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Abstract 
In the present paper, we give a detailed study of soft fuzzy sets in topological spaces. We study some 

aspects like separability, connectedness, their generalizations and relationships between them.  
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Introduction 

The notion of connectedness in fuzzy 

topological spaces has been studied by [1-3]. In 

fuzzy soft setting, connectedness has been 

introduced in [4-7]. In [8] they introduced the 

generalized fuzzy soft connectedness and 

generalized fuzzy soft 𝐶𝑖-connectedness (𝑖=1, 2, 

3, 4) in generalized fuzzy soft topological space 

and studied some of its basic properties. In this 

paper, we extend the notion of connectedness of 

fuzzy soft topological spaces to generalized 

fuzzy soft topological spaces in [9-11]. We 

introduce different notions of generalized fuzzy 

soft separated sets and study the relationship 

between them. The study is also devoted to 

introduce the different notions of connectedness 

in generalized fuzzy soft topological spaces and 

study the implications that exist between them 

[12,13]. Also, we study some characterizations 

of connectedness in generalized fuzzy soft 

setting [14-17]. 

Materials and methods 

 In this section, we give some basic 

concepts on generalized fuzzy soft sets, 

generalized fuzzy soft topology and generalized 

fuzzy soft continuous mappings which will be 

needed in the sequel.  

Definition 2.1 

 Let 𝑋 be a non-empty set. A fuzzy set A 

in 𝑋 is defined by a membership function 𝜇𝐴:𝑋 

→ [0,1] whose value 𝜇𝐴(𝑥) represents the "grade 

of membership" of x in A for 𝑥 ∈ 𝑋. The set of 

all fuzzy sets in a set 𝑋 is denoted by 𝐼𝑋, where 𝐼 
is the closed unit interval [0,1].  

Definition 2.2 

 If A, B ∈ 𝐼𝑋, then, we have:  

(i) 𝐴 ≤ 𝐵 ⇔(𝑥)≤ 𝜇𝐵(𝑥),∀ 𝑥 ∈ 𝑋;  

(ii) 𝐴 = 𝐵 ⇔(𝑥)= 𝜇𝐵(𝑥),∀ 𝑥 ∈ 𝑋;  

(iii) 𝐶=𝐴 ∨𝐵 ⇔(𝑥)=max(𝜇𝐴(𝑥),𝜇𝐵(𝑥)),∀ 𝑥 ∈ 𝑋;  

(iv) 𝐷=𝐴 ∧ 𝐵 ⇔(𝑥)=min(𝜇𝐴(𝑥),𝜇𝐵(𝑥)),∀ 𝑥 ∈ 𝑋;  

(v) 𝐸 = 𝐴𝐶⇔(𝑥)=1− 𝜇𝐴(𝑥),∀ 𝑥 ∈ 𝑋. 

Definition 2.3 

 Let 𝑋 be an initial universe set and 𝐸 be a 

set of parameters. Let (𝑋) denotes the power set 

of 𝑋 and 𝐴⊆𝐸. A pair (𝑓, .) is called a soft set 

over 𝑋 if f is a mapping from A into 𝑃(𝑋), i.e., 𝑓∶ 
𝐴 ⟶ 𝑃(𝑋). In other words, a soft set is a 

parameterized family of subsets of the set 𝑋. For 

𝑒 ∈ 𝐴, (𝑒) may be considered as the set of 𝑒-

approximate elements of the soft set (𝑓,).  

Definition 2.4 

 Let 𝑋 be an initial universe set and 𝐸 be a 

set of parameters. Let 𝐴⊆𝐸. A fuzzy soft set 𝑓𝐴 

over 𝑋 is a mapping from 𝐸 to 𝐼𝑋, i.e., 

𝑓𝐴:𝐸⟶𝐼𝑋, where (𝑒) 0  if 𝑒 ∈ 𝐴⊆𝐸, and 

𝑓𝐴(𝑒)=0  if 𝑒 ∉ 𝐴, where 0  denotes the e pt  
fuzzy set in 𝑋.  

