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This chapter is a user’s manual for the CONVNET program, available as

a free download from the author’s website.  The first section lists every

menu option, along with a brief description of its purpose and the page

number on which more details can be found if the short description is not

sufficient.

Menu Options

File Menu

Read control file - Page 182

A standard text file is read.  This file contains architectural

specifications for the model (this is the only way to define

architecture), and optionally may contain commands to read or

create input images or train the model.

Read MNIST image

A standard MNIST-format file is read.  The corresponding label file

must be read after the image file is read.  Only one MNIST

image/label pair may be read.  Other file reading options are

disabled after an MNIST image/label pair is read.  It is assumed

that there will be ten classes; this is hard-coded into the program. 

However, the size of the images is not hard coded.  It is read from

the file.  The product of the number of rows times the number of

columns cannot exceed 2^16-1=65,535.  This unfortunate limitation

comes from a hardware property of current CUDA devices which

would be difficult to work around.

Read MNIST labels

A standard MNIST-format label file is read.  It is assumed that

there are ten classes.  The corresponding MNIST image file must be

read before the label file is read.

Read CIFAR-10 image

A standard CIFAR-10-format file is read.  Multiple CIFAR-10 files

may be read, in which case they are concatenated.  This command

cannot be used if MNIST or series data is already present.
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Read series - Page 183

A univariate time series is read and a set of predictors is computed

based on the values of the series, optionally differenced and/or log

transformed.  Class identities are generated.  This selection brings

up a menu in which parameters relevant to reading the series may

be entered.  These parameters, in the context of control files, are

discussed starting on Page 183.

Make image

An artificial image having random tones is generated to enable

quick and easy testing of data and model configurations.  The user

specifies the height and width, the number of bands, the number

of classes, and the number of cases.  This command cannot be used

if a dataset is already present.

Clear all data

All training data is erased, but a trained model (if it exists) is

retained.  The purpose of this command is to allow reading a test

dataset and evaluating the performance of a trained model on this

new dataset.  A common sequence of operations is Read training

data, Train, Clear, Read test data, Test.

Print

The currently selected display window (created under the Display

menu) is printed.  If no window is selected, Print is disabled.

Exit

The program is terminated.
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Test Menu

Use CUDA (Toggle Yes/No)

This option is enabled only if a CUDA-capable device is present on

the computer.  If a check mark appears next to this option, the

CUDA device will be used for compute-intensive operations.  Click

this option to toggle the check mark on and off.

Training params - Page 188

Parameters relevant to training can be set.  This selection brings up

a dialog box in which these parameters may be changed from their

default values.  The nature of these parameters is discussed in the

context of a control file on Page 188.

Train - Page 191

The model is trained using the data currently present.  It is

important to understand which phases of training can and cannot

be interrupted with the ESCape key.  See Page 191 for details.

Test

The trained model is tested with the data currently present.  The

current version of CONVNET does not allow interruption of

computing the confusion matrix; you’ll just have to sit and wait for

it to finish.  Sorry.  It’s on my list, but for some technical reasons it’s

not a quick-and-easy fix.  I hope to post updated versions of the

program on my website as improvements occur.

Print model weights

All model weights are printed to the CONVNET.LOG file.  This can

be gigantic!  Even modest models can have so many weights that

writing them to the CONVNET.LOG file can take several minutes

and consume megabytes.  You’ve been warned.
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Display Menu

Display training images - Page 192

A user-selectable set of the images in the current dataset is

displayed.

Display filter images - Page 193

If a trained model exists, and the first hidden layer of this model is

convolutional, this option displays as images the filter weights for

a user-selectable set of slices.

Display activation images - Page 194

If a trained model exists, this option displays as images the

activations of the visual field of the first hidden layer for a user-

selectable set of slices and training case.
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Read Control File

Intelligent readers will study this section and learn to perform most or all

operations via a control file.  Every CONVNET operation except specifying

the model architecture can be done with the menu system, and that may

be the preferable approach if one is just idly fooling around.  However, in

the vast majority of cases, it is best for the user to first create a control file

using any ordinary text editor, and completely specify all project details in

this file.  This avoids tedious repetitive entry of parameters via the menu

system, and it also provides hard documentation of all project

specifications.

