
IJRECE VOL. 12 ISSUE 1 JAN-MAR 2024 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 77 | P a g e

A Public Key Searchable Encryption Scheme Based on

Blockchain Using Random Forest Method

Bhargavi Konda1, Mounica Yenugula2, Vinay Kumar Kasula3, Akhila Reddy Yadulla4
1,2,3,4Department of Information Technology, University of the Cumberlands, Williamsburg, KY, USA

1bkonda19519@ucumberlands.edu, 2myenugula3188@ucumberlands.edu,
3vkasula19501@ucumberlands.edu, 4ayadulla5882@ucumberlands.edu

Abstract—To address the trapdoor security issue in public

key encryption schemes, this paper introduces the use of

random numbers to construct trapdoors and indices,

effectively defending against keyword-guessing attacks from

internal servers and preventing data leaks caused by server

curiosity. The paper explores the trust issues surrounding

third-party services and combines blockchain technology with

a searchable encryption scheme. Smart contracts are employed

as trusted third parties to perform the search operations,

preventing keyword-guessing attacks from internal servers

while ensuring the correctness of the search results. This

approach also restricts malicious server behavior when

distributing data. A security analysis confirms that the

proposed scheme satisfies IND-KGA security. Furthermore,

experimental comparisons with other schemes demonstrate the

proposed method's advantage in terms of time efficiency.

Keywords—Searchable encryption, Blockchain, Smart

contracts, Public key encryption, Random forest method

I. INTRODUCTION

Cloud storage has become a dominant method for online

storage, offering the advantage of eliminating hardware and

management costs for users. However, as data moves beyond

the physical control of users, security risks have become a

significant concern. Encryption is typically used to secure data

stored in the cloud, but searching through encrypted data on

cloud servers poses a challenge. Secure search refers to

effective searching over encrypted data. To address the

problem of how to perform secure keyword searches on

encrypted data stored in untrusted cloud servers, researchers

have proposed searchable encryption as a core solution.

Searchable encryption is a technology that allows users to

perform keyword searches over encrypted data. It is

particularly useful in cloud environments where users want to

store encrypted data and selectively retrieve relevant

documents through keyword searches. This enables users to

search encrypted domains without decrypting the data stored

in the cloud. In 2000, Dawn et al. introduced the one-to-one

model for searchable encryption to enhance data security on

servers, sparking further research in the field. However, the

one-to-one model couldn't meet growing user demands. In

2004, Boneh et al. introduced the many-to-one public key

encryption with keyword search (PEKS) model, which defined

the security of searchable encryption under public key

encryption. However, this model proved impractical in some

specific environments. In 2011, Curtmola et al. developed a

one-to-many searchable encryption model based on Naor’s

broadcast encryption technology, though it required significant

key update costs for users. In complex network environments,

Wang et al. combined Shamir's secret sharing and identity-

based encryption to propose a many-to-many searchable

encryption scheme, allowing multi-user interactive searches

on the server.

In terms of searchable encryption security, Boneh et al. proved

that PEKS achieves semantic security but is vulnerable to

keyword guessing attacks (KGA). To counter this, Tang

proposed a registration-based searchable encryption model in

2009, which resisted KGA but required pre-registering

keywords, limiting performance. In 2013, Fang et al.

introduced a public key encryption scheme that addressed

KGA through a two-pronged security model targeting both

internal and external attacks. However, the heavy use of

bilinear pairing calculations made the scheme inefficient.

Recent studies have explored various methods to protect

against internal attacks. For instance, Xu et al. in 2013

introduced a dual-trapdoor mechanism (fuzzy and exact

trapdoors) to resist internal KGA. In 2015, Chen proposed a

new framework involving two non-colluding servers to

prevent internal attacks. Shao et al. redefined the security of

dPEKS under KGA, focusing on offline attacks by servers.

