall be greater than 3-1/2 in.).

TRANSFORMER CONNECTION DIAGRAM.

REVISIONS:					
ANYTOWNHALL	MAINSTREET FLORIDA, USA	CTRICAL LAYOUT			
Project:	Address:	ELE			
COMMERCIAL PROJECT	BUILDING	GRID-TIE SOLAR PV SYSTEM			
SEAL:					
EDUARDO R. BAS FLORIDA P.E. 77463	PUERTO RICO P.E. 17485	FULLY COMPLIES WITH THE REQUIREMENTS OF NEC 690.			
5,	DATE: /3/201	.9			
SCALE DRAW ENGINE	E: AS SH	HOWN			
SERVICE PAG	≡s E:				
E	-	2			

1 Electrical layout

E.2 Scale: N.T.S.

Roof Area	
Existing roof	Concrete
Total number of modules	450
Total roof mounts	660
Total roof area	23000 sq-ft
Total photovoltaic area	8249 sq-ft
Mean roof height	40.2 ft
Roof slope	0:12
Point of connections per module	6
Aluminum rails per module	3

Width of Zone 2 and Zone 3 according to ASCE7-10:					
Least horizontal dimension	128 ft				
10% of the least horizontal dimension	(12.8 ft)				
Building mean roof height	40.2 ft				
40% of the height of building	16.08 ft				

Never less than 3'.

Notes:

- Install mid clamps between modules and end clamps at the end of each row of modules. - Aluminum Rails should always be supported by more

than one footing on both sides of the splice. - For connections between PV components refer to E-1. - Per 690.34 Junction boxes located behind modules or panels shall be so installed that the wiring contained in them can be rendered accessible directly or by displacement of a module(s) secured by removable fasteners and connected by a flexible wiring system. - Electrical conduits could be installed inside the building by using flexible metal conduits or outside the building by using PVC SCH80 or EMT conduits. (If running outside, distance above roof to bottom of conduit shall be greater

than 3-1/2 in.).

- When a system has modules in Zone 1 and Zone 2, structural calculations for the system will be performed assuming that all the modules are located in Zone 2.

3 Isometric View S.1 Scale: 1/32" - 1'

NO.	DESCRIPTION	QT
1	CAP SCREW, HEX HEAD, 5/16"-18 X 3/4" UNC-2A, GRADE 8	1
2	QBASE, 1-1/4" ID, FOR 5/16" HARDWARE, A360 CAST AL	1
3	CONCRETE ANCHOR, HEX HEAD, 5/16" X 3"	4
4	POST, 1.25" OD X 11.5", 6063-T5/6063-T6, MILL	1
5	WASHER, SEALING, 5/16" ID X 1-1/4" OD, EPDM BONDED SS	1
6	WASHER, FENDER, 5/16" ID X 1" OD, 18-8 SS	1
7	WASHER, SPLIT-LOCK, 5/16" ID, 18-8 SS	1
8	CAP SCREW, HEX HEAD, 5/16"-18 X 1" UNC-2A, 18-8 SS	1

QBase Low Slope Mount | QMLSH Waterproofing with Chem Link's E-Curb Penetration Seal System

Materials Required: Chem Link's 5" E-Curb, M-1 Structural Adhesive/Sealant, 1-Part Pourable Sealant

and post with M-1 to 3" above roof line.

around the QBase, making sure to lock E-Curbs and where the two sections Chem Link's 1-Part solution. them together. Press firmly in place intersect. Use the wooden spatula to until excess adhesive extrudes from the spread the sealant to form a smooth outside edges.

Place E-Curb sections to form a circle Apply M-1 around circumference of Fill the E-Curb cavity to the top with surface.

For use on: granulated modified bitumen, asphalt and coal tar B.U.R. (built up roofing), PVC, PIB, and TPO single ply roofing membranes. TPO Primer is required for use with TPO.

NOTE: Be sure to thoroughly read and follow manufacturer instructions for installing Chem Link's E-Curb Penetration System. Find instructions here: www.chemlink.com/e-curb

Quick Mount PV[®] RESPECT THE ROOF

925-478-8269 • www.quickmountpv.com • info@quickmountpv.com 2700 Mitchell Dr. • Walnut Creek, CA 94598

BI 7.2.3-41

Jan-2017, Rev 1

ULTRA MASONRY FASTENER

 shutter systems strengths can be realized.

PULL-0	UT AN
Anchor Diameter	Dept Embed
	1
	1-1,
5/16"	1-1,

©2017 by Quick Mount PV. All rights reserved.