A control file is an ordinary text file.  Each line of this file specifies a single

aspect of the project.  Comments can be inserted by starting a line with two

forward slashes (//).  This also provides a convenient mechanism for

temporarily deactivating lines in the file without deleting them.

Making and Reading Image Data

This section describes methods for making random test images as well as

reading popular-format image files.

MAKE  IMAGE  Rows  Columns  Bands  Classes  Cases
This produces a set of training images having random tones.  The

user specifies the height and width, the number of bands, the

number of classes, and the number of cases.  This command cannot

be used if a dataset is already present.

READ  MNIST  IMAGE   “FileName”
An MNIST image file is read.  This command cannot be used if a

dataset is already present.  The corresponding label file must be

read after the image file is read.

READ  MNIST  LABELS   “FileName”
An MNIST label file is read.  This command would normally follow

a READ MNIST IMAGE command.
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Figure 5.1: Series images from OEX

READ  C10  IMAGE   “FileName”
A CIFAR-10 image file is read.  This command cannot be used if a

dataset other than CIFAR-10 is already present.  Multiple CIFAR-10

image files may be read, and their contents will be concatenated.

Reading a Time Series as Images

This is a powerful technique for converting a time series to a set of images. 

A moving window is passed across a time series.  Each placement defines

an image.  This window image is divided into a user-specified number of

rows (value of the series) and columns (relative time in the window).  The

path of the series is set to black in the image, and everything else is set to

white.  Figure 5.1 below shows a typical set of images produced from

prices of OEX, the Standard and Poor’s 100 index, as the window slides

along left to right.
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 The command to read the series and produce the image set is shown

below.  Nothing else need be specified.  However, in most cases the user

will wish to change some specifications from their defaults.  The legal

specifications are also shown, with their default values indicated. 

Naturally, all such specifications must appear before the READ SERIES

command to which they will apply.

The series file must be an ordinary text file.  It may contain a header, and

it may contain multiple columns.  If there are multiple columns, spaces,

tabs, and commas serve as delimiters.  There is one observation per record.

READ  SERIES   “FileName”
A time series file is read.  This command cannot be used if a dataset

is already present.  A moving window is applied to the series to

produce a set of images.

SERIES  COLUMN = Column
The series data can be fetched from any column.  This specifies the

column containing the desired values.  The default is 1.

SERIES  WINDOW = Width
This is the number of records in each window placement.  Hence,

it is the width of the images.  The default is 16.

SERIES  RESOLUTION = Resolution
This is the vertical resolution in each window placement.  Hence,

it is the height of the images.  The default is 16.

SERIES  SHIFT = Shift
This is the number of records that each window placement will

advance to produce the next image.  The default is 1.

SERIES  RAWDATA
This, the default, specifies that the values read from the file are

used as the series data.

SERIES  RAWLOG
This specifies that the log of the values read from the file are used

as the series data.
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SERIES  DIFFDATA
This specifies that the differences in the values read from the file

are used as the series data.  In other words, each computed series

value is the current value of the file series minus the prior value.

SERIES  DIFFLOG
This is identical to SERIES DIFFDATA except that the difference of

the logs is used.  Equivalently, this is the log of the ratios.

SERIES  FRAC FULL = Fraction
This is the fraction (0-1) of training set cases that are forced to

occupy the full vertical range of the window.  Windows are not

necessarily individually normalized (scaled), as this would distort

information content.  Normalization is usually relative to the entire

series.  A specification of zero maps the greatest range of the series

across all windows to the full vertical range of the window,

meaning that (except for ties) only one window will display the full

vertical range.  In many situations this will result in many or most

windows having very little variation; they are essentially a flat line. 

