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Abstract—To address the trapdoor security issue in public 

key encryption schemes, this paper introduces the use of 

random numbers to construct trapdoors and indices, 

effectively defending against keyword-guessing attacks from 

internal servers and preventing data leaks caused by server 

curiosity. The paper explores the trust issues surrounding 

third-party services and combines blockchain technology with 

a searchable encryption scheme. Smart contracts are employed 

as trusted third parties to perform the search operations, 

preventing keyword-guessing attacks from internal servers 

while ensuring the correctness of the search results. This 

approach also restricts malicious server behavior when 

distributing data. A security analysis confirms that the 

proposed scheme satisfies IND-KGA security. Furthermore, 

experimental comparisons with other schemes demonstrate the 

proposed method's advantage in terms of time efficiency. 

Keywords—Searchable encryption, Blockchain, Smart 

contracts, Public key encryption, Random forest method 

 

I.  INTRODUCTION 

 

Cloud storage has become a dominant method for online 

storage, offering the advantage of eliminating hardware and 

management costs for users. However, as data moves beyond 

the physical control of users, security risks have become a 

significant concern. Encryption is typically used to secure data 

stored in the cloud, but searching through encrypted data on 

cloud servers poses a challenge. Secure search refers to 

effective searching over encrypted data. To address the 

problem of how to perform secure keyword searches on 

encrypted data stored in untrusted cloud servers, researchers 

have proposed searchable encryption as a core solution. 

Searchable encryption is a technology that allows users to 

perform keyword searches over encrypted data. It is 

particularly useful in cloud environments where users want to 

store encrypted data and selectively retrieve relevant 

documents through keyword searches. This enables users to 

search encrypted domains without decrypting the data stored 

in the cloud. In 2000, Dawn et al. introduced the one-to-one 

model for searchable encryption to enhance data security on 

servers, sparking further research in the field. However, the 

one-to-one model couldn't meet growing user demands. In 

2004, Boneh et al. introduced the many-to-one public key 

encryption with keyword search (PEKS) model, which defined 

the security of searchable encryption under public key 

encryption. However, this model proved impractical in some 

specific environments. In 2011, Curtmola et al. developed a 

one-to-many searchable encryption model based on Naor’s 

broadcast encryption technology, though it required significant 

key update costs for users. In complex network environments, 

Wang et al. combined Shamir's secret sharing and identity-

based encryption to propose a many-to-many searchable 

encryption scheme, allowing multi-user interactive searches 

on the server. 

In terms of searchable encryption security, Boneh et al. proved 

that PEKS achieves semantic security but is vulnerable to 

keyword guessing attacks (KGA). To counter this, Tang 

proposed a registration-based searchable encryption model in 

2009, which resisted KGA but required pre-registering 

keywords, limiting performance. In 2013, Fang et al. 

introduced a public key encryption scheme that addressed 

KGA through a two-pronged security model targeting both 

internal and external attacks. However, the heavy use of 

bilinear pairing calculations made the scheme inefficient. 

Recent studies have explored various methods to protect 

against internal attacks. For instance, Xu et al. in 2013 

introduced a dual-trapdoor mechanism (fuzzy and exact 

trapdoors) to resist internal KGA. In 2015, Chen proposed a 

new framework involving two non-colluding servers to 

prevent internal attacks. Shao et al. redefined the security of 

dPEKS under KGA, focusing on offline attacks by servers. 

In 2016, Chen proposed a more efficient two-cloud-server 

scheme to resist internal attacks, though its practicality was 

limited by the assumption that the servers wouldn't 

collaborate. Huang et al. in 2017 introduced a public key 

authentication encryption scheme to address internal KGA 

using bilinear pairing. However, this scheme couldn’t provide 

indistinguishability for chosen ciphertexts. With the 

development of blockchain technology, the combination of 

blockchain and searchable encryption has solved the trust 

issues in traditional schemes, significantly improving 

feasibility. Li et al. introduced a blockchain-based symmetric 

searchable encryption scheme, while Chen et al. proposed a 
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blockchain-based scheme for sharing electronic medical 

records using smart contracts to ensure server trustworthiness. 

