Math 4315 - PDEs

Sample Test 1 - Solutions

1. Solve the following first order PDEs by introducing an alternate coordinate system (i.e. $(x, y) \rightarrow(r, s))$

$$
\begin{aligned}
\text { (i) } \quad x u_{x}-y u_{y} & =2 u \\
\text { (ii) } y u_{x}-u_{y} & =1
\end{aligned}
$$

Solutions
(i) If $u_{s}=u_{x} x_{s}+u_{y} y_{s}$ then choosing

$$
x_{s}=x, \quad y_{s}=-y, \quad \text { gives } \quad u_{s}=2 u
$$

Solving gives

$$
x=a(r) e^{s}, \quad y=b(r) e^{-s}, \quad u=c(r) e^{2 s}
$$

where $a(r), b(r)$ and $c(r)$ are arbitrary functions of r. Eliminating s from the first two and first and third gives

$$
x y=a(r) b(r)=A(r), \quad \frac{u}{x^{2}}=c(r) / a(r)^{2}=B(r) .
$$

Noting again that $A(r)$ and $B(r)$ are arbitrary. Further, elimination of r gives

$$
\frac{u}{x^{2}}=f(x y) \quad \text { or } \quad u=x^{2} f(x y)
$$

(ii) If $u_{s}=u_{x} x_{s}+u_{y} y_{s}$ then choosing

$$
x_{s}=y, \quad y_{s}=-1, \quad \text { gives } \quad u_{s}=1
$$

Solving the second and third gives

$$
y=-s+b(r), \quad u=s+c(r)
$$

giving the first as

$$
x_{s}=y=-s+b(r)
$$

Integrating gives

$$
x=-\frac{(b(r)-s)^{2}}{2}+a(r)
$$

where $a(r), b(r)$ and $c(r)$ are arbitrary functions of r. Eliminating s from x and y gives

$$
x+\frac{y^{2}}{2}=a(r), \quad \text { or } \quad 2 x+y^{2}=A(r)
$$

Eliminating s from y and u gives

$$
u+y=c(r)+b(r)=B(r)
$$

Noting again that $A(r)$ and $B(r)$ are arbitrary. Further, elimination of r gives

$$
u+y=f\left(2 x+y^{2}\right) \quad \text { or } \quad u=-y+f\left(2 x+y^{2}\right)
$$

2. Solve the following using the method of characteristics

$$
\begin{aligned}
\text { (i) } \quad x u_{x}+(x+2 y) u_{y} & =u, \quad u(x, 0)
\end{aligned}=x^{2}, ~ \begin{aligned}
(i i) x u_{x}+2 u u_{y} & =u, u(x, 0)=x^{2}
\end{aligned}
$$

Solutions
(i) The characteristic equations are

$$
\frac{d x}{x}=\frac{d y}{x+2 y}=\frac{d u}{u}
$$

Solving the first pair, i.e.

$$
\frac{d x}{x}=\frac{d y}{x+2 y} \quad \text { gives } \quad c_{1}=\frac{y}{x^{2}}+\frac{1}{x}
$$

Solving the first and third, i.e.

$$
\frac{d x}{x}=\frac{d u}{u} \quad \text { gives } \quad c_{2}=\frac{u}{x}
$$

The solution is therefore given by

$$
\frac{u}{x}=f\left(\frac{y}{x^{2}}+\frac{1}{x}\right) \quad \text { or } \quad u=x f\left(\frac{y}{x^{2}}+\frac{1}{x}\right)
$$

Imposing the initial condition $u(x, 0)=x^{2}$ gives

$$
u(x, 0)=x f\left(\frac{1}{x}\right)=x^{2} \quad \Longrightarrow \quad f(x)=\frac{1}{x}
$$

This gives the solution as

$$
u=x \frac{1}{\frac{y}{x^{2}}+\frac{1}{x}}=\frac{x^{3}}{x+y}
$$

(ii) The characteristic equations are

$$
\frac{d x}{x}=\frac{d y}{2 u}=\frac{d u}{u}
$$

Solving the first and third, i.e.

$$
\frac{d x}{x}=\frac{d u}{u} \quad \text { gives } \quad \ln |x|=\ln |u|-\ln \left|c_{2}\right| \quad \text { or } \quad \frac{u}{x}=c_{2} .
$$

Solving the second and third, i.e.

$$
\frac{d y}{2 u}=\frac{d u}{u} \quad \text { gives } \quad \frac{y}{2}=u-c_{1} \quad \text { or } \quad c_{1}=u-\frac{y}{2} .
$$

The solution is therefore given by

$$
\frac{u}{x}=f\left(u-\frac{y}{2}\right) \quad \text { or } \quad u=x f\left(u-\frac{y}{2}\right)
$$

Imposing the initial condition $u(x, 0)=x^{2}$ gives

$$
x^{2}=x f\left(x^{2}-0\right) \quad \Longrightarrow \quad f\left(x^{2}\right)=x \quad \Longrightarrow \quad f(x)=\sqrt{x}
$$