A specification of one causes each window to be individually

normalized, so all windows display the full vertical range.  This is

probably not good, as it fails to distinguish windows having little

series variation from those having great variation; that’s important

information, and it’s lost.  The default is 0.2.  This means that the

80'th percentile (1 minus 0.2) of within-window ranges is the

variation that maps to the full vertical range for those 80 percent of

cases.  The 20 percent of windows whose series range exceeds this

quantity are individually normalized to full vertical range.  A

simple way of thinking about this specification is that this is the

fraction of cases that are individually normalized to the full vertical

range.  In most applications this should be well under 0.5.
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SERIES TARGET NO DIFF
This, the default, specifies that the target class is determined by the

next value in the series past the window.  This determination will

be based on the undifferenced or differenced nature of the series. 

In other words, the target will be determined by the difference

between the next value outside the window minus the last value in

the window, if and only if the user specifies that the series is

differenced.  Differencing of the target matches the predictors.

SERIES TARGET DIFF
Specify this option if the series is not differenced (RAWDATA or

RAWLOG) but you want the target determination to be based on

differences.  This would be appropriate, for example, in financial

market prediction.

SERIES CLASS ZERO
This, the default, specifies that the class of a case is defined by the

sign of the target (which may or may not have been differenced, as

above).  One class is for targets greater than zero, and the other for

targets less than or equal to zero.

SERIES CLASS MEDIAN
This specifies that the class of a case is defined by the value of the

target relative to the median across the training set.  One class is for

targets greater than the median, and the other for targets less than

or equal to the median.

SERIES CLASS THIRDS
This specifies that the class of a case is defined by the value of the

target relative to the 33 and 66 percentiles across the training set. 

There are three classes, a low, middle, and high class.

SERIES NO HEADER
This, the default, specifies that the series file has no header record. 

The data begins with the first record.

SERIES HEADER
This specifies that the series file has a header, so the first record is

skipped.
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Model Architecture

The architecture of the model must be specified in a control file; there is no

menu interface for doing so.  Layers of the model are given in order from

the first hidden layer to the last.  There are no specifications for the input

and output layers.  The following layer types may be defined:

FULLY  CONNECTED  LAYER  Slices
This creates a fully connected layer consisting of the specified

number of slices.  In architecture reports, it will appear as having

one row, one column, and a depth equal to the number of slices.

LOCAL  LAYER  Slices hwV  hwH  padV  padH  strideV  strideH
This creates a locally connected layer having the specified number

of slices, vertical and horizontal half-widths, vertical and horizontal

padding, and vertical and horizontal stride.  The dimensions of the

visual field of this layer are given by Equation (2.8) on Page 25.

CONVOLUTIONAL  LAYER  Slices hwV  hwH  padV  padH  strideV  strideH
This creates a convolutional layer having the specified number of

slices, vertical and horizontal half-widths, vertical and horizontal

padding, and vertical and horizontal stride.  The dimensions of the

visual field of this layer are given by Equation (2.8) on Page 25.

POOLED  AVERAGE  LAYER  widthV  widthH  strideV  strideH
This creates an average pooling layer with the specified vertical

and horizontal widths (not half-widths) and stride.  The

dimensions of the visual field of this layer are given by Equation

(2.8) on Page 25.  The number of slices is equal to the number in the

prior layer.

POOLED  MAX  LAYER  widthV  widthH  strideV  strideH
This creates a max pooling layer with the specified vertical and

horizontal widths (not half-widths) and stride.  The dimensions of

the visual field of this layer are given by Equation (2.8) on Page 25. 

The number of slices is equal to the number in the prior layer.
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Training Parameters

The following parameters relevant to training may be set.  Default values

are as indicated.  It may be that a revised CONVNET program may change

these defaults from those that are printed here.  The defaults for the

current version of the program can be seen by selecting the Test / Training

parameters menu option.