In 2016, Chen proposed a more efficient two-cloud-server

scheme to resist internal attacks, though its practicality was

limited by the assumption that the servers wouldn't

collaborate. Huang et al. in 2017 introduced a public key

authentication encryption scheme to address internal KGA

using bilinear pairing. However, this scheme couldn’t provide

indistinguishability for chosen ciphertexts. With the

development of blockchain technology, the combination of

blockchain and searchable encryption has solved the trust

issues in traditional schemes, significantly improving

feasibility. Li et al. introduced a blockchain-based symmetric

searchable encryption scheme, while Chen et al. proposed a

mailto:1bkonda19519@ucumberlands.edu
mailto:myenugula3188@ucumberlands.edu
mailto:ayadulla5882@ucumberlands.edu

IJRECE VOL. 12 ISSUE 1 JAN-MAR 2024 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 78 | P a g e

blockchain-based scheme for sharing electronic medical

records using smart contracts to ensure server trustworthiness.

This paper addresses the trust issues of third-party services by

incorporating blockchain into a public key searchable

encryption scheme. The primary contributions of this work

are:

1. Blockchain Integration: A blockchain mechanism is

introduced into the ciphertext retrieval scheme to

address the trust issues of third-party services in

traditional schemes. Blockchain is utilized to ensure

the correctness of search results, leveraging its

immutability to prevent servers from maliciously or

mistakenly sending incorrect data.

2. One-to-Many Public Key Searchable Encryption: A

one-to-many public key searchable encryption

scheme is constructed for private cloud

environments, utilizing the decisional bilinear Diffie-

Hellman (DBDH) problem to ensure unique

encryption for the same keyword and effectively

resist KGA.

3. Security Proof: The proposed scheme is proven to

resist KGA attacks, with an analysis of how

blockchain contributes to the overall security of the

system. Experiments conducted using the PBC

(pairing-based cryptography) library demonstrate the

efficiency of the scheme in terms of index and

trapdoor construction, as well as query performance.

II. PRELIMINARY KNOWLEDGE

A. Bilinear Mapping (Bilinear Pairing)

In cryptography, bilinear mapping is an essential concept used

in pairing-based cryptographic schemes. Assume we have two

cyclic groups 𝐺 and 𝐺𝑇, both of prime order 𝑝, with 𝑔 being a

generator of 𝐺. A bilinear map 𝑒 is defined as 𝑒: 𝐺 × 𝐺 →
 𝐺𝑇, and it satisfies the following properties:

1. Bilinearity: For any elements 𝑥, 𝑦 ∈ 𝐺 and

scalars 𝑎, 𝑏 ∈ 𝑍𝑝, the bilinear map holds that:

 𝑒(𝑥𝑎 , 𝑦𝑏) = 𝑒(𝑥, 𝑦)𝑎𝑏
 This property ensures that the map behaves linearly in both

of its input arguments.

2. Non-degeneracy: There exists some generator

𝑔 ∈ 𝐺 such that 𝑒(𝑔, 𝑔) ≠ 1. This means that

the map does not trivially collapse to a constant,

ensuring its utility in cryptographic

constructions.

3. Computability: For all 𝑥, 𝑦 ∈ 𝐺, the bilinear

map 𝑒(𝑥, 𝑦) can be efficiently computed using

algorithms designed for such operations.

In the context of the random forest method, this bilinear

mapping serves as the foundational mathematical structure

upon which the encryption and security mechanisms are built.

By incorporating bilinear pairing, the system can manage

complex cryptographic operations, enabling secure key

exchanges and data searches across distributed environments.

Figure 1: System Model and Workflow

III. SYSTEM MODEL: RANDOM FOREST IMPLEMENTATION

A. System Overview

The proposed system consists of four main components:

the Data Owner (DO), Cloud Server (CS), Smart Contract, and

User (U). These components interact to ensure secure storage,

retrieval, and validation of encrypted data. The flow of the

system is illustrated as follows:

1. Data Owner (DO): The primary role of the data

owner is to compute an index for the data and

encrypt the plaintext. The data owner then

uploads the index to the smart contract and the

ciphertext to the cloud server.

2. Cloud Server (CS): The cloud server stores the

encrypted data uploaded by the data owner and

processes data retrieval requests from the user. It

interacts with the smart contract to verify the

authenticity of data requests and provide the

correct ciphertext.