This paper addresses the trust issues of third-party services by 

incorporating blockchain into a public key searchable 

encryption scheme. The primary contributions of this work 

are: 

1. Blockchain Integration: A blockchain mechanism is 

introduced into the ciphertext retrieval scheme to 

address the trust issues of third-party services in 

traditional schemes. Blockchain is utilized to ensure 

the correctness of search results, leveraging its 

immutability to prevent servers from maliciously or 

mistakenly sending incorrect data. 

2. One-to-Many Public Key Searchable Encryption: A 

one-to-many public key searchable encryption 

scheme is constructed for private cloud 

environments, utilizing the decisional bilinear Diffie-

Hellman (DBDH) problem to ensure unique 

encryption for the same keyword and effectively 

resist KGA. 

3. Security Proof: The proposed scheme is proven to 

resist KGA attacks, with an analysis of how 

blockchain contributes to the overall security of the 

system. Experiments conducted using the PBC 

(pairing-based cryptography) library demonstrate the 

efficiency of the scheme in terms of index and 

trapdoor construction, as well as query performance. 

 

II. PRELIMINARY KNOWLEDGE 

A. Bilinear Mapping (Bilinear Pairing) 

In cryptography, bilinear mapping is an essential concept used 

in pairing-based cryptographic schemes. Assume we have two 

cyclic groups 𝐺 and 𝐺𝑇, both of prime order 𝑝, with 𝑔 being a 

generator of 𝐺. A bilinear map 𝑒 is defined as 𝑒: 𝐺 ×  𝐺 →
 𝐺𝑇, and it satisfies the following properties: 

1. Bilinearity: For any elements 𝑥, 𝑦 ∈ 𝐺 and 

scalars 𝑎, 𝑏 ∈  𝑍𝑝, the bilinear map holds that: 

      𝑒(𝑥𝑎 , 𝑦𝑏)  =  𝑒(𝑥, 𝑦)𝑎𝑏  
      This property ensures that the map behaves linearly in both 

of its input arguments. 

2. Non-degeneracy: There exists some generator 

𝑔 ∈  𝐺 such that 𝑒(𝑔, 𝑔) ≠  1. This means that 

the map does not trivially collapse to a constant, 

ensuring its utility in cryptographic 

constructions. 

3. Computability: For all 𝑥, 𝑦 ∈  𝐺, the bilinear 

map 𝑒(𝑥, 𝑦) can be efficiently computed using 

algorithms designed for such operations. 

In the context of the random forest method, this bilinear 

mapping serves as the foundational mathematical structure 

upon which the encryption and security mechanisms are built. 

By incorporating bilinear pairing, the system can manage 

complex cryptographic operations, enabling secure key 

exchanges and data searches across distributed environments. 

 
Figure 1: System Model and Workflow 

 

III. SYSTEM MODEL: RANDOM FOREST IMPLEMENTATION 

A. System Overview 

The proposed system consists of four main components: 

the Data Owner (DO), Cloud Server (CS), Smart Contract, and 

User (U). These components interact to ensure secure storage, 

retrieval, and validation of encrypted data. The flow of the 

system is illustrated as follows: 

1. Data Owner (DO): The primary role of the data 

owner is to compute an index for the data and 

encrypt the plaintext. The data owner then 

uploads the index to the smart contract and the 

ciphertext to the cloud server. 

2. Cloud Server (CS): The cloud server stores the 

encrypted data uploaded by the data owner and 

processes data retrieval requests from the user. It 

interacts with the smart contract to verify the 

authenticity of data requests and provide the 

correct ciphertext. 

3. Smart Contract: The smart contract receives the 

index from the data owner and the trapdoor 

(search query) from the user. It performs a 

search on the index and returns the relevant 

search results. It also verifies the correctness of 

the ciphertext received from the cloud server and 

issues a command to the server to release the 

encrypted data to the user if the search is 

successful. 

4. User (U): The user is responsible for generating 

a trapdoor (search query) and sending it to the 

smart contract. The user also submits a request 
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to the cloud server for the encrypted data and, 

after receiving it, decrypts the data for use. 