MAX  BATCH = Number
This is relevant only for CUDA training.  Kernel launches are

divided into subsets of the full training set in order to prevent the

infamous Windows WDDM timeout.  This parameter limits the

maximum number of cases in a subset.  The default is 100.  Lower

this number to lower the per-launch time for all training steps.

MAX  HID  GRAD = Number
This is the maximum number of hidden neurons that will be

processed per launch during CUDA gradient computation of

convolutional and locally connected layers.  Lowering this number

can reduce the per-launch time for gradient computation, without

affecting any other aspect of training.  In many situations, it is best

to leave this be huge and limit time with the next parameter, MAX

MEM GRAD.  The default is 65535, which is the maximum legal

value.

MAX  MEM  GRAD = Number
This is the preferred way to lower the time required for gradient

computation of convolutional and locally connected layers.  It does

not impact any other operations.  This specifies the maximum

memory in megabytes to dedicate to scratch work for convolutional

hidden layers.  A useful side effect is that limiting the memory

causes launches to be broken into smaller sets of hidden neurons,

which reduces the per-launch compute time and hence can prevent

Windows WDDM timeouts.  Lower this number to reduce per-

launch compute time.  You may also wish to use a smaller number

if your CUDA device has limited on-board memory.  The default

is 2047 megabytes, which is the maximum legal value.
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To summarize the prior three parameters.... Windows limits CUDA

computation time for a single kernel launch.  The limit is generally two

seconds.  If this time is exceeded, the screen will temporarily go black, and

an error message will appear, and the application will be severely

compromised.  If this happens, you must reduce per-kernel time.  Study

the CUDA.LOG file to see where excessive per-launch time is occurring. 

 Activation and gradient computation are the only serious time eaters. The

MAX BATCH parameter impacts all operations.  The MAX HID GRAD

and MAX MEM GRAD parameters affect only gradient computation for

locally connected and convolutional layers.  Adjust these three parameters

as needed to bring per-launch time under the Windows limit.  The default

values apply no limitation, which is good whenever possible, as breaking

the task into multiple launches introduces significant overhead.

ANNEAL  ITERS = Number
This is the number of simulated annealing iterations used to find

good starting weights for refinement.  The user can interrupt

annealing by pressing the ESCape key, at which point refinement

will commence with the best weights found so far.  The default is

100.

ANNEAL  RANGE = Number
This is the approximate range of random values tried at the start of

simulated annealing.  Larger value provide a wider search space

but are also more likely to produce excessively large initial weights

which can never be reduced to reasonable values.  It’s better to err

on the side of too small than too large.  The default is 0.1.

MAX  ITERS = Number
This is the maximum number of conjugate gradient iterations used

for weight refinement.  The default is 1000.  It may be good to set

this to a smaller value if you are processing a collection of training

operations in a single control file.  However, in most cases it’s best

to make this a very large number and use the next parameter, TOL,

to end training.  Or you can manually interrupt training when the

criterion graph looks like it has stabilized.
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TOL = Number
This is the preferred method for determining convergence of the

weight refinement algorithm.  Roughly speaking, this specifies the

degree of iteration-to-iteration criterion improvement for deciding

that convergence is obtained.  The default is 0.00005.  Smaller

values will force more extended training.  Training ends when

either MAX ITERS or TOL is hit.

WPEN = Number
This is the weight penalty, which penalizes large weights.  A

positive value will, by definition, degrade the performance

criterion of the trained model.  However, because large weights are

often associated with overfitting, one may obtain better out-of-

sample performance.  The default is zero.  A little weight penalty

goes a long way, so if you experiment, start out very small, such as

0.001 or so.
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Operations

As of now, there are three operations that can be performed with

CONVNET within a control file.  These are:

TRAIN
A model is trained using the current dataset.  This operation can be

roughly divided into four phases.  In the first phase, simulated

annealing is used to find good starting weights for subsequent

refinement.  Pressing the ESCape key interrupts annealing, and

refinement will proceed with the best weights found so far.