3. Smart Contract: The smart contract receives the

index from the data owner and the trapdoor

(search query) from the user. It performs a

search on the index and returns the relevant

search results. It also verifies the correctness of

the ciphertext received from the cloud server and

issues a command to the server to release the

encrypted data to the user if the search is

successful.

4. User (U): The user is responsible for generating

a trapdoor (search query) and sending it to the

smart contract. The user also submits a request

IJRECE VOL. 12 ISSUE 1 JAN-MAR 2024 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 79 | P a g e

to the cloud server for the encrypted data and,

after receiving it, decrypts the data for use.

This design integrates a Random Forest algorithm to

facilitate the search and classification process. The Random

Forest method is implemented to enhance the accuracy of the

search results by analyzing multiple indices and providing a

weighted decision on the most relevant results based on the

user's query.

B. Algorithm Definitions

The following algorithms are integral to the system

model:

1. Setup:

 𝑠𝑒𝑡𝑢𝑝(1𝜆) → 𝑝𝑎𝑟

 The system is initialized with the security parameter 𝜆,

generating public parameters 𝑝𝑎𝑟.

2. Encryption (Enc):

 𝐸𝑛𝑐(𝑚, 𝑘, 𝑤) → (𝐶𝑚, 𝐼, 𝑁)
 The data owner performs encryption using the plaintext

𝑚 and the symmetric key 𝑘. The keyword 𝑤 is also encrypted

to generate the index 𝐼. The plaintext 𝑚 and key 𝑘 are

encrypted to produce the ciphertext 𝐶𝑚, and the file identifier

𝑁 is generated using symmetric encryption for identification.

The system computes a hash value 𝐻 for 𝑁 and 𝐶𝑚, producing

the final encrypted result 𝐶𝑇.

3. Trapdoor (Tw):

 𝑇𝑤(𝑤𝑖) → 𝑇𝑤

 The user computes a trapdoor 𝑇𝑤 by encrypting the

keyword 𝑤𝑖 . This trapdoor is then sent to the smart contract.

4. Search:

 𝑠𝑒𝑎𝑟𝑐ℎ(𝑇𝑤 , 𝐼) → (𝑘, 𝑁, 𝐻)

 The smart contract performs the search after receiving

the trapdoor 𝑇𝑤 and index 𝐼. If the search is successful, it

retrieves the symmetric encryption key k, the file identifier N,

and the hash value 𝐻.

5. Verification:

 𝑣𝑒𝑟𝑖𝑓𝑦(𝐶𝑇, 𝑁) → {0, 1}

 Upon receiving the ciphertext 𝐶𝑇 from the cloud server,

the user verifies whether the server has correctly provided the

data and whether the ciphertext has been tampered with. The

user checks whether the file identifier 𝑁 and hash 𝐻 match

those from the smart contract. If they do, the verification

succeeds, returning 1; otherwise, it returns 0.

C. Security Model

A. Keyword Privacy Security Game

The keyword privacy of the system is guaranteed if an

adversary A cannot deduce the plaintext keyword from the

encrypted keyword or trapdoor in polynomial time. The

keyword privacy security game is defined as follows:

1. Initialization: Given the security parameter 𝜆, the

challenger 𝐶 runs the initialization algorithm,

generating public parameters 𝑝𝑎𝑟.

2. Phase 1: The adversary 𝐴 runs the trapdoor

generation algorithm multiple times.

3. Challenge: The adversary 𝐴 randomly selects two

keywords from the keyword space and sends

them to the challenger. The challenger runs the

trapdoor generation algorithm for both and

randomly sends one trapdoor back to the

adversary.

4. Guess: After analyzing 𝜏 different keywords, the

adversary guesses which keyword the trapdoor

corresponds to. If the guess is correct, the

adversary wins the security game.

B. Decisional Bilinear Diffie-Hellman (DBDH) Assumption

The security of the system relies on the hardness of

solving the Decisional Bilinear Diffie-Hellman (DBDH)

problem. If an adversary 𝐴 can break the scheme in

polynomial time with advantage 𝜖, they must also be able to

solve the DBDH problem with the same advantage 𝜖. The

proof is structured as follows:

1. Initialization: The challenger C initializes the group

𝐺1, 𝐺2, and bilinear map 𝑒: 𝐺1 × 𝐺1 → 𝐺2. The

challenger generates random values 𝑎, 𝑏, 𝑐, 𝑧 and

creates two sets of tuples 𝑇0 and 𝑇1.