This gives the solution as

$$
u=x \sqrt{u-\frac{y}{2}}
$$

3. Solve the following nonlinear PDE

$$
\begin{aligned}
(i) \quad x u_{x}^{2}+u_{y} & =1, \quad u(x, 1)=x+1 . \\
\text { (ii) } u_{x} u_{y}-2 x u_{x}-2 y u_{y} & =0, \quad u(x, 0)=x^{2}
\end{aligned}
$$

Solution
(i) If $F=x p^{2}+q-1$ then the characteristic equations are

$$
\begin{align*}
& x_{s}=F_{p}=2 x p \tag{1.4a}\\
& y_{s}=F_{q}=1 \tag{1.4b}\\
& u_{s}=p F_{p}+q F_{q}=2 x p^{2}+q \tag{1.4c}\\
& p_{s}=-\left(F_{x}+p F_{u}\right)=-p^{2} \tag{1.4d}\\
& q_{s}=-\left(F_{y}+q F_{u}\right)=0 . \tag{1.4e}
\end{align*}
$$

To these we associate the following initial condition. When $s=0$, then

$$
\begin{equation*}
y=1, \quad x=r, \quad u=r+1, \quad p=1, \quad q=1-r \tag{1.5}
\end{equation*}
$$

where p is obtained from differentiating the initial condition and q from the original equation.

From (1.4d) and (1.4e) we find that

$$
\frac{1}{p}=s+A(r), \quad q=B(r)
$$

From the boundary conditions (1.5) we find that $A=1$ and $B=1-4$ so

$$
\frac{1}{p}=s+1, \quad q=1-r
$$

From (1.4a) and (1.4a) we integrate giving

$$
x=C(r)(s+1)^{2}, \quad y=s+D(r)
$$

The boundary conditions (1.5) gives $A=r$ and $D=1$. Thus,

$$
\begin{equation*}
x=r(s+1)^{2}, \quad y=s+1 \tag{1.6}
\end{equation*}
$$

From (1.4c) we have

$$
\begin{gather*}
u_{s}=2 x p^{2}+q=r+1 \Rightarrow \\
u=(r+1) s+E(r)=(r+1) s+r+1 \tag{1.7}
\end{gather*}
$$

Eliminate r and s from (1.6) and (1.7) gives the solution

$$
u=y+\frac{x}{y} .
$$

(ii) If $F=p q-2 x p-2 y q$ then the characteristic equations are

$$
\begin{align*}
x_{s} & =F_{p}=q-2 x \tag{1.8a}\\
y_{s} & =F_{q}=p-2 y \tag{1.8b}\\
u_{s} & =p F_{p}+q F_{q}=2 p q-2 x p-2 y q=p q \tag{1.8c}\\
p_{s} & =-\left(F_{x}+p F_{u}\right)=2 p \tag{1.8d}\\
q_{s} & =-\left(F_{y}+q F_{u}\right)=2 q . \tag{1.8e}
\end{align*}
$$

To these we associate the following initial condition. When $s=0$, then

$$
\begin{equation*}
y=0, \quad x=r, \quad u=r^{2}, \quad p=2 r, \quad q=2 r \tag{1.9}
\end{equation*}
$$

where p is obtained from differentiating the initial condition and q from the original equation. As we need p and q to find x, y and u, we focus on these first. Solving (1.8d) and (1.8e) for p and q gives

$$
p=a(r) e^{2 s}, \quad q=b(r) e^{2 s}
$$

and imposing the initial condition gives $a(r)=2 r$ and $b(r)=2 r$. Thus,

$$
\begin{equation*}
p=2 r e^{2 s}, \quad q=2 r e^{2 s} . \tag{1.10}
\end{equation*}
$$

From (1.8c) we see that

$$
u_{s}=4 r^{2} e^{4 s}
$$

which integrates giving

$$
u=r^{2} e^{4 s}+c(r),
$$

and the initial condition here gives $c(r)=0$. Substituting (1.10) into (1.8a) and (1.8b) gives

$$
x_{s}+2 x-2 r e^{2 s}=0, \quad y_{s}+2 y-2 r e^{2 s}=0
$$

Solving yields

$$
x=\frac{r}{2} e^{2 s}+d(r) e^{-2 s}, \quad y=\frac{r}{2} e^{2 s}+e(r) e^{-2 s} .
$$

Applying the remaining initial conditions gives

$$
r=\frac{r}{2} e^{0}+d(r) e^{0}, \quad 0=\frac{r}{2} e^{0}+e(r) e^{0},
$$

showing that $d(r)=\frac{r}{2}$ and $e(r)=-\frac{r}{2}$. Thus, we have the following parametric solutions

$$
x=\frac{r}{2}\left(e^{2 s}+e^{-2 s}\right), \quad y=\frac{r}{2}\left(e^{2 s}-e^{-2 s}\right), \quad u=r^{2} e^{4 s} .
$$

Eliminating r and s gives

$$
u=(x+y)^{2}
$$