STAND-OFF DETAIL S-3 SCALE: N.T.S.

SOLARMOUNT Technical Datasheets

SolarMount Mid Clamp Part No. 302101C, 302101D, 302103C, 302104D,

302105D, 302106D

0.665

0.620

UNIRAC

Mid clamp material: One of the following extruded aluminum
alloys: 6005-T5, 6105-T5, 6061-T6

- Ultimate tensile: 38ksi, Yield: 35 ksi Finish: Clear or Dark Anodized
- Mid clamp weight: 0.050 lbs (23g)
- Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents Values represent the allowable and design load capacity of a single
- mid clamp assembly when used with a SolarMount series beam to retain a module in the direction indicated
- Assemble mid clamp with one Unirac 1/4"-20 T-bolt and one 1/4"-20 ASTM F594 serrated flange nut
- Use anti-seize and tighten to 10 ft-lbs of torque Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual and third-

\prec	p	arty test results	from an IAS a	ccredited	laboratory	
	Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Load Ibs (N)	Resistance Factor, Φ
	Tension, Y+	2020 (8987)	891 (3963)	2.27	1348 (5994)	0.667

Transverse, Z± 520 (2313) 229 (1017) 2.27 346 (1539)

Sliding, X± 1194 (5312) 490 (2179) 2.44 741 (3295)

- × Dimensions specified in inches unless noted

1.00 DISTANCE

SolarMount End Clamp Part No. 302001C, 302002C, 302002D, 302003C, 302003D, 302004C, 302004D, 302005C, 302005D,

302006C, 302006D, 302007D, 302008C, 302008D, 302009C, 302009D, 302010C, 302011C, 302012C

alloys: 6005-T5, 6105-T5, 6061-T6 Ultimate tensile: 38ksi, Yield: 35 ksi Finish: Clear or Dark Anodized End clamp weight: varies based on height: ~0.058 lbs (26g) Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents Values represent the allowable and design load capacity of a single

• End clamp material: One of the following extruded aluminum

- end clamp assembly when used with a SolarMount series beam to retain a module in the direction indicated Assemble with one Unirac ¼"-20 T-bolt and one ¼"-20 ASTM F594
- serrated flange nut Use anti-seize and tighten to 10 ft-lbs of torque · Resistance factors and safety factors are determined according to

part 1 section 9 of the 2005 Aluminum Design Manual and thirdparty test results from an IAS accredited laboratory

		Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Loads Ibs (N)	Resistance Factor, Ø
VARDES WITH MODULE THICKNESS		Tension, Y+	1321 (5876)	529 (2352)	2.50	800 (3557)	0.605
		Transverse, Z±	63 (279)	14 (61)	4.58	21 (92)	0.330
nensions specified in inches (inless noted	Sliding, X±	142 (630)	52 (231)	2.72	79 (349)	0.555

SOLARMOUNT Technical Datasheets

SolarMount Beam Connection Hardware

SolarMount L-Foot Part No. 304000C, 304000D

- L-Foot material: One of the following extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6 Ultimate tensile: 38ksi, Yield: 35 ksi
- Finish: Clear or Dark Anodized
- L-Foot weight: varies based on height: ~0.215 lbs (98g) Allowable and design loads are valid when components are
- assembled with SolarMount series beams according to authorized UNIRAC documents For the beam to L-Foot connection
- •Assemblewithone ASTMF593%"-16hexheadscrewandone ASTMF594%"serratedflangenut Useanti-seizeandtightento30ft-lbsoftorque
- Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual and third-party test results from an IAS accredited laboratory
- NOTE: Loads are given for the L-Foot to beam connection only; be sure to check load limits for standoff, lag screw, or other attachment method

3X SLOT FOR S HARDWARE	Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Load Ibs (N)	Resistance Factor, Φ
- 201	Sliding, Z±	1766 (7856)	755 (3356)	2.34	1141 (5077)	0.646
10 CT 11 S	Tension, Y+	1859 (8269)	707 (3144)	2.63	1069 (4755)	0.575
Dimensions specified in inches unless noted	Compression, Y-	3258 (14492)	1325 (5893)	2.46	2004 (8913)	0.615
	Traverse, X±	486 (2162)	213 (949)	2.28	323 (1436)	0.664