2. Phase 1: The adversary 𝐴 runs the encryption

algorithm multiple times.

3. Challenge: The challenger randomly selects a

plaintext 𝑚 that has not been queried in Phase 1 and

generates the corresponding ciphertext 𝐶𝑚, which is

sent to the adversary.

4. Guess: The adversary attempts to decrypt the

ciphertext 𝐶𝑚. If the adversary successfully decrypts

𝐶𝑚 and retrieves the correct plaintext, they win the

game.

5. Proof: If the adversary is capable of decrypting the

ciphertext, then they can solve the DBDH problem,

contradicting the assumption that DBDH is a hard

problem. Thus, the security of the scheme is upheld.

IV. SYSTEM DESCRIPTION WITH RANDOM FOREST

IMPLEMENTATION

A. Initialization Phase

In the initialization phase, the system sets up its parameters

using security parameter 𝜆. The system generates public

parameters 𝑝𝑎𝑟, including cyclic groups 𝐺 and 𝐺𝑇, with

generator 𝑔 for group 𝐺 and element 𝑔1 in 𝐺. A bilinear map

 �̂�: 𝐺 × 𝐺 → 𝐺𝑇 is defined, and a random parameter 𝑎 is

IJRECE VOL. 12 ISSUE 1 JAN-MAR 2024 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 80 | P a g e

selected, calculating 𝑔2 = 𝑔𝑎. The public parameters 𝑝𝑎𝑟

include:

𝑝𝑎𝑟 = {𝐺, 𝐺𝑇 , 𝑔, 𝑔1, 𝑔2, �̂�, ℎ, 𝑎}
Additionally, the smart contract initializes, and the data owner

sets the retrieval price (offer). Users register their accounts

with an ID and deposit funds into a blockchain-based deposit

account (deposit).

B. Ciphertext Encryption and Upload

The encryption function (𝐸𝑛𝑐(𝑚, 𝑤, 𝑘) → (𝐶𝑚, 𝐼, 𝑁)) works

as follows:

- The plaintext 𝑚 is encrypted using a symmetric key 𝑘,

producing ciphertext 𝐶𝑚.

- The key 𝑘 is included in the index 𝐼. A random number 𝑟 is

selected from the prime field 𝑍𝑝, and the keyword 𝑤

undergoes hashing, yielding 𝐻(𝑤). The index 𝐼 is calculated

as:

 𝐼 = �̂�(𝑔1
𝑟 , 𝑔2

𝑟) × �̂�(𝑔𝑟 , 𝑘) × 𝐻(𝑤)
 - The data owner assigns an identifier 𝑁 to the ciphertext 𝐶𝑚,

then encrypts 𝑁 using their private key. The system computes

a hash of 𝑁 and 𝐶𝑚, generating H. The final ciphertext 𝐶𝑇 is a

package containing 𝑁 and 𝐻.

The data owner uploads the ciphertext 𝐶𝑚 and index 𝐼 to the

cloud server, while the packaged ciphertext 𝐶𝑇 is sent to the

smart contract for future queries.

C. Trapdoor Encryption and Upload

The user generates a trapdoor 𝑇𝑤 corresponding to the

keyword 𝑤 in the index:

- The keyword 𝑤 is hashed to obtain 𝐻(𝑤).

- The user selects a random number 𝑡 ∈ 𝑍𝑝 and computes:

 𝑇𝑤 = {𝑔𝑡 × 𝐻(𝑤), 𝑔1
𝑡 }

The trapdoor 𝑇𝑤 is uploaded to the smart contract, and the user

makes a deposit into the blockchain-based deposit account

(deposit).

D. Search Phase

In the search phase, the smart contract interacts with the cloud

server to search for data. The smart contract checks the user's

ID and verifies if their deposit in the \$deposit account is

sufficient for a search.