Definition 2.5 

 Let 𝑋 be a universal set of elements and 

E be a universal set of parameters for 𝑋. Let 𝐹∶ 𝐸 

⟶ 𝐼𝑋 and 𝜇 be a fuzzy subset of E, i.e., 𝜇∶ 𝐸 ⟶ 

X. Let 𝐹𝜇 be the mapping 𝐹𝜇∶ 𝐸 ⟶ 𝐼𝑋×𝐼 defined 

as follows: (𝑒) = (𝐹(𝑒), 𝜇(𝑒)), where 𝐹(𝑒) ∈ 𝐼𝑋 

and 𝜇(𝑒)∈𝐼. Then 𝐹𝜇 is called a generalized 

fuzzy soft set (𝐺𝐹𝑆𝑆 in short) over (𝑋,). The 
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family of all generalized fuzzy soft sets over (𝑋,) 

is denoted by 𝐺𝐹𝑆(𝑋,𝐸).  

Definition 2.6 

 Let 𝐹𝜇 and 𝐺𝛿 be two GFSSs over (𝑋,). 

𝐹𝜇 is said to be a 𝐺𝐹𝑆 subset of 𝐺𝛿 or 𝐺𝛿 is said 

to be a GFS super set of 𝐹𝜇 denoted by 𝐹𝜇⊆𝐺𝛿 

if, 

(i) 𝜇 is a fuzzy subset of 𝛿;  

(ii) (𝑒) is also a fuzzy subset of (𝑒),∀𝑒 ∈ 𝐸.  

Definition 2.7 

 Let 𝐹𝜇 be a 𝐺𝐹𝑆𝑆 over (𝑋,). The 

generalized fuzzy soft complement of 𝐹𝜇, 

denoted by 𝐹𝜇𝑐, is defined by 𝐹𝜇𝑐=𝐺𝛿, where 

(𝑒) =𝜇(𝑒) and 𝐺(𝑒)= 𝐹𝑐(𝑒), ∀𝑒∈𝐸.  

Obviously ( 𝑐)c=𝐹𝜇.  

Definition 2.8 

 Let 𝐹𝜇 and 𝐺𝛿 be two GFSSs over (𝑋,.). 

The generalized fuzzy soft union (𝐺𝐹𝑆 union, in 

short) of 𝐹𝜇 and 𝐺𝛿, denoted by 𝐹𝜇 ⨆ 𝐺𝛿, is the 

𝐺𝐹𝑆𝑆 𝐻𝜈, defined as 𝐻𝜈∶ 𝐸 ⟶ 𝐼𝑋×𝐼 such that  

𝐻𝜈(𝑒)=(𝐻(𝑒),𝜈(𝑒)), where 𝐻(𝑒)=𝐹(𝑒)∨𝐺(𝑒) and 

𝜈(𝑒)=𝜇(𝑒)∨𝛿(𝑒), ∀𝑒∈𝐸. Let {(𝐹𝜇), 𝜆∈∇}, where 

∇ is an index set, be a family of 𝐺𝐹𝑆𝑆𝑠. The 𝐺𝐹𝑆 

union of these family, denoted by ⨆𝜆∈Λ(𝐹𝜇)𝜆 , 

is The 𝐺𝐹𝑆𝑆 𝐻𝜈, defined as 𝐻𝜈∶ 𝐸 ⟶ 𝐼𝑋×𝐼 such 

that 𝐻𝜈(𝑒)=(𝐻(𝑒),𝜈(𝑒)), where 

𝐻(𝑒)=⋁𝜆∈∇(𝐹(𝑒))𝜆, and 𝜈(𝑒)=⋁𝜆∈∇(𝜇(𝑒))𝜆, 

∀𝑒∈𝐸.  

Definition 2.9 

 Let 𝐹𝜇 and 𝐺𝛿 be two 𝐺𝐹𝑆𝑆𝑠 over (𝑋,.). 

The generalized fuzzy soft Intersection (𝐺𝐹𝑆 

Intersection, in short) of 𝐹𝜇 and 𝐺𝛿, denoted by 

𝐹𝜇 ⨅ 𝐺𝛿, is the 𝐺𝐹𝑆𝑆 𝑀𝜎, defined as 𝑀𝜎 ∶ 𝐸 ⟶ 

𝐼𝑋×𝐼 such that 𝑀𝜎(𝑒)=(𝑀(𝑒),𝜎(𝑒)), where 

𝑀(𝑒)=𝐹(𝑒)∧𝐺(𝑒) and 𝜎(𝑒)=𝜇(𝑒)∧𝛿(𝑒), ∀𝑒∈𝐸. Let 

{(𝐹𝜇)λ ,λ∈∇}, where ∇ is an index set, be a 

family of 𝐺𝐹𝑆𝑆𝑠. The 𝐺𝐹𝑆 Intersection of these 

family, denoted by ⨅λ∈∇(𝐹𝜇)λ , is the 𝐺𝐹𝑆𝑆 

𝑀𝜎, defined as 𝑀𝜎∶ 𝐸 ⟶ 𝐼𝑋×𝐼 such that 

𝑀𝜎(𝑒)=(𝑀(𝑒),𝜎(𝑒)), where 𝑀(𝑒)=⋀λ∈∇(𝐹(𝑒))λ, 
and 𝜎(𝑒)=⋀λ∈∇(𝜇(𝑒))λ, ∀𝑒∈𝐸.  

