1. From the following graph determine the following limits.

(i) $\lim _{x \rightarrow-1^{-}} f(x)$
(ii) $\lim _{x \rightarrow-1^{+}} f(x)$
(iii) $\lim _{x \rightarrow-1} f(x)$
(iv) $\lim _{x \rightarrow 2^{-}} f(x)$
(v) $\lim _{x \rightarrow 2^{+}} f(x)$
(vi) $\lim _{x \rightarrow 2} f(x)$
2. Calculate $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}$ using the techniques of graphically, numerically and analytically.
3. Calculate the following limits analytically.

$$
\text { (i) } \lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2} \text {, (ii) } \lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 2 x} \text {, (iii) } \lim _{x \rightarrow \infty} \frac{3 x^{2}+4}{x^{2}+2 x+1}
$$

4. Calculate the first derivative (either $f^{\prime}(x)$ or y^{\prime}) of the following. Do not simplify your answer

$$
\text { (ii) } y=\frac{4 e^{x}}{x^{2}+1}, \quad \text { (iii) } y=x^{2} \tan x, \quad f(x)=\sin \left(\sqrt{4 x^{2}+x}\right) \text {, }
$$

5.(i) State the definition of the derivative.
(ii) If $f(x)=3 x^{2}-5 x+2$ then find $f^{\prime}(x)$ from the definition.
6. Find the equation of the tangent to $y=x^{4}-2 x^{3}+3 x^{2}$ at $x=1$.
7. If

$$
f(x)= \begin{cases}x^{2} & x \leq 0 \\ x^{3} & x>0\end{cases}
$$

is $f(x)$ continuous and differentiable at $x=0$?
8. Prove

$$
\lim _{x \rightarrow 2} 2 x-1=3
$$

9. Prove the (i) sum rule (ii) difference rule (iii) product rule.