Once the deposit is verified, the smart contract computes the

search using the trapdoor 𝑇𝑤 and index 𝐼 by performing the

following steps:

1. Compute the matching function:

 �̂�(𝑔1
𝑟 , 𝑔2

𝑡) = �̂�(𝑔1
𝑟 , 𝑔𝑎) × 𝐻(𝑤𝑖)

 If = 𝑤𝑖 , the result yields the symmetric key 𝑘.

2. The smart contract records the file identifier N

associated with the ciphertext and continues the

search across all files until the relevant results

are found.

E. Verification Phase

Once the relevant files are retrieved, the verification process

begins:

- The smart contract deducts the retrieval price from the user's

deposit (deposit-offer). If the deposit is insufficient for further

searches, the system informs the user of insufficient funds.

- If the deposit covers all searches, the smart contract sends

the file identifier N and the user's ID to the cloud server. The

server then sends the corresponding ciphertext 𝐶𝑚 to the user.

- During the interaction between the smart contract and the

user, the contract retrieves the ciphertext 𝐶𝑇 and the

symmetric key 𝑘 and sends them to the user.

The user verifies the consistency of the file identifier:

𝑁𝐵𝑆 = 𝑁𝐶𝑆
where 𝑁𝐵𝑆 is the file identifier from the blockchain system,

and 𝑁𝐶𝑆 is the file identifier from the cloud server. If the

identifiers match, it ensures that the cloud server did not send

incorrect data. The user then hashes the ciphertext 𝐶𝑚 with the

file identifier 𝑁 to verify the integrity of the data:

𝐻1 = ℎ(𝑁, 𝐶𝑚)

If 𝐻1 = 𝐻 (from the encrypted trapdoor), this proves the

ciphertext has not been tampered with. Finally, the user

decrypts 𝐶𝑚 using the symmetric key 𝑘, recovering the

plaintext 𝑚.

F. Random Forest Integration

In the search process, Random Forest is employed to enhance

the accuracy and efficiency of keyword matching. The

Random Forest algorithm constructs multiple decision trees,

where each tree evaluates a subset of keyword indices. The

final search result is determined by aggregating the outputs of

these decision trees and assigning a score to each keyword

match. The tree voting mechanism selects the most relevant

data indices, improving retrieval precision. The Random

Forest implementation can be described as:

1. Training Phase: The index 𝐼 is used as training

data, where each decision tree classifies whether

a keyword is likely to match based on the

trapdoor 𝑇𝑤.

2. Prediction Phase: For a given trapdoor 𝑇𝑤, each

tree predicts whether the index matches the

keyword. The Random Forest combines these

results, and the index with the highest score is

selected.

3. Equation Update: Each decision tree in the

Random Forest operates on the form:

 �̂�(𝑔1
𝑟 , 𝑔2

𝑡) × 𝐻(𝑤𝑖) = �̂�(𝑔1
𝑟 , 𝑔𝑎)

 The final search result is obtained by voting among the trees

in the Random Forest, with the majority result used to retrieve

the correct symmetric key 𝑘.

IJRECE VOL. 12 ISSUE 1 JAN-MAR 2024 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 81 | P a g e

V. SECURITY ANALYSIS WITH RANDOM FOREST

IMPLEMENTATION

By running the retrieval process on a blockchain system, the

following security aspects can be ensured:

A. Fairness

Since every interaction on the blockchain is based on

transparent transactions, the results of each query are

guaranteed to be correct, and no malicious modification of

results can occur. Additionally, since each transaction incurs a

fee, malicious users attempting to disrupt the system are

deterred. With the implementation of the Random Forest

algorithm, fairness is enhanced as the model aggregates results

from multiple decision trees to improve keyword matching

accuracy, ensuring that the correct data is retrieved.

B. Trustworthiness

The blockchain guarantees that the retrieval results are honest

and trustworthy. This serves as a basis for preventing threats

from malicious servers. Users can verify the correctness of

server operations and retrieve the correct files. The Random

Forest method contributes to this by providing more reliable

and precise results, as multiple decision trees analyze the

keyword indices, thus making the process more robust against

server-based threats.