The second phase is weight refinement using conjugate gradient

optimization.  This, too, can be interrupted with ESCape.  However,

in some cases the computer may take considerable time to respond,

as certain sub-phases are not interruptible.  Be patient.

The third phase is short, a final pass through the data with the best

weights found.  This phase can be interrupted with ESCape. 

However, doing so will cause all results to be lost.  Be warned.

The fourth phase is computation of the confusion matrix. 

Unfortunately, the current version of CONVNET does not allow

interruption of this operation.  Patience is a virtue.

TEST
This assumes that a dataset as well as a trained model are present. 

Performance criteria, mainly the confusion matrix, are computed.

CLEAR
All data is erased, but a trained model, if present, is not disturbed. 

The usual purpose of this command is to allow reading of a test set

after a model has been trained.  The usual sequence is:

Read training data

Train

Clear

Read test data

Test
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Display Options

Several options for displaying useful information as screen images are

available.  They are described in this section.

Display Training Images

Images from the training set are displayed.  This option is enabled only if

the images have one or three bands.  The user enters the following

information on a menu:

First to display

This is the ordinal number (1 is the first) of the first training set case

to display.  Images start in the upper-left corner of the screen and

advance left to right first.  If the total number to display exceeds the

number in the training set, cases will wrap around to the first case

in the training set.

Rows

This many rows of images will be displayed.

Columns

This many columns of images will be displayed.  The total number

of training cases displayed is Rows times Columns.
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Display Filter Images

If the input image has either one or three bands, and a trained model

exists, and the first hidden layer of this model is convolutional, this option

displays filter weights as images.  The displayed images have the same

dimensions  and orientation as the filter.

If the input image has one band, the display is black and white, with

strongly negative weights being black and strongly positive weights being

white.  Intermediate weights are shades of gray.

If the input image has three bands, the display use a three-color display,

with red, green, and blue matching the corresponding colors in the input

image.  For example, if the weights for all three bands are strongly

negative, the corresponding image pixel will be black.  If all three are

strongly positive, the pixel will be white.  A red pixel means that the

weight for the red channel of the input image is strongly positive, and the

weights for the other two channels are strongly negative.  Et cetera.  The

user specifies the following parameters:

First slice to display

This is the ordinal number of the first slice to display.  Images start

in the upper-left corner of the screen and advance left to right first. 

If the total number to display exceeds the number of slices, they

will wrap around to the first slice.

Rows for slices

This many rows of slice images will be displayed.

Columns for slices

This many columns of slice images will be displayed.  The total

number of slices displayed is Rows times Columns.

Scale slices individually

By default, the scale for mapping weights to tone is determined by

examining all Rows times Columns displayed weights.  If this box is

checked, scaling is applied to each image separately, which may

over-emphasize low-utility filters.
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Display Activation Images

If a trained model and dataset are present, we can display the activations

of the first hidden layer (any layer type) as images.  The images are black

and white, with black representing the lowest activation possible, and

white the highest.

The user specifies the following parameters:

First slice to display

This is the ordinal number of the first slice to display.  Images start

in the upper-left corner of the screen and advance left to right first. 

If the total number to display exceeds the number of slices, they

will wrap around to the first slice.

Rows for slices

This many rows of slice images will be displayed.

Columns for slices

This many columns of slice images will be displayed.  The total

number of slices displayed is Rows times Columns.

Case number

This is the ordinal number of the training case whose activations

are displayed.  It must not exceed the number of training cases.
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Example of Displays

This section provides an example demonstrating the several display

options that are available.

Figure 5.2 on the next page shows an example of the numeral zero taken

from the MNIST dataset.  A model consisting of a single convolutional

layer having eight slices is created to train using the MNIST dataset. 

Figure 5.3 shows what the weights for each of these eight slices look like

early in the training process.  Note the great randomness.  Figure 5.4 shows

the same display after training has progressed to convergence.  Note how

clear response patterns have emerged.  Finally, Figure 5.5 shows the

activation pattern of the eight slices when presented with the MNIST zero

of Figure 5.2.