Theorem 2.10 

 Let {(𝐹𝜇)λ ,λ∈𝛻}⊆𝐺𝐹𝑆𝑆(𝑋,𝐸). Then the 

following statements [3] hold: 

(i) [⊔λ∈∇(𝐹𝜇)λ ,λ∈∇]𝑐=⊓λ∈∇(𝐹𝜇)λ𝑐,  
(ii) [⊓λ∈∇(𝐹𝜇)λ ,λ∈∇]𝑐=⊔λ∈∇(𝐹𝜇)λ𝑐. 

 

 

Definition 2.11 

 A 𝐺𝐹𝑆𝑆 is said to  e a generali ed null 
fu    soft set, denoted    0 𝜃, if 0 𝜃∶𝐸 ⟶ 𝐼𝑋×𝐼 
su h that 0 𝜃(𝑒)=(0 (𝑒),𝜃(𝑒)) where 0 (𝑒)=0  ∀𝑒∈𝐸 

and 𝜃(𝑒)=0 ∀𝑒∈𝐸 (  here 0 (𝑥)=0,∀𝑥∈𝑋 ).  

Definition 2.13 

 A 𝐺𝐹𝑆𝑆 is said to  e a generali ed 
a solute fu    soft set, denoted    1  , if 1   ∶ 𝐸 

⟶ 𝐼𝑋×𝐼, where 1  (e)=(1 (𝑒), (𝑒)) is defined    
1 (𝑒)=1 ,∀ 𝑒∈𝐸 and  (𝑒)=1,∀𝑒∈𝐸 (  here 1 (𝑥) = 

1,∀𝑥∈𝑋 ).  

Definition 2.14 

 Let T be a collection of generalized fuzzy 

soft sets over (𝑋,). Then T is said to be a 

generalized fuzzy soft topology (𝐺𝐹𝑆 topology 

in short) over (𝑋,) if the following conditions are 

satisfied:  

(i) 0 𝜃 and 1   are in 𝑇;  

(ii) Arbitrary 𝐺𝐹𝑆 unions of members of 𝑇 

belong to 𝑇;  

(iii) Finite 𝐺𝐹𝑆 intersections of members of T 

belong to 𝑇.  

The triple (𝑋,,) is called a generalized fuzzy soft 

topological space (𝐺𝐹𝑆𝑇-space in short) over 

(𝑋,𝐸). The members of 𝑇 are called generalized 

fuzzy soft open sets [𝑆 open in short] in (𝑋,𝑇,𝐸).  

Definition 2.15  

 Let (𝑋,,) be a 𝐺𝐹𝑆𝑇-space. A 𝐺𝐹𝑆𝑆 𝐹𝜇 

over (𝑋,) is said to be a generalized fuzzy soft 

closed set in 𝑋 [GFS closed in short], if its 

complement 𝐹𝜇𝑐 is 𝐺𝐹𝑆 open. The collection of 

all 𝐺𝐹𝑆 closed sets will be denoted by 𝑇𝑐.  

Definition 2.16 

 Let (𝑋,) be a 𝐺𝐹𝑆𝑇-space and 

𝐹𝜇∈𝐺𝐹𝑆𝑆(𝑋,𝐸). The generalized fuzzy soft 

closure of 𝐹𝜇, denoted by (𝐹𝜇), is the 

intersection of all 𝐺𝐹𝑆 closed supper sets of 𝐹𝜇. 

i.e., (𝐹𝜇)=⊓{𝐻𝜈: 𝐻𝜈 ∈𝑇𝑐,𝐹𝜇⊑𝐻𝜈}. Clearly, 

(𝐹𝜇) is the smallest 𝐺𝐹𝑆 closed set over (𝑋,𝐸) 

which contains 𝐹𝜇.  