C. Security

This scheme ensures the security of the keywords, as the

keyword trapdoors are randomly encrypted, which satisfies the

IND-KGA (Indistinguishable Keyword Guess Attack) security

requirement. Moreover, the construction of the critical data

file index I is based on the hard problem of Decisional

Bilinear Diffie-Hellman (DBDH). The security of the

ciphertext can be reduced to the hardness of this assumption.

D. IND-KGA Security

Based on general bilinear groups, this scheme is secure under

the random oracle model, satisfying IND-KGA security.

Here’s how the challenge unfolds:

1. Initialization: The challenger 𝐶 generates random

numbers 𝑎, 𝑏 ∈ 𝑍𝑝 and publishes the public

parameters:

 𝑝𝑎𝑟 = { 𝐺, 𝐺𝑇 , 𝑔, 𝑔1, 𝑔2, �̂�, ℎ, 𝑎}

2. Phase 1: The adversary selects a keyword set

(𝑤1, 𝑤2, … , 𝑤𝑛) and sends it to the challenger, who

generates the corresponding trapdoor set

(𝑇𝑤1
, 𝑇𝑤2

, … , 𝑇𝑤𝑛
) and sends them to the adversary.

3. Challenge: The adversary selects two keywords

𝑤0, 𝑤1, ensuring they were not queried in Phase 1.

The challenger picks a random number 𝑝, runs the

trapdoor generation algorithm, and computes:

 𝑇{𝑤0} = (𝑔𝑝, 𝐻(𝑤0)) 𝑎𝑛𝑑 𝑇{𝑤1} = (𝑔𝑝, 𝐻(𝑤1))

 The challenger randomly selects 𝜇 ∈ {0, 1} and sends 𝑇{𝑤𝜇}

to the adversary.

4. Guess: The adversary analyzes the trapdoors from

Phases 1 and 2, outputting a guess 𝜇′. If 𝜇′ = 𝜇, the

adversary wins the game.

1

|Ψ|𝑛
 + 𝜖

where 𝑛 is the number of keywords, 𝜖 is a negligible

probability under the security parameter 𝜆, and Ψ is the

keyword space.

Theorem 2: DBDH-Based Security

Based on general bilinear groups, the security of this scheme

can be reduced to the Decisional Bilinear Diffie-Hellman

(DBDH) assumption. If an adversary 𝐴 can break the scheme

in polynomial time, then 𝐴 can solve the DBDH problem.

1. Initialization: The system generates the security parameter

𝜆 and runs the setup algorithm to produce the public

parameters:

 𝑝𝑎𝑟 = { 𝐺, 𝐺𝑇 , 𝑔, 𝑔1, 𝑔2, �̂�, ℎ, 𝑎}

2. Phase 1: The adversary 𝐴 repeatedly runs the index

encryption algorithm.

3. Challenge: The challenger selects two keys 𝑘1 and 𝑘2,

ensuring they were not queried in Phase 1. The encryption

algorithm is run, and random numbers 𝑡 are generated to

compute:

 𝐼1 = �̂�(𝑔1
𝑟 , 𝑔2

𝑟) 𝑎𝑛𝑑 𝐼2 = �̂�(𝑔1
𝑡 , 𝑔2

𝑡)

 The challenger randomly sends an index 𝐼∗ to the adversary.

4. Guess: The adversary analyzes the index 𝐼∗ and outputs a

guess 𝐼′. If 𝐼′ = 𝐼∗, the adversary wins the game.

5. Phase 2: The adversary attempts to break the DBDH

assumption by distinguishing two bilinear pairs. The

adversary repeatedly runs the algorithm to compute the

two quintuplets.

6. Challenge 2: The challenger selects (𝑎, 𝑏, 𝑐, 𝑧) ∈ 𝑍𝑝 ,

generating two quintuplets:

 𝑇0 = (𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑧 , �̂�(𝑔, 𝑔)) 𝑎𝑛𝑑 𝑇1

= (𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑎𝑏𝑐 , �̂�(𝑔, 𝑔))

 The challenger randomly selects 𝜇 ∈ {0, 1} and sends 𝑇𝜇 to

the adversary.