It’s worth pursuing this a little further.  Look at the weight pattern in the

second slice (top row, second from left) of Figure 5.4.  It’s very bright (high

positive weights) near the center, and fairly or greatly dark (zero or

negative weights) elsewhere.  As one would expect, the activation pattern

for the same slice in Figure 5.5 largely replicates the input image, though

with some blurring.

Compare this with the last (bottom-right) slice.  This weight set is just the

opposite, being very dark (negative weights) in the center.  We see in the

corresponding activation display that the pattern is the negative of the

input image.  Lovely.
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Figure 5.2: MNIST zero

Figure 5.3: Weights early in training
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Figure 5.4: MNIST weights trained to convergence

Figure 5.5: MNIST zero activations
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The CONVNET.LOG file

The CONVNET program writes a log file that contains information about

all operations.  In order to understand this file, the following control file

was created.  It employs every available layer type.

MAKE IMAGE 12 12 1 6 1024
CONVOLUTIONAL LAYER  6 1 1 1 1 1 1
POOLED MAX LAYER 3 3 2 2
LOCAL LAYER  3 1 1 1 1 1 1
POOLED AVERAGE LAYER 3 3 2 2
FULLY CONNECTED LAYER 4
WPEN = 0.001
TRAIN

The log file echoes these lines, which we will skip here.  The first important

section in the log file is its description of the model’s architecture.

Input has 12 rows, 12 columns, and 1 bands
Model architecture...
Model has 6 layers, including fully connected output
   Layer 1 is convolutional, with 6 slices, each 12 high and 12 wide
     Horz half-width=1, padding=1, stride=1
     Vert half-width=1, padding=1, stride=1
     864 neurons and 10 prior weights per slice gives 60 weights
   Layer 2 is 3 by 3 pooling max, with stride 2 by 2, 5 high, 5 wide, and 6 deep
   Layer 3 is locally connected, with 3 slices, each 5 high and 5 wide
     Horz half-width=1, padding=1, stride=1
     Vert half-width=1, padding=1, stride=1
     75 neurons and 55 prior weights per neuron gives 4125 weights
   Layer 4 is 3 by 3 pooling average, with stride 2 by 2, 2 high, 2 wide, and 3 deep
   Layer 5 is fully connected, with 4 slices, each 1 high and 1 wide
     4 neurons and 13 prior weights per neuron gives 52 weights
   Layer 6 (output) is fully connected, with 6 slices (classes)
     6 neurons and 5 prior weights per neuron gives 30 weights
   4267 Total weights for the entire model
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Because the first layer (convolutional) has the padding equal to the half-

width, and no striding, we see that it has the same visual field dimensions

as the input layer.  If necessary, review Equation (2.8) on Page 25.  The

layer has 12*12*6=864 neurons.  The filter size is ((2*1+1)^2)*1+1=10.  (The

*1 is the depth of the prior layer, and the +1 is the bias term.)  All neurons

in the visual field share the same weight set, so the total number of weights

for the layer is the filter size (10) times the number of slices (6).

Equation (2.8) gives the size of the second layer: (12-3+0)/2+1=5.

Layer 3 has the padding equal to the half-width, and no striding, so its

visual field dimensions are the same as the prior layer.  The filter size is

((2*1+1)^2)*6+1=55.  There is a different weight set for each of the 5*5*3=75

neurons in this layer, giving a total of 4125 weights for this layer.

Equation (2.8) gives the size of the fourth layer: (5-3+0)/2+1=2.

Layer 5 is fed by 2*2*3 neurons in the prior layer.  Including the bias term

give 13 weights per neuron.  This layer has 4 neurons, so it has a total of 52

weights.  Recall that our convention is that fully connected layers have a

1*1 visual field, with a depth equal to the number of neurons.