Definition 2.17 

 The generalized fuzzy soft set 𝐹𝜇 ∈ 

𝐺(𝑋,𝐸) is called a generalized fuzzy soft point 

(GFS point in short) if there exist 𝑒∈𝐸 and 𝑥∈𝑋 

such that:  

(i) (𝑒)(𝑥)=𝛼 (0<𝛼≤1) and 𝐹(𝑒)(𝑦)=0 for all 

𝑦∈𝑋−{𝑥},  
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(ii) (𝑒)=𝜆 (0<𝜆≤1) and 𝜇(𝑒′)=0 for all 𝑒′∈𝐸−{𝑒}. 

We denote this generalized fuzzy soft point 

𝐹𝜇=(𝑥𝛼,𝑒𝜆).  

(𝑥,) and (𝛼,) are called respectively, the support 

and the value of (𝑥𝛼,𝑒𝜆).  

Definition 2.18 

 Let 𝐹𝜇 be a 𝐺𝐹𝑆𝑆 over (𝑋,). We say that 

(𝑥𝛼,)∈  𝐹𝜇 read as (𝑥𝛼,𝑒𝜆) belongs to the GFSS 

𝐹𝜇 if for the element 𝑒∈𝐸, 𝛼≤𝐹(𝑒)(𝑥) and 

𝜆≤𝜇(𝑒).  

Definition 2.19 

 For any two GFSSs 𝐹𝜇 and 𝐺𝛿 over (𝑋,). 

𝐹𝜇 is said to be a generalized fuzzy soft quasi-

coincident with 𝐺𝛿, denoted by 𝐹𝜇𝑞𝐺𝛿, if there 

exist 𝑒 ∈𝐸 and 𝑥 ∈𝑋 such that (𝑒)(𝑥)+𝐺(𝑒)(𝑥)>1 

and 𝜇 (𝑒) + 𝛿 (𝑒) > 1. If 𝐹𝜇 is not generalized 

fuzzy soft quasi-coincident with 𝐺𝛿, then we 

write 𝐹𝜇𝑞  𝐺𝛿, i.e., for every 𝑒∈𝐸 and 𝑥∈𝑋, 

(𝑒)(𝑥)+𝐺(𝑒)(𝑥)≤1 or for ever  𝑒∈𝐸 and 𝑥∈𝑋, 𝜇 

(𝑒)+𝛿 (𝑒)≤1.  

Definition 2.20 

 Let (𝑥𝛼,) be a 𝐺𝐹𝑆 point and 𝐹𝜇 be a 

GFSS over (𝑋,𝐸). (𝑥𝛼,) is said to be generalized 

fuzzy soft quasi-coincident with 𝐹𝜇, denoted by 

(𝑥𝛼,𝑒𝜆)𝑞𝐹𝜇, if and only if there exists an 

element 𝑒 ∈ 𝐸 such that 𝛼+𝐹(𝑒)(𝑥)>1 and 𝜆+𝜇 

(𝑒)>1.  

Theorem 2.21 

 Let 𝐹𝜇 and 𝐺𝛿 are GFSSs over (𝑋,). Then 

the following hold[17]: 

(i)𝐹𝜇⊑𝐺𝛿⟺𝐹𝜇𝑞  (𝐺𝛿)𝑐;  
(ii) 𝐹𝜇𝑞𝐺𝛿⟹𝐹𝜇⨅𝐺𝛿 0 𝜃;  

(iii) (𝑥𝛼,)𝑞  𝐹𝜇⟺(𝑥𝛼,𝑒𝜆)∈ (𝐹𝜇)𝑐;  
(iv) 𝐹𝜇𝑞  (𝐹𝜇)𝑐.  

Definition 2.22 

   Let 𝐺𝐹(𝑋,𝐸) and 𝐺𝐹𝑆𝑆(𝑌,𝐾) be the 

families of all generalized fuzzy soft sets over 

(𝑋,𝐸) and (𝑌,𝐾) , respectively. Let 𝑢∶𝑋⟶𝑌 and 

𝑝∶𝐸⟶𝐾 be two functions. Then a mapping 𝑓𝑢𝑝 ∶ 
𝐺𝐹𝑆𝑆(𝑋,𝐸) ⟶ 𝐺𝐹𝑆𝑆(𝑌,𝐾) is defined as follows: 

for a generalized fuzzy soft set 𝐹𝜇∈𝐺𝐹𝑆𝑆(𝑋,𝐸),∀ 

𝑘∈𝑝(𝐸)⊆𝐾 and 𝑦∈𝑌, 

𝑓𝑢𝑝(𝐹𝜇)(𝑘)(𝑦)={(⋁𝑥∈𝑢−1(𝑦)⋁𝑒∈𝑝−1(𝑘) 