7. Guess: The adversary analyzes 𝑇∗ and outputs 𝜇′. If 𝜇′ =

𝜇, the adversary wins.

If the adversary can distinguish the ciphertext index 𝐼∗,

then they can also distinguish the quintuplets generated by the

challenger. Hence, breaking the scheme implies the adversary

can solve the DBDH problem. The security of the ciphertext is

based on the hardness of the DBDH assumption. In this

scheme, Random Forest enhances security by ensuring more

IJRECE VOL. 12 ISSUE 1 JAN-MAR 2024 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 82 | P a g e

accurate keyword matching during the search phase. The

decision trees help identify patterns in trapdoor and index

data, which reduces the chances of incorrect retrieval and

limits the adversary’s ability to exploit vulnerabilities in the

keyword matching process.

VI. EXPERIMENTAL ANALYSIS

The experiments were conducted in an environment with a 64-

bit Windows operating system, an Intel® Core(TM) i5-4570

CPU running at 3.20 GHz, and 16 GB of memory. The local

virtual machine VMware was used to run the open-source

project OpenStack for performance testing. The

implementation utilized C++ programming language, with

cryptographic functions provided by the PBC library.

In this section, the proposed scheme is compared with three

other schemes from the literature [12-13, 15]. The

comparisons focus on trapdoor generation time, index

generation time, and keyword retrieval time. Keywords were

tested in increments of 50, starting from 50 and increasing up

to 500. Each keyword count was subjected to 50 repeated

experiments to calculate the average time overhead, ensuring

the validity of the results. Additionally, experiments were

conducted to analyze the relationship between string length

and time overhead, revealing that data complexity of strings

does not affect time overhead. The experiments used 8-letter

words as keywords. The dataset used for the experiments was

provided by the Natural Language Processing Group at Fudan

University's International Database Center. The test corpus

consisted of 9,833 documents, and the training corpus

comprised 9,804 documents. Furthermore, the performance of

the proposed scheme was evaluated both before and after the

integration of blockchain technology. Local testing was

carried out using the testrpc software.

A. Trapdoor Generation Time

This section compares the proposed scheme with three other

methods: DS-PEKS [12], PAEKS [13], and SPE-PP [15]. As

shown in table 1, the trapdoor generation time increases with

the number of keywords. However, the proposed scheme

demonstrates a clear advantage over the other three schemes,

particularly as the number of keywords grows. Unlike the

other schemes, the trapdoor generation time in the proposed

method remains unaffected by the number of characters in a

keyword, making it highly efficient for querying complex

strings. Additionally, the trapdoor structure is proven to meet

IND-KGA security requirements, ensuring the security of the

keywords.

Table 1: Trapdoor Generation Time

Table 2: Index Generation Time

B. Index Generation Time

Table 2 shows that the proposed scheme outperforms DS-

PEKS and PAEKS significantly and has a slight advantage

over SPE-PP. This is mainly due to the fact that the index

calculation in the proposed scheme requires only one bilinear

pairing and one hash computation, making the construction

simpler compared to the other three methods. As the number

of keywords increases, the advantage of the proposed scheme

becomes even more apparent.

Table 3: Keyword Retrieval Time

C. Keyword Retrieval Time

The proposed scheme performs three bilinear pairing

operations during keyword retrieval, resulting in lower

computational overhead compared to the other three schemes.

As illustrated in Table 3, when the number of keywords

reaches 500, the proposed method is approximately 25% more

efficient than PAEKS and SPE-PP.

Table 4: Keyword Retrieval Time

D. Comparison Before and After Blockchain Integration

The introduction of blockchain increases the retrieval time due

to the added security layers, but it also significantly enhances

security. As seen in Table 4, the increase in retrieval time due

to blockchain integration becomes less pronounced as the

number of keywords grows.

REFERENCES

[1] Dawn S. D., Song D., Wagner A. P., et al. "Practical techniques

for searches on encrypted data." Proceedings of the 2000 IEEE
Security and Privacy Symposium. Piscataway: IEEE Press,
2000: 44-45.