SOLAR MOUNT Technical Datasheets

SolarMount Beams Part No. 310132C, 310132C-B, 310168C, 310168C-B, 310168D

Properties	Units	SolarMount	SolarMount HD
Beam Height	in	2.5	3.0
Approximate Weight (per linear ft)	plf	0.811	1.271
Total Cross Sectional Area	in²	0.676	1.059
Section Modulus (X-Axis)	in ³	0.353	0.898
Section Modulus (Y-Axis)	in ³	0.113	0.221
Moment of Inertia (X-Axis)	in4	0.464	1.450
Moment of Inertia (Y-Axis)	in⁴	0.044	0.267
Radius of Gyration (X-Axis)	in	0.289	1.170
Radius of Gyration (Y-Axis)	in	0.254	0.502

UNIRAC

Table 14. L-Foot SOLARMOUNT Series Rail Span Unirac Code-Compliant Installation Manual PG.26 SM - SOLARMOUNT HD - SOLARMOUNT Heavy Duty

Span							Distri	ibuted Load	d (pounds	/linear fool	9					
(ft)	20	25	30	40	50	60	80	100	120	140	160	180	200	220	240	260
2	SM	SM	SM	SM	SM	SM	SM	SM	SM	SM						
2.5	SM	SM	SM	SM	SM	SM	SM	HD	HD	HD						
3	SM	SM	SM	SM	SM	HD	HD	HD	HD	HD						
3.5	SM	SM	SM	SM	HD	HD	HD	HD								
4	SM	SM	SM	HD	HD	HD	HD									
4.5	SM	SM	HD	HD	HD		1									
5	SM	SM	HD	HD	HD											
5.5	SM	HD	HD	HD												
6	SM	HD	HD													
6.5	SM	HD	HD													
7	SM	SM	SM	SM	SM	SM	HD	HD								
7.5	SM	SM	SM	SM	SM	SM	HD	HD								
8	SM	SM	SM	SM	SM	SM	HD	Dotorn	nine th	o Distrit	hutod L	nad w	alf by	multiply	ing the	
8.5	SM	SM	SM	SM	SM	HD	HD	modul	e lenat	h R (ft)	hv the	Total D	esian l	oad P	ing ine 'nef) an	d
9	SM	SM	SM	SM	HD	HD	HD	dividin	a hy th	ree Lis	e the m	aximun	n ahsoli	ite value	of the	three
9.5	SM	SM	SM	SM	HD	HD	HD	downfe	orce ca	ses and	the Ur	lift Cas	e We a	assume	each m	odule
10	SM	SM	SM	HD	HD	HD	HD	is supr	orted	by three	a rails.		0. 110 0	oburno	ouonn	rouuro
10.5	SM	SM	SM	HD	HD	HD	-	w = PE	3/3							
11	SM	SM	HD	HD	HD	HD		w = Di	stribute	ed Load	(pound	ls per li	near foo	ot, plf)		
11.5	SM	HD	HD	HD	HD	HD		B = Mc	dule L	ength F	Perpena	icular to	o Rails	(ft)		
12	SM	HD	HD	HD	HD	HD		P = To	tal Des	ign Pre	ssure ()	oounds	per squ	are fool	t, psf)	

PULL-OUT AND SHEAR VALUES							
Anchor Depth of		Hollow Block (1,872 p.s.i)		Cond (3,513	crete 8 p.s.i.)	Wood (specific gravity: .55)	
Diameter	Embedment	pull-out	shear	pull-out	shear	pull-out	shear
	1"	_	_	851	1801	1454	1188
	1-1/4"	1145	1454	-	-	-	-
5/16"	1-1/2"	-	-	-	-	2472	1677
	1-3/4"	_	_	2643	3404	-	-
	2"	_	_	3347	-	3233	2407

INSTALLATION

The 5/16" Ultracon® masonry fastening system consists of the Ultracon® fastener, the 516 installation tool and an Elco[®] carbide-tipped drill bit. Consistent performance and maximum pullout strength can be assured only when all three elements of the system are properly used.

Fastener Length and Diameter: The length of the Ultracon fastener to be used is determined by combining the thickness of the attachment (A) with the desired depth of embedment in the masonry material (B). It is recommended that a minimum of 1" and a maximum of 1-3/4" embedment be used in determining fastener length.