𝐹(𝑒)(𝑥) ,⋁𝑒∈𝑝−1(𝑘)𝜇(𝑒)) 𝑖𝑓 

𝑢−1(𝑦) 𝜑,𝑝−1(𝑘) 𝜑,(0,0), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

𝑓𝑢𝑝 is called a generalized fuzzy soft mapping 

[𝐺𝐹𝑆 mapping in short] and 𝑓(𝐹𝜇) is called a 

𝐺𝐹𝑆 image of a 𝐺𝐹𝑆𝑆 𝐹𝜇.  

Definition 2.23 

  Let 𝑢∶ 𝑋⟶ 𝑌 and 𝑝∶ 𝐸 ⟶ 𝐾 be 

mappings. Let 𝑓 : 𝐺𝐹𝑆𝑆(𝑋,𝐸)⟶ 𝐺𝐹𝑆𝑆(𝑌,𝐾) be a 

𝐺𝐹𝑆 mapping and 𝐺𝛿∈𝐺𝐹𝑆𝑆(𝑌,𝐾). Then, 

𝑓𝑢𝑝−1
(𝐺𝛿) ∈ 𝐺𝐹𝑆𝑆(𝑋,𝐸), defined as follows:  

𝑓𝑢𝑝−1
(𝐺𝛿)(𝑒)(𝑥)=(𝐺(𝑝(𝑒))(𝑢(𝑥)),𝛿(𝑝(𝑒))), for 

𝑒∈𝐸, 𝑥 ∈𝑋.  

𝑓𝑢𝑝−1
(𝐺𝛿) is called a GFS inverse image of 𝐺𝛿.  

If 𝑢 and 𝑝 are injective then the generalized 

fuzzy soft mapping 𝑓𝑢𝑝 is said to be injective. If 

𝑢 and 𝑝 are surjective then the generalized fuzzy 

soft mapping 𝑓𝑢𝑝 is said to be surjective. The 

generalized fuzzy soft mapping 𝑓𝑢𝑝 is called 

constant, if 𝑢 and 𝑝 are constant.  

Definition 2.24 

 Let (𝑋,𝑇1,𝐸) and (𝑌,𝑇2,𝐾) be two 𝐺𝐹𝑆𝑇-

spaces, and 𝑓𝑢𝑝 : (𝑋,𝑇1,𝐸)⟶ (𝑌,𝑇2,𝐾) be a 𝐺𝐹𝑆 

mapping. Then 𝑓𝑢𝑝 is called  

(i) generalized fuzzy soft continuous [GFS-

continuous in short] if 𝑓𝑢𝑝−1(𝐺𝛿)∈𝑇1 for all 

𝐺𝛿∈𝑇2.  

(ii) generalized fuzzy soft open [ GFS open in 

short] if 𝑓𝑢𝑝(𝐹𝜇)∈𝑇2 for each 𝐹𝜇∈𝑇1.  

Definition 2.25 

 Let (𝑋,,) be a 𝐺𝐹𝑆𝑇-space and 

𝐹𝜇∈𝐺𝐹𝑆(𝑋,𝐸). Then, 𝐹𝜇 is called  

i. 𝐺𝐹𝑆𝐶1-connected if and only if it does not 

exist two nonvoid 𝐺𝐹𝑆 open sets 𝐻𝜈 and 𝐾𝛾 

such that 𝐹𝜇⊑𝐻𝜈⊔𝐾𝛾, 𝐻𝜈⊓𝐾𝛾⊑𝐹𝜇𝑐, 
𝐹𝜇⊓𝐻𝜈 0 𝜃 and 𝐹𝜇⊓𝐾𝛾 0 𝜃.  

ii. 𝐺𝐹𝑆𝐶2-connected if and only if it does not 

exist two nonvoid 𝐺𝐹𝑆 open sets 𝐻𝜈 and 𝐾𝛾 

such that 𝐹𝜇⊑𝐻𝜈⊔𝐾𝛾, 𝐹𝜇⊓𝐻𝜈⊓𝐾𝛾=0 𝜃, 

𝐹𝜇⊓𝐻𝜈 0 𝜃 and 𝐹𝜇⊓𝐾𝛾 0 𝜃.  