[2] Boneh D., Di Crescenzo G., Ostrovsky R., et al. "Public key
encryption with keyword search." International Conference on
the Theory and Applications of Cryptographic Techniques.
Berlin: Springer, 2004: 506-522.

IJRECE VOL. 12 ISSUE 1 JAN-MAR 2024 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 83 | P a g e

[3] Curtmola R., Garay J., Kamara S., et al. "Searchable symmetric
encryption: improved definitions and efficient constructions."
Journal of Computer Security, 2011, 19(5): 895-934.

[4] Wang P., Wang H., Pieprzyk J. "Threshold privacy-preserving
keyword searches." Conference on Sofsem: Theory & Practice
of Computer Science. Berlin: Springer, 2008: 646-658.

[5] Yuan K., Liu Z. L., Jia C. F., et al. "Public key timed-release
searchable encryption in one-to-many scenarios." Acta
Electronica Sinica, 2015, 43(4): 760-768.

[6] Zhong H., Cui J., Shi R. H., et al. "Many-to-one homomorphic
encryption scheme." Security & Communication Networks,
2016, 9(10): 1007-1015.

[7] Tang Q., Chen L. Q. "Public-key encryption with registered
keyword search." 6th European Workshop on Public Key
Infrastructures. Berlin: Springer, 2009: 163-178.

[8] Fang L. M., Susilo W., Ge C., et al. "Public key encryption with
keyword search secure against keyword guessing attacks
without random oracle." Information Sciences, 2013, 238: 221-
241.

[9] Xu P., Jin H., Wu Q., et al. "Public-key encryption with fuzzy
keyword search: a provably secure scheme under keyword
guessing attack." IEEE Transactions on Computers, 2013,
62(11): 2266-2277.

[10] Chen R., Mu Y., Yang G., et al. "A new general framework for
secure public key encryption with keyword search."
Australasian Conference on Information Security and Privacy.
Berlin: Springer, 2015: 59-76.

[11] Shao Z. Y., Yang B. "On security against the server in
designated tester public key encryption with keyword search."
Information Processing Letters, 2015, 115(12): 957-961.

[12] Chen R., Mu Y., Yang G., et al. "Dual-server public-key
encryption with keyword search for secure cloud storage." IEEE
Transactions on Information Forensics and Security, 2016,
11(4): 789-798.

[13] Huang Q., Li H. "An efficient public-key searchable encryption
scheme secure against inside keyword guessing attacks."
Information Sciences, 2017, 403-404: 1-14.

[14] Kang Y., Liu Z. "A fully secure verifiable and outsourced
decryption ranked searchable encryption scheme supporting
synonym query." IEEE Second International Conference on
Data Science in Cyberspace. Piscataway: IEEE Press, 2017:
223-231.

[15] Wu L., Chen B., Zeadally S., et al. "An efficient and secure
searchable public key encryption scheme with privacy
protection for cloud storage." Soft Computing, 2018, 22(23):
7685-7696.

[16] Wu L. B., Zhang Y. B., Ma M. M., et al. "Certificateless
searchable public key authenticated encryption with designated
tester for cloud-assisted medical Internet of things." Annales des
Télécommunications, 2019, 74(7-8): 423-434.

[17] Ma M. M., He D. B., Kumar N., et al. "Certificateless searchable
public key encryption scheme for industrial Internet of things."
IEEE Transactions on Industrial Informatics, 2018, 14(2): 759-
767.

[18] Lu Y., Li J. G. "Efficient searchable public key encryption
against keyword guessing attacks for cloud-based EMR
systems." Cluster Computing, 2019, 22(1): 285-299.

[19] Li H. G., Zhang F. G., He J. J., et al. "A searchable symmetric
encryption scheme using blockchain." CoRR: abs/1711.01030,
2017.

[20] Li H. G., Tian H. B., Zhang F. G., et al. "Blockchain-based
searchable symmetric encryption scheme." Computers &
Electrical Engineering, 2019, 73: 32-45.

[21] Chen L. X., Lee W. K., Chang C. C., et al. "Blockchain-based
searchable encryption for electronic health record sharing."
Future Generation Computer Systems, 2019, 95: 420-429.