Layer 6, the output layer is by definition fully connected.  It’s fed by 1*1*4

neurons in the prior layer.  Including the bias gives 5 weights per neuron. 

It has a depth of 6, the number of classes, so it has 30 weights.

Adding these gives a total of 4267 weights in the model.

Simulated annealing completes, but I interrupted refinement.  The

following lines appear:

Simulated annealing for starting weights is complete with mean negative log likelihood =
0.29804

WARNING... User pressed ESCape during optimization
           Results are incomplete and may be seriously incorrect

Optimization is complete with negative log likelihood = 0.09214
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The last item printed is a confusion matrix.  The row (in groups of three)

is the true class, and the column is the predicted class.  In each set of three

rows for a true class, the first row is the count, the second row is the

percent for that row (true class) and the third row is the percent of the

entire dataset.

          1       2       3       4       5       6

  1     168       0       2       0       2       0
      97.67    0.00    1.16    0.00    1.16    0.00
      16.41    0.00    0.20    0.00    0.20    0.00

  2       1     127      18       0       1      31
       0.56   71.35   10.11    0.00    0.56   17.42
       0.10   12.40    1.76    0.00    0.10    3.03

  3       1      12     120       2       4      11
       0.67    8.00   80.00    1.33    2.67    7.33
       0.10    1.17   11.72    0.20    0.39    1.07

  4       8       0       1     124      48       1
       4.40    0.00    0.55   68.13   26.37    0.55
       0.78    0.00    0.10   12.11    4.69    0.10

  5       6       1       0      11     178       0
       3.06    0.51    0.00    5.61   90.82    0.00
       0.59    0.10    0.00    1.07   17.38    0.00

  6       0      20       1       0       1     124
       0.00   13.70    0.68    0.00    0.68   84.93
       0.00    1.95    0.10    0.00    0.10   12.11

Total misclassification = 17.8711 percent
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Printed Weights

The user has the option of printing weights for the entire model.  Be

warned that the total number of weights can be enormous, in which case

the resulting file will also be enormous, and it may even require several

minutes of run time to do the file writing.  Here is a partial listing of the

weights for the example cited in the prior section.  Please reconcile this

listing with the architecture of this model.

Layer 1 of 6 (Convolutional)  Slice 1 of 6
          3.642629  Input band 1 Neuron 1
         -0.676231  Input band 1 Neuron 2
         -0.085785  Input band 1 Neuron 3
          2.766258  Input band 1 Neuron 4
         -2.646048  Input band 1 Neuron 5
         -0.865142  Input band 1 Neuron 6
          1.900750  Input band 1 Neuron 7
         -2.298438  Input band 1 Neuron 8
          0.924283  Input band 1 Neuron 9
        -----------------------------------
         -3.971506  BIAS

... (Slices 2-5)

Layer 1 of 6 (Convolutional)  Slice 6 of 6
          3.011171  Input band 1 Neuron 1
          0.687377  Input band 1 Neuron 2
          1.019491  Input band 1 Neuron 3
         -0.832090  Input band 1 Neuron 4
          1.724954  Input band 1 Neuron 5
         -1.247742  Input band 1 Neuron 6
          0.444635  Input band 1 Neuron 7
          1.737460  Input band 1 Neuron 8
         -0.542140  Input band 1 Neuron 9
        -----------------------------------
         -2.507262  BIAS

Layer 2 of 6 (Mean pool) 5 rows by 5 cols by 6 slices
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Layer 3 of 6 (Local)Slice 1 of 3 Row 1 of 5 Col 1 of 5
          0.016978  Prior layer slice 1 Neuron 1
         -0.027422  Prior layer slice 1 Neuron 2
         -0.052678  Prior layer slice 1 Neuron 3
          0.036557  Prior layer slice 1 Neuron 4
         -0.755227  Prior layer slice 1 Neuron 5
          0.211502  Prior layer slice 1 Neuron 6
          0.036439  Prior layer slice 1 Neuron 7
         -0.398360  Prior layer slice 1 Neuron 8
          0.737985  Prior layer slice 1 Neuron 9
        -----------------------------------