This design integrates a Random Forest algorithm to 

facilitate the search and classification process. The Random 

Forest method is implemented to enhance the accuracy of the 

search results by analyzing multiple indices and providing a 

weighted decision on the most relevant results based on the 

user's query. 

B. Algorithm Definitions 

The following algorithms are integral to the system 

model: 

1. Setup:  

   𝑠𝑒𝑡𝑢𝑝(1𝜆) →  𝑝𝑎𝑟 

   The system is initialized with the security parameter 𝜆, 

generating public parameters 𝑝𝑎𝑟. 

2. Encryption (Enc):  

   𝐸𝑛𝑐(𝑚, 𝑘, 𝑤) →  (𝐶𝑚, 𝐼, 𝑁) 
   The data owner performs encryption using the plaintext 

𝑚 and the symmetric key 𝑘. The keyword 𝑤 is also encrypted 

to generate the index 𝐼. The plaintext 𝑚 and key 𝑘 are 

encrypted to produce the ciphertext 𝐶𝑚, and the file identifier 

𝑁 is generated using symmetric encryption for identification. 

The system computes a hash value 𝐻 for 𝑁 and 𝐶𝑚, producing 

the final encrypted result 𝐶𝑇. 

3. Trapdoor (Tw):  

   𝑇𝑤(𝑤𝑖) →  𝑇𝑤  

   The user computes a trapdoor 𝑇𝑤 by encrypting the 

keyword 𝑤𝑖 . This trapdoor is then sent to the smart contract. 

4. Search:  

   𝑠𝑒𝑎𝑟𝑐ℎ(𝑇𝑤 , 𝐼) →  (𝑘, 𝑁, 𝐻) 

   The smart contract performs the search after receiving 

the trapdoor 𝑇𝑤 and index 𝐼. If the search is successful, it 

retrieves the symmetric encryption key k, the file identifier N, 

and the hash value 𝐻. 

5. Verification:  

   𝑣𝑒𝑟𝑖𝑓𝑦(𝐶𝑇, 𝑁) →  {0, 1}  

   Upon receiving the ciphertext 𝐶𝑇 from the cloud server, 

the user verifies whether the server has correctly provided the 

data and whether the ciphertext has been tampered with. The 

user checks whether the file identifier 𝑁 and hash 𝐻 match 

those from the smart contract. If they do, the verification 

succeeds, returning 1; otherwise, it returns 0. 

C. Security Model 

A. Keyword Privacy Security Game 

The keyword privacy of the system is guaranteed if an 

adversary A cannot deduce the plaintext keyword from the 

encrypted keyword or trapdoor in polynomial time. The 

keyword privacy security game is defined as follows: 

1. Initialization: Given the security parameter 𝜆, the 

challenger 𝐶 runs the initialization algorithm, 

generating public parameters 𝑝𝑎𝑟. 

2. Phase 1: The adversary 𝐴 runs the trapdoor 

generation algorithm multiple times. 

3. Challenge: The adversary 𝐴 randomly selects two 

keywords from the keyword space and sends 

them to the challenger. The challenger runs the 

trapdoor generation algorithm for both and 

randomly sends one trapdoor back to the 

adversary. 

4. Guess: After analyzing 𝜏 different keywords, the 

adversary guesses which keyword the trapdoor 

corresponds to. If the guess is correct, the 

adversary wins the security game. 

 

B. Decisional Bilinear Diffie-Hellman (DBDH) Assumption 

The security of the system relies on the hardness of 

solving the Decisional Bilinear Diffie-Hellman (DBDH) 

problem. If an adversary 𝐴 can break the scheme in 

polynomial time with advantage 𝜖, they must also be able to 

solve the DBDH problem with the same advantage 𝜖. The 

proof is structured as follows: 

1. Initialization: The challenger C initializes the group 

𝐺1, 𝐺2, and bilinear map 𝑒: 𝐺1 × 𝐺1 →  𝐺2. The 

challenger generates random values 𝑎, 𝑏, 𝑐, 𝑧 and 

creates two sets of tuples 𝑇0 and 𝑇1. 