iii. 𝐺𝐹𝑆𝐶3-connected if and only if it does not 

exist two nonvoid 𝐺𝐹𝑆 open sets 𝐻𝜈 and 𝐾𝛾 

such that 𝐹𝜇⊑𝐻𝜈⊔𝐾𝛾, 𝐻𝜈⊓𝐾𝛾⊑𝐹𝜇𝑐, 𝐻𝜈⋢𝐹𝜇𝑐 
and 𝐾𝛾⋢𝐹𝜇𝑐.  
iv. 𝐺𝐹𝑆𝐶4-connected if and only if it does not 

exist two nonvoid 𝐺𝐹𝑆 open sets 𝐻𝜈 and 𝐾𝛾 

such that 𝐹𝜇⊑𝐻𝜈⊔𝐾𝛾, 𝐹𝜇⊓𝐻𝜈⊓𝐾𝛾=0 𝜃, 

𝐻𝜈⋢𝐹𝜇𝑐 and 𝐾𝛾⋢𝐹𝜇𝑐.  
Otherwise, 𝐹𝜇 is called not 𝐺𝐹𝑆𝐶𝑖-connected set 

for 𝑖=1, 2, 3, 4. 

Remark 2.26 

   n the a ove definition, if we ta e 1   

instead of 𝐹, then the 𝐺𝐹𝑆𝑇-space (𝑋,,𝐸) is 

called 𝐺𝐹𝑆𝐶𝑖-connected space (𝑖=1,2,3,4).  
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Definition 2.27 

  Two non-null 𝐺𝐹𝑆𝑆 sets 𝐹𝜇 and 𝐺𝛿 in 

𝐺𝐹𝑆𝑇-space (𝑋,) are said to be generalized fuzzy 

soft 𝑄−separated [𝐺𝐹𝑆 𝑄−separated, in short] if 

𝑐𝑙(𝐹𝜇)⊓𝐺𝛿=𝐹𝜇⊓𝑐𝑙(𝐺𝛿)=0 𝜃.  

Definition 2.28 

 Two non- null 𝐺𝐹𝑆𝑆𝑠 𝐹𝜇 and 𝐺𝛿 in 

𝐺𝐹𝑆𝑇-space (𝑋,,) are said to be generalized 

fuzzy soft weakly separated [ in short, 𝐺𝐹𝑆 

weakly separated] if 𝑐𝑙(𝐹𝜇)𝑞𝐺𝛿 and 𝐹𝜇𝑞𝑐𝑙(𝐺𝛿).  

Definition 2.29 

  Two non- null 𝐺𝐹𝑆𝑆𝑠 𝐹𝜇 and 𝐺𝛿 in 

𝐺𝐹𝑆𝑇-space (𝑋,,) are said to be generalized 

fuzzy soft separated [ in short, 𝐺𝐹𝑆 separated] if 

there exist 𝐺𝐹𝑆 open sets 𝐻𝜈 and 𝐾𝛾 such that 

𝐹𝜇⊑𝐻𝜈,𝐺𝛿⊑𝐾𝛾 and 𝐹𝜇⊓𝐾𝛾=𝐺𝛿⊓𝐻𝜈=0 𝜃.  

Definition 2.30 

 Let 𝐹𝜇∈𝐺(𝑋,𝐸). The generalized fuzzy 

soft support ( in short, 𝐺𝐹𝑆 support) of 𝐹𝜇 

defined by 𝑆(𝐹𝜇) is the set, 𝑆(𝐹𝜇) 

={𝑥∈𝑋,𝑒∈𝐸:𝐹(𝑒)(𝑥)>0 and 𝜇(𝑒)>0}.  

Definition 2.31  

 Two non- null 𝐺𝐹𝑆𝑆𝑠 𝐹𝜇 and 𝐺𝛿 are said 

to be 𝐺𝐹𝑆 quasi-coincident with respect to 𝐹𝜇 if 

𝐹(𝑒)(𝑥)+𝐺(𝑒)(𝑥)>1 and 𝜇(𝑒)+𝛿(𝑒)>1 for every 

𝑥,𝑒∈𝑆(𝐹𝜇).  