... Other rows and columns, then slice 2 and part of 3

Layer 3 of 6 (Local)Slice 3 of 3 Row 5 of 5 Col 5 of 5
         -1.035432  Prior layer slice 1 Neuron 1
         -0.357207  Prior layer slice 1 Neuron 2
         -0.021757  Prior layer slice 1 Neuron 3
         -0.033135  Prior layer slice 1 Neuron 4
         -0.107814  Prior layer slice 1 Neuron 5
         -0.000594  Prior layer slice 1 Neuron 6
         -0.051112  Prior layer slice 1 Neuron 7
          0.023901  Prior layer slice 1 Neuron 8
         -0.020555  Prior layer slice 1 Neuron 9
        -----------------------------------

... Slices 2 through 5
          0.679523  Prior layer slice 6 Neuron 1
         -1.053021  Prior layer slice 6 Neuron 2
          0.001994  Prior layer slice 6 Neuron 3
         -0.104741  Prior layer slice 6 Neuron 4
         -0.664431  Prior layer slice 6 Neuron 5
          0.034758  Prior layer slice 6 Neuron 6
          0.016724  Prior layer slice 6 Neuron 7
          0.014839  Prior layer slice 6 Neuron 8
          0.050983  Prior layer slice 6 Neuron 9
        -----------------------------------
         -1.963063  BIAS

Layer 4 of 6 (Avg pool) 2 rows by 2 cols by 3 slices
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Layer 5 of 6 (Full)  Slice (this neuron) 1 of 4
          1.592443  Prior layer slice 1 Neuron 1
          1.161122  Prior layer slice 1 Neuron 2
         -0.162907  Prior layer slice 1 Neuron 3
          0.648188  Prior layer slice 1 Neuron 4
         -1.275991  Prior layer slice 2 Neuron 1
         -3.782788  Prior layer slice 2 Neuron 2
         -2.344005  Prior layer slice 2 Neuron 3
         -2.019643  Prior layer slice 2 Neuron 4
         -0.240221  Prior layer slice 3 Neuron 1
         -0.118739  Prior layer slice 3 Neuron 2
          0.739422  Prior layer slice 3 Neuron 3
          1.031370  Prior layer slice 3 Neuron 4
         -0.878146  BIAS

...
Layer 5 of 6 (Full)  Slice (this neuron) 4 of 4
          0.560776  Prior layer slice 1 Neuron 1
         -0.467746  Prior layer slice 1 Neuron 2
         -1.281872  Prior layer slice 1 Neuron 3
         -0.444215  Prior layer slice 1 Neuron 4
          0.948946  Prior layer slice 2 Neuron 1
          1.805807  Prior layer slice 2 Neuron 2
          1.796881  Prior layer slice 2 Neuron 3
          1.776497  Prior layer slice 2 Neuron 4
          4.415077  Prior layer slice 3 Neuron 1
          2.461983  Prior layer slice 3 Neuron 2
          2.944033  Prior layer slice 3 Neuron 3
          3.762620  Prior layer slice 3 Neuron 4
         -1.695120  BIAS

Layer 6 of 6 (Full)  Slice (this neuron) 1 of 6
          2.693996  Prior layer slice 1 Neuron 1
         -0.313751  Prior layer slice 2 Neuron 1
         -3.208661  Prior layer slice 3 Neuron 1
         -1.088728  Prior layer slice 4 Neuron 1
          0.714087  BIAS

...
Layer 6 of 6 (Full)  Slice (this neuron) 6 of 6
         -1.245246  Prior layer slice 1 Neuron 1
         -4.326880  Prior layer slice 2 Neuron 1
          1.525335  Prior layer slice 3 Neuron 1
          1.519400  Prior layer slice 4 Neuron 1
         -1.512020  BIAS