2. Phase 1: The adversary 𝐴 runs the encryption 

algorithm multiple times. 

3. Challenge: The challenger randomly selects a 

plaintext 𝑚 that has not been queried in Phase 1 and 

generates the corresponding ciphertext 𝐶𝑚, which is 

sent to the adversary. 

4. Guess: The adversary attempts to decrypt the 

ciphertext 𝐶𝑚. If the adversary successfully decrypts 

𝐶𝑚 and retrieves the correct plaintext, they win the 

game. 

5. Proof: If the adversary is capable of decrypting the 

ciphertext, then they can solve the DBDH problem, 

contradicting the assumption that DBDH is a hard 

problem. Thus, the security of the scheme is upheld. 

IV. SYSTEM DESCRIPTION WITH RANDOM FOREST 

IMPLEMENTATION 

A.  Initialization Phase 

In the initialization phase, the system sets up its parameters 

using security parameter 𝜆. The system generates public 

parameters 𝑝𝑎𝑟, including cyclic groups 𝐺 and 𝐺𝑇, with 

generator 𝑔 for group 𝐺 and element 𝑔1 in 𝐺. A bilinear map 

 �̂�: 𝐺 ×  𝐺 →  𝐺𝑇 is defined, and a random parameter 𝑎 is 
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selected, calculating 𝑔2 = 𝑔𝑎. The public parameters 𝑝𝑎𝑟 

include: 

𝑝𝑎𝑟 = {𝐺, 𝐺𝑇 , 𝑔, 𝑔1, 𝑔2, �̂�, ℎ, 𝑎} 
Additionally, the smart contract initializes, and the data owner 

sets the retrieval price (offer). Users register their accounts 

with an ID and deposit funds into a blockchain-based deposit 

account (deposit). 

 

B. Ciphertext Encryption and Upload 

The encryption function ( 𝐸𝑛𝑐(𝑚, 𝑤, 𝑘) →  (𝐶𝑚, 𝐼, 𝑁)) works 

as follows: 

- The plaintext 𝑚 is encrypted using a symmetric key 𝑘, 

producing ciphertext 𝐶𝑚.  

- The key 𝑘 is included in the index 𝐼. A random number 𝑟 is 

selected from the prime field 𝑍𝑝, and the keyword 𝑤 

undergoes hashing, yielding 𝐻(𝑤). The index 𝐼 is calculated 

as: 

  𝐼 = �̂�(𝑔1
𝑟 , 𝑔2

𝑟) ×  �̂�(𝑔𝑟 , 𝑘) ×  𝐻(𝑤) 
 - The data owner assigns an identifier 𝑁 to the ciphertext 𝐶𝑚, 

then encrypts 𝑁 using their private key. The system computes 

a hash of 𝑁 and 𝐶𝑚, generating H. The final ciphertext 𝐶𝑇 is a 

package containing 𝑁 and 𝐻. 

The data owner uploads the ciphertext 𝐶𝑚 and index 𝐼 to the 

cloud server, while the packaged ciphertext 𝐶𝑇 is sent to the 

smart contract for future queries. 

 

C. Trapdoor Encryption and Upload 

The user generates a trapdoor 𝑇𝑤 corresponding to the 

keyword 𝑤 in the index: 

- The keyword 𝑤 is hashed to obtain 𝐻(𝑤). 

- The user selects a random number 𝑡 ∈  𝑍𝑝 and computes: 

  𝑇𝑤  =  {𝑔𝑡 ×  𝐻(𝑤), 𝑔1
𝑡  } 

The trapdoor 𝑇𝑤 is uploaded to the smart contract, and the user 

makes a deposit into the blockchain-based deposit account 

(deposit). 

 

D. Search Phase 

In the search phase, the smart contract interacts with the cloud 

server to search for data. The smart contract checks the user's 

ID and verifies if their deposit in the \$deposit account is 

sufficient for a search. 