Definition 2.32  

 Two non- null 𝐺𝐹𝑆𝑆𝑠 𝐹𝜇 and 𝐺𝛿 in a 

𝐺𝐹𝑆𝑇-space (𝑋,,) are said to be generalized 

fuzzy soft strongly separated [ in short, 𝐺𝐹𝑆 

strongly separated] if there exist 𝐺𝐹𝑆 open sets 

𝐻𝜈 and 𝐾𝛾 such that  

𝑖. 𝐹𝜇⊑𝐻𝜈,⊑𝐾𝛾 and 𝐹𝜇⊓𝐾𝛾=𝐺𝛿⊓𝐻𝜈=0 𝜃,  

𝑖𝑖. 𝐹𝜇 and 𝐻𝜈 are 𝐺𝐹𝑆 quasi-coincident with 

respect to 𝐹𝜇,  

𝑖𝑖𝑖. 𝐺𝛿 and 𝐾𝛾 are 𝐺𝐹𝑆 quasi-coincident with 

respect to 𝐺𝛿. 

Definition 2.33 

  Let (𝑋,.) be a 𝐺𝐹𝑆𝑇−space over (𝑋,𝐸) 

and 𝐺𝛿 be GFS subset of (𝑋,𝐸). Then 

𝑇𝐺𝛿={𝐺𝛿⊓𝐹𝜇∶𝐹𝜇∈𝑇 } is called a GFS relative 

topology and (𝐺𝛿,𝑇𝐺𝛿,𝐸) is called a GFS 

subspace of (𝑋,𝑇,𝐸). If 𝐺𝛿∈𝑇 (resp, 𝐺𝛿∈𝑇𝑐) then 

(𝐺𝛿,𝛿,𝐸) is called generalized fuzzy soft open 

(resp. closed) subspace of (𝑋,𝑇,𝐸).  

Definition 2.34 

 A 𝐺𝐹𝑆𝑆 𝐹𝜇 in a 𝐺𝐹𝑆𝑇-space (𝑋,𝑇,𝐸) is 

called 𝐺𝐹𝑆 𝑄-connected set if there does not two 

non-null 𝐺𝐹𝑆 𝑄-separated sets 𝐻𝜈 and 𝐾𝛾 such 

that 𝐹𝜇=𝐻𝜈⊔𝐾𝛾, Otherwise, 𝐹𝜇 is called not 

𝐺𝐹𝑆 𝑄-connected set.  

Definition 2.35 

 A 𝐺𝐹𝑆𝑆 𝐹𝜇 in a 𝐺𝐹𝑆𝑇-space (𝑋,𝑇,𝐸) is 

called 𝐺𝐹𝑆 weakly-connected set if there does 

not two non-null 𝐺𝐹𝑆 weakly separated sets 𝐻𝜈 

and 𝐾𝛾 such that 𝐹𝜇=𝐻𝜈⊔𝐾𝛾, Otherwise, 𝐹𝜇 is 

called not 𝐺𝐹𝑆 weakly-connected set.  

Definition 2.36 

 A 𝐺𝐹𝑆𝑆 𝐹𝜇 in a 𝐺𝐹𝑆𝑇-space (𝑋, 𝐸) is 

called 𝐺𝐹𝑆 𝑠−connected (respectively, 𝐺𝐹𝑆 

strongly-connected) set if there does not two 

non-null 𝐺𝐹𝑆 separated (respectively, not 

strongly separated) sets 𝐻𝜈 and 𝐾𝛾 such that 

𝐹𝜇=𝐻𝜈⊔𝐾𝛾, Otherwise, 𝐹𝜇 is called not 𝐺𝐹𝑆 𝑠-
connected (respectively, 𝐺𝐹𝑆 strongly-

connected) set.  

Definition 2.37 

  A 𝐺𝐹𝑆𝑆 𝐹𝜇 in a 𝐺𝐹𝑆𝑇-space (𝑋, 𝐸) is 

called generalized fuzzy soft clopen set (𝐺𝐹𝑆 

clopen set, in shoft) if 𝐹𝜇,𝜇𝑐∈𝑇.  

Definition 2.38 

A 𝐺𝐹𝑆𝑆 𝐹𝜇 in a 𝐺𝐹𝑆𝑇-space (𝑋, 𝐸) is 

called 𝐺𝐹𝑆 clopen-connected set in (𝑋,) if there 

does not exist any non-null proper 𝐺𝐹𝑆 clopen 

set in (𝐹𝜇,𝑇𝐹𝜇,𝐸). In this definitions, if we ta e 

1   instead of 𝐹𝜇, then the 𝐺𝐹𝑆𝑇-space (𝑋,,𝐸) is 

called 𝐺𝐹𝑆 𝑄-connected (respectively, 𝐺𝐹𝑆 

weakly-connected, 𝐺𝐹𝑆 𝑠-connected, 𝐺𝐹𝑆 

strongly-connected, 𝐺𝐹𝑆 clopen-connected ) 

space. 

