## EUREKA MATH ${ }^{2}$.

## Module 5 - Lesson 23:

Find the volumes of right rectangular prisms by multiplying the edge lengths.

CCSS Standard - 5.MD.C.5.a

```
FLUENCY (10-min)
```


## Hidden Factors

Determine the product then write and say a multiplication equation or related division equation.


Task:

- Place deck of cards facedown.
- Flip over a card and place it on a blue square.
- Both partners say the product.
- Partner A records a MULTIPLICATION equation on their whiteboard.
- Partner B records a DIVISION equation.
- Finish when all cards have been used.

Partners A and B: "Product is 0.15"

Partner A"0.5 x 0.3 = 0.15"
Partner B "0.15 $\div 0.5=0.3$ "

## FLUENCY (10-min)

## Counting with Centimeter Cubes

What is the volume of the layer of centimeters cubes next to the prism? Raise your hand when you know.


What is the volume of the prism?
25 cubic centimeters

## FLUENCY (10-min)

## Counting with Centimeter Cubes

What is the volume of the layer of centimeters cubes next to the prism? Raise your hand when you know.


The 4 cubes
represent one layer of the prism. How many layers will fit in the

prism?



What is the volume of the prism?
12 cubic centimeters

## FLUENCY (10-min)

## Counting with Centimeter Cubes

What is the volume of the layer of centimeters cubes next to the prism? Raise your hand when you know.


What is the volume of the prism?
24 cubic centimeters

## LAUNCH (5-min)

## Determine whether there is enough information to find the volume of a right rectangular prism.

## 1-MIN. SILENT THINK TIME:

## Do you have enough information to determine the volume of this right rectangular prism?

Why?


If we turn the prism so it lays on a different face, would that change anything?

We have enough information to determine the BASE of the prism. 3 units by 4 units. The BASE is $\mathbf{1 2}$ cubic units.


No! We still do not have the height or third dimension of this prism. We don't know how many layers there are.

Can we ESTIMATE the prism's volume or the number of lavers?


There are 5 layers!

$$
\mathbf{V}=\mathbf{B} \times \mathbf{H}
$$

$V=12 \times 5=60$ cubic units

```
LEARN (35-min)
```

We know that we can calculate the volume of a right rectangular prism by multiplying the area of it's BASE by its HEIGHT.


$$
\begin{gathered}
V=B \times H \\
\text { Base }=L \times W \\
\text { Base }=3 \times 4 \\
V=12 \times 5 \\
V=60 \text { cubic units }
\end{gathered}
$$ prism is by using the formula: $\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$.


$\mathbb{V}=L \times \mathbb{W} \times \mathbb{H}$
$=3 \mathrm{X} 4 \mathrm{X} 5$
$=12 \times 5$
$=60$ cubic units

Another way that we can calculate the volume of a right rectangular

## LEARN (35-min)

## Write Another Formula

Let's connect the prisms that we used in a previous lesson using the new formula:


$$
\begin{gathered}
\mathrm{V}=\mathrm{B} \times H \\
6 \times 4 \\
24 \text { cubicm } \\
\mathrm{V}=\mathrm{L} \times \mathrm{W} \times H \\
2 \times 3 \times 4 \\
24 \text { abicem }
\end{gathered}
$$

$(3 \times 4) \times 2$
Ryan's Composition

$\mathrm{V}=\mathrm{B} \times \mathrm{H}$
$12 \times 2$
24 cubicm

$$
\begin{gathered}
V=L \mathbb{W} \mathbb{W} \mathbb{H} \\
3 \times 4 \times 2 \\
24 \text { cubicm }
\end{gathered}
$$

$$
\begin{aligned}
V= & B \times H \\
& 8 \times 3 \\
& 24 \text { cubicem }
\end{aligned}
$$

$$
\begin{gathered}
V=\mathbb{L} \mathbb{W} \times \mathbb{H} \\
2 \times 4 \times 3 \\
24 \text { cuicem }
\end{gathered}
$$

## LEARN (35-min)

## Write Another Formula

Let's connect the prisms that we used in a previous lesion using the new formula:


$$
\begin{gathered}
V=L \mathbb{W} \mathbb{W} \times H \\
2 \times 3 \times 4 \\
24 \text { cubicm }
\end{gathered}
$$

Yuna's composition uses the bottom face as the base and 4 as the height.

$$
\begin{gathered}
V=L \mathbb{W} \times \mathbb{H} \\
3 \times 4 \times 2 \\
24 \text { cubicm }
\end{gathered}
$$

$\mathrm{V}=\mathrm{L} \times \mathbb{W} \times \mathbb{H}$
$2 \times 4 \times 3$ 24 cubic cm

Ryan's composition uses the front face as the base and 2 as the height.

Jada's composition uses the right face as the base and 3 as the height.

The order in which we multiply does not change the volume (commutative property).

## LEARN (35-min)

## Use Edge Lengths to Find Volume

Why might using a formula be a good method for finding the volume of this right rectangular prism?

$$
\begin{aligned}
& V=L \mathbb{W} \mathbb{N} \mathbb{M} \\
& V=14 \times 3 \times 3 \\
& V=84 \times 3
\end{aligned}
$$



$$
V=252
$$

cubic i̊nches

We could have used any of these expressions to solve for this prism's volume:
$V=14 \times 6 \times 3$
$V=(14 \times 6) \times 3$
$V=14 \times(6 \times 3)$
$V=6 \times 3 \times 14$
$V=6 \times 14 \times 3$

## LEARN (35-min)

## Use Edge Lengths to Find Volume

## LEARN book page 239.

1. Which right rectangular prism has the greater volume?


## LEARN (35-min)

## Use Edge Lengths to Find Volume

This right rectangular prism is a cube.
Do you think we can use the formula for a right rectangular prism to find the volume of this cube? Why?

Yes. A cube is a right rectangular prism!
How do you know which edge is the length, which edge is the width, and which edge is the height?

Since all edges are the same length, it doesn't matter which is which.

$$
\begin{aligned}
& \mathbb{V}=\mathbb{L} \mathbb{W} \times \mathbb{H} \\
& \mathbb{V}=5 \times 5 \times 5 \\
& \mathbb{V}=25 \times 5 \\
& \mathbb{V}=125 \text { cuble inches }
\end{aligned}
$$



## LEARN (35-min)

What information is given about this right rectangular prism?

The volume is 100 cubic feet.
One edge measures 4 feet.
Another edge measures 5 feet.
$\mathbb{V}=\llcorner\mathbb{X W} \mathbb{X} \mathbb{N}$
$100=4 \times 5 \times \mathbf{H}$
$100=20 \approx \mathbf{H}$
$100 / / 20=\mathbf{H}$
5 feet = H


The volume is 100 cubic feet.

## LAND (10-min)

## Exit Ticket

Exit Ticket - PAGE 245

Small Group Time:
Problem Set Pages 241-244

## Homework:

Page 147 APPLY BOOK


Find the volume of each right rectangular prism.

1. 2 in 2 in
2. 


3.

4.