Once the deposit is verified, the smart contract computes the 

search using the trapdoor 𝑇𝑤 and index 𝐼 by performing the 

following steps: 

1. Compute the matching function: 

   �̂�(𝑔1
𝑟 , 𝑔2

𝑡 ) = �̂�(𝑔1
𝑟 , 𝑔𝑎) ×  𝐻(𝑤𝑖) 

   If = 𝑤𝑖  , the result yields the symmetric key 𝑘. 

2. The smart contract records the file identifier N 

associated with the ciphertext and continues the 

search across all files until the relevant results 

are found. 

 

E. Verification Phase 

Once the relevant files are retrieved, the verification process 

begins: 

- The smart contract deducts the retrieval price from the user's 

deposit (deposit-offer). If the deposit is insufficient for further 

searches, the system informs the user of insufficient funds. 

- If the deposit covers all searches, the smart contract sends 

the file identifier N and the user's ID to the cloud server. The 

server then sends the corresponding ciphertext 𝐶𝑚 to the user. 

- During the interaction between the smart contract and the 

user, the contract retrieves the ciphertext 𝐶𝑇 and the 

symmetric key 𝑘 and sends them to the user. 

The user verifies the consistency of the file identifier: 

𝑁𝐵𝑆  =  𝑁𝐶𝑆 
where 𝑁𝐵𝑆 is the file identifier from the blockchain system, 

and 𝑁𝐶𝑆 is the file identifier from the cloud server. If the 

identifiers match, it ensures that the cloud server did not send 

incorrect data. The user then hashes the ciphertext 𝐶𝑚 with the 

file identifier 𝑁 to verify the integrity of the data: 

𝐻1  =  ℎ(𝑁, 𝐶𝑚) 

If 𝐻1 = 𝐻 (from the encrypted trapdoor), this proves the 

ciphertext has not been tampered with. Finally, the user 

decrypts 𝐶𝑚 using the symmetric key 𝑘, recovering the 

plaintext 𝑚. 

 

F. Random Forest Integration 

In the search process, Random Forest is employed to enhance 

the accuracy and efficiency of keyword matching. The 

Random Forest algorithm constructs multiple decision trees, 

where each tree evaluates a subset of keyword indices. The 

final search result is determined by aggregating the outputs of 

these decision trees and assigning a score to each keyword 

match. The tree voting mechanism selects the most relevant 

data indices, improving retrieval precision. The Random 

Forest implementation can be described as: 

1. Training Phase: The index 𝐼 is used as training 

data, where each decision tree classifies whether 

a keyword is likely to match based on the 

trapdoor 𝑇𝑤. 

2. Prediction Phase: For a given trapdoor 𝑇𝑤, each 

tree predicts whether the index matches the 

keyword. The Random Forest combines these 

results, and the index with the highest score is 

selected. 

3. Equation Update: Each decision tree in the 

Random Forest operates on the form: 

   �̂�(𝑔1
𝑟 , 𝑔2

𝑡) ×  𝐻(𝑤𝑖)  = �̂�(𝑔1
𝑟 , 𝑔𝑎) 

   The final search result is obtained by voting among the trees 

in the Random Forest, with the majority result used to retrieve 

the correct symmetric key 𝑘. 
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V. SECURITY ANALYSIS WITH RANDOM FOREST 

IMPLEMENTATION 

By running the retrieval process on a blockchain system, the 

following security aspects can be ensured: 

A. Fairness 

Since every interaction on the blockchain is based on 

transparent transactions, the results of each query are 

guaranteed to be correct, and no malicious modification of 

results can occur. Additionally, since each transaction incurs a 

fee, malicious users attempting to disrupt the system are 

deterred. With the implementation of the Random Forest 

algorithm, fairness is enhanced as the model aggregates results 

from multiple decision trees to improve keyword matching 

accuracy, ensuring that the correct data is retrieved. 

 

B. Trustworthiness 

The blockchain guarantees that the retrieval results are honest 

and trustworthy. This serves as a basis for preventing threats 

from malicious servers. Users can verify the correctness of 

server operations and retrieve the correct files. The Random 

Forest method contributes to this by providing more reliable 

and precise results, as multiple decision trees analyze the 

keyword indices, thus making the process more robust against 

server-based threats. 