Results and discussions 

 At this juncture, we will introduce 

different notions of generalized fuzzy soft 

separated sets and study the relation between 

these notions. We also carry out 

characterizations of the generalized fuzzy soft 

separated sets.  

Theorem 3.1 

  Let (𝑋,,) be a 𝐺𝐹𝑆𝑇-space, 𝐹𝜇 and 𝐺𝛿 be 

two 𝐺𝐹𝑆 closed sets in ( 𝑋,𝐸). Then 𝐹𝜇 and 𝐺𝛿 

are 𝐺𝐹𝑆 𝑄−separated sets if and only if 

𝐹𝜇⊓𝐺𝛿=0 𝜃.  

Proof. Suppose that 𝐹𝜇 and 𝐺𝛿 are 𝐺𝐹𝑆 𝑄-

separated sets. Then (𝐹𝜇)⊓𝐺𝛿=𝐹𝜇⊓𝑐𝑙(𝐺𝛿)=0 𝜃. 

Since 𝐹𝜇 and 𝐺𝛿 are 𝐺𝐹𝑆 closed sets then, 

𝐹𝜇⊓𝐺𝛿=0 𝜃. Conversely, let 𝐹𝜇⊓𝐺𝛿=0 𝜃. Since 
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𝐹𝜇 and 𝐺𝛿 are 𝐺𝐹𝑆 closed sets, then 

(𝐹𝜇)⊓𝐺𝛿=𝐹𝜇⊓𝐺𝛿=0 𝜃 and 

𝐹𝜇⊓𝑐𝑙(𝐺𝛿)=𝐹𝜇⊓𝐺𝛿=0 𝜃. It follows that, 𝐹𝜇 and 

𝐺𝛿 are 𝐺𝐹𝑆 𝑄-separated sets.  

Theorem 3.2 

  Let 𝐻𝜈, be 𝐺𝐹𝑆 𝑄-separated sets of 

𝐺𝐹𝑆𝑇-space (𝑋,𝑇,𝐸) and 𝐹𝜇⊑𝐻𝜈,𝐺𝛿⊑𝐾𝛾.Then, 

𝐹𝜇,𝐺𝛿 are 𝐺𝐹𝑆𝑄−separated sets.  

Proof. Let 𝐹𝜇⊑𝐻𝜈. Then, (𝐹𝜇)⊑𝑐𝑙(𝐻𝜈). It 

follows that, 

(𝐹𝜇)⊓𝐺𝛿⊑𝑐𝑙(𝐹𝜇)⊓𝐾𝛾⊑𝑐𝑙(𝐻𝜈)⊓𝐾𝛾=0 𝜃. Also, 

since 𝐺𝛿⊑𝐾𝛾. Then, (𝐺𝛿)⊑𝑐𝑙(𝐾𝛾). Hence, 

𝐹𝜇⊓(𝐺𝛿)⊑𝐻𝜈⊓𝑐𝑙(𝐾𝛾)=0 𝜃 . Thus 𝐹𝜇, are 

𝐺𝐹𝑆𝑄−separated sets.  

Theorem 3.3 

  Let (𝑋,,) be a 𝐺𝐹𝑆𝑇-space and 

𝐹𝜇,𝐺𝛿∈𝐺𝐹𝑆(𝑋,𝐸). Then, 𝐹𝜇 and 𝐺𝛿 are 𝐺𝐹𝑆 

weakly separated sets if and only if there exist 

𝐺𝐹𝑆 open sets 𝐻𝜈 and 𝐾𝛾 such that 

𝐹𝜇⊑𝐻𝜈,⊑𝐾𝛾, and 𝐹𝜇𝑞𝐾𝛾 and 𝐺𝛿𝑞𝐻𝜈.  

Proof. Let 𝐹𝜇 and 𝐺𝛿 are 𝐺𝐹𝑆 weakly separated 

sets in (𝑋,,). Then (𝐹𝜇)𝑞𝐺𝛿 and 𝐹𝜇𝑞𝑐𝑙(𝐺𝛿). 

Therefore, 𝐺𝛿⊑[𝑐𝑙(𝐹𝜇)]𝑐 and 𝐹𝜇⊑[𝑐𝑙(𝐺𝛿)]𝑐. 
Taking 𝐻𝜈=