Hole Depth: A 1/4" Elco carbide-tipped drill bit is supplied with each box of 5/16" Ultracon[®] fasteners. The correct hole depth (B & C) can normally be obtained by drilling the full length of this bit. In all cases, the hole must be at least 1/4" deeper than the depth of the fastener embedment. Normal safety precautions should be observed when drilling the holes to avoid electrical installations, other utilities and reinforcement bars. Hole Diameter: The diameter of the drilled hole is also

important to the performance of the Ultracon® masonry fastening system. To provide proper hole diameters, Elco[®] carbide-tipped drill bits are manufactured to closer standards than those called for in the American National Standard. Using Elco[®] carbide-tipped bits will help assure consistent fastener performance and maximum pullout strength.

Wind Load Calculations Velocity Pressure (ASCE 7-10 (3

Qz = 0.00256 Kz	Kzt Kd V^2 (lb/sq-ft)
Exposure category	
Kz (Velocity pressure exposure)	
Kzt (Topographic factor)	
Kd (Wind directionality factor)	
V (Wind Speed)	
Mean height	
Qz (Velocity pressure)	
Applying ASD Design Load Factor (0.6)	

Design Wind Pressures (ASCE 7-10

p = Qz (GCp) - Qz (GCpi) (lb/ sq-ft) (N/ sq-m

Effective wind are	ea (ASCE 7-10 (26.2))				
Component	Area	(sq-ft)			
Solar Modules	18	3.33			
Racking system mallest area of continuous modules on a run of rails.)	293	3.28			
Mounts		1			
Internal Pressure Coefficie	nt (GCpi) (ASCE 7-10 (C2	6.11))			
Uplift	-0	.18			
Downward	Downward 0.18				
External Pressure Coefficient	(GCp) (ASCE 7-10 Figure	30.4 -2B)			
Solar	Solar Modules				
Zones	Uplift	Downward			

Solar Modules			
Zones	Uplift	Downward	
1	-0.98	0.3	
2	-1.68	0.3	
3	-2.5	0.3	
Total wi	nd load (psf)		
1	-54.74	22.65	
2	-87.77	22.65	
3	-126.46	22.65	

Racki	ng System
Zones	Uplift
1	-0.90
2	-1.10
3	-1.10
Total wi	nd load (psf)
1	-50.96
2	-60.40
3	-60.40

	M	lounts
Zones		Uplift
1		-0.9
2		-1.7
3		-2.6
	Total wi	nd load (psf)
1		-50.96
2		-88.71
3		-131.18

A = attachment thickness B = Ultracon® embedment

A + B = Ultracon [®] length B + C = hole depth (must be at least 1/4" deeper than Ultracon [®] embedment)	(min. of 1", m	ax. of 1-3/4	! ")
A 1/4" minimum C	A + B = Ultracon4 B + C = hole dep	[®] length th (must be	at
A A JA"minimum C	Ultracon	⁴ deeper tr [®] embedme	nt)
A B 1/4" minimum C]	¥
B 1/4" minimum C			A
			B
	100000		Ă

0.3.2))	
С	
1.04	
1	
0.85	
186	
40.2	
78.64	
47.19	
(30.4.2))	
meter)	
5.2))	
Area (sq-ft)	

Downward
0.2
0.2
0.2
17.93
17.93
17.93

Downward
0.5
0.5
0.5
32.09
32.09
32.09

Total Design Load Calculation

This procedure is based on the UNIRAC Code-Compliant Installation Manual, Part II, Step 1. "Determine the Total Design Load". ASCE 7-10 (2.4.1)

For this particular case, only the "downforce case 2" and "uplift" have been taken into consideration.

P(psf) = 1xD + 1x Pnet (Downforce)

P(psf) = 0.6xD + 1x Pnet (Uplift)

(P = Total Design Load)

(Pnet = Wind Load)

(D = Dead Load) * Pnet have been calculated following the Allowable Stress Design method.

The maximum absolute value of the 2 cases is the Uplift Load. This value have been used for sizing the mounts.

Dead load of the critical row			
Components	Weight / Unit	#	
Solar module	39.70 Lbs	19	
Micro-Inverters	4.00 Lbs	19	
Rails	80.43 Lbs	3	
Mounts	0.22 Lbs	27.0	
Total We	1077.4 lbs		
Total A	348.33 sq-ft		
Dead Lo	3.09 psf		

Total Design Load on Mounts -49.11 psf

	Mounts load cald
Soları	modules in critical row
	Total Area
	Wind Load
	Total Wind Load
Total Ro	of Mounts in critical row
Tens	ion Force per Mount

CONCRETE ANCHORS, HE	
Allowable load	
Number of anchors per mount	
Total allowable load	
Max. Required load	
Safety factor	