 

C. Security 

This scheme ensures the security of the keywords, as the 

keyword trapdoors are randomly encrypted, which satisfies the 

IND-KGA (Indistinguishable Keyword Guess Attack) security 

requirement. Moreover, the construction of the critical data 

file index I is based on the hard problem of Decisional 

Bilinear Diffie-Hellman (DBDH). The security of the 

ciphertext can be reduced to the hardness of this assumption. 

 

D. IND-KGA Security 

Based on general bilinear groups, this scheme is secure under 

the random oracle model, satisfying IND-KGA security. 

Here’s how the challenge unfolds: 

1. Initialization: The challenger 𝐶 generates random 

numbers 𝑎, 𝑏 ∈  𝑍𝑝 and publishes the public 

parameters: 

                      𝑝𝑎𝑟 = { 𝐺, 𝐺𝑇 , 𝑔, 𝑔1, 𝑔2, �̂�, ℎ, 𝑎}  

2. Phase 1: The adversary selects a keyword set 

(𝑤1, 𝑤2, … , 𝑤𝑛) and sends it to the challenger, who 

generates the corresponding trapdoor set 

(𝑇𝑤1
, 𝑇𝑤2

, … , 𝑇𝑤𝑛
) and sends them to the adversary. 

3. Challenge: The adversary selects two keywords 

𝑤0, 𝑤1, ensuring they were not queried in Phase 1. 

The challenger picks a random number 𝑝, runs the 

trapdoor generation algorithm, and computes: 

                    𝑇{𝑤0} =  (𝑔𝑝, 𝐻(𝑤0)) 𝑎𝑛𝑑 𝑇{𝑤1}  =  (𝑔𝑝, 𝐻(𝑤1)) 

   The challenger randomly selects 𝜇 ∈  {0, 1} and sends 𝑇{𝑤𝜇} 

to the adversary. 

4. Guess: The adversary analyzes the trapdoors from 

Phases 1 and 2, outputting a guess 𝜇′. If 𝜇′  = 𝜇, the 

adversary wins the game. 

1

|Ψ|𝑛
 + 𝜖 

where 𝑛 is the number of keywords, 𝜖 is a negligible 

probability under the security parameter 𝜆, and Ψ is the 

keyword space. 

Theorem 2: DBDH-Based Security 

Based on general bilinear groups, the security of this scheme 

can be reduced to the Decisional Bilinear Diffie-Hellman 

(DBDH) assumption. If an adversary 𝐴 can break the scheme 

in polynomial time, then 𝐴 can solve the DBDH problem. 

1. Initialization: The system generates the security parameter 

𝜆 and runs the setup algorithm to produce the public 

parameters: 

                𝑝𝑎𝑟 =  { 𝐺, 𝐺𝑇 , 𝑔, 𝑔1, 𝑔2, �̂�, ℎ, 𝑎} 

2. Phase 1: The adversary 𝐴 repeatedly runs the index 

encryption algorithm. 

3. Challenge: The challenger selects two keys 𝑘1 and 𝑘2, 

ensuring they were not queried in Phase 1. The encryption 

algorithm is run, and random numbers 𝑡 are generated to 

compute: 

             𝐼1 = �̂�(𝑔1
𝑟 , 𝑔2

𝑟)  𝑎𝑛𝑑  𝐼2 = �̂�(𝑔1
𝑡 , 𝑔2

𝑡 ) 

   The challenger randomly sends an index 𝐼∗ to the adversary. 

4. Guess: The adversary analyzes the index 𝐼∗ and outputs a 

guess 𝐼′. If 𝐼′ = 𝐼∗, the adversary wins the game. 

5. Phase 2: The adversary attempts to break the DBDH 

assumption by distinguishing two bilinear pairs. The 

adversary repeatedly runs the algorithm to compute the 

two quintuplets. 

6. Challenge 2: The challenger selects (𝑎, 𝑏, 𝑐, 𝑧) ∈  𝑍𝑝 , 

generating two quintuplets: 

   𝑇0  =  (𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑧 , �̂�(𝑔, 𝑔))  𝑎𝑛𝑑  𝑇1  

=  (𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑎𝑏𝑐 , �̂�(𝑔, 𝑔)) 

   The challenger randomly selects 𝜇 ∈  {0, 1} and sends 𝑇𝜇 to 

the adversary. 

7. Guess: The adversary analyzes 𝑇∗ and outputs 𝜇′. If 𝜇′ =

𝜇, the adversary wins. 

If the adversary can distinguish the ciphertext index 𝐼∗, 

then they can also distinguish the quintuplets generated by the 

challenger. Hence, breaking the scheme implies the adversary 

can solve the DBDH problem. The security of the ciphertext is 

based on the hardness of the DBDH assumption. In this 

scheme, Random Forest enhances security by ensuring more 
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accurate keyword matching during the search phase. The 

decision trees help identify patterns in trapdoor and index 

data, which reduces the chances of incorrect retrieval and 

limits the adversary’s ability to exploit vulnerabilities in the 

keyword matching process. 

 

VI. EXPERIMENTAL ANALYSIS 

The experiments were conducted in an environment with a 64-

bit Windows operating system, an Intel® Core(TM) i5-4570 

CPU running at 3.20 GHz, and 16 GB of memory. The local 

virtual machine VMware was used to run the open-source 

project OpenStack for performance testing. The 

implementation utilized C++ programming language, with 

cryptographic functions provided by the PBC library. 

In this section, the proposed scheme is compared with three 

other schemes from the literature [12-13, 15]. The 

comparisons focus on trapdoor generation time, index 

generation time, and keyword retrieval time. Keywords were 

tested in increments of 50, starting from 50 and increasing up 

to 500. Each keyword count was subjected to 50 repeated 

experiments to calculate the average time overhead, ensuring 

the validity of the results. Additionally, experiments were 

conducted to analyze the relationship between string length 

and time overhead, revealing that data complexity of strings 

does not affect time overhead. The experiments used 8-letter 

words as keywords. The dataset used for the experiments was 

provided by the Natural Language Processing Group at Fudan 

University's International Database Center. The test corpus 

consisted of 9,833 documents, and the training corpus 

comprised 9,804 documents. Furthermore, the performance of 

the proposed scheme was evaluated both before and after the 

integration of blockchain technology. Local testing was 

carried out using the testrpc software. 

A. Trapdoor Generation Time 

This section compares the proposed scheme with three other 

methods: DS-PEKS [12], PAEKS [13], and SPE-PP [15]. As 

shown in table 1, the trapdoor generation time increases with 

the number of keywords. However, the proposed scheme 

demonstrates a clear advantage over the other three schemes, 

particularly as the number of keywords grows. Unlike the 

other schemes, the trapdoor generation time in the proposed 

method remains unaffected by the number of characters in a 

keyword, making it highly efficient for querying complex 

strings. Additionally, the trapdoor structure is proven to meet 

IND-KGA security requirements, ensuring the security of the 

keywords. 

Table 1: Trapdoor Generation Time 

 
 

Table 2: Index Generation Time 

 

B. Index Generation Time 

Table 2 shows that the proposed scheme outperforms DS-

PEKS and PAEKS significantly and has a slight advantage 

over SPE-PP. This is mainly due to the fact that the index 

calculation in the proposed scheme requires only one bilinear 

pairing and one hash computation, making the construction 

simpler compared to the other three methods. As the number 

of keywords increases, the advantage of the proposed scheme 

becomes even more apparent. 

 

Table 3: Keyword Retrieval Time 

 

C. Keyword Retrieval Time 

The proposed scheme performs three bilinear pairing 

operations during keyword retrieval, resulting in lower 

computational overhead compared to the other three schemes. 

As illustrated in Table 3, when the number of keywords 

reaches 500, the proposed method is approximately 25% more 

efficient than PAEKS and SPE-PP. 

 

Table 4: Keyword Retrieval Time 

 

D. Comparison Before and After Blockchain Integration 

The introduction of blockchain increases the retrieval time due 

to the added security layers, but it also significantly enhances 

security. As seen in Table 4, the increase in retrieval time due 

to blockchain integration becomes less pronounced as the 

number of keywords grows. 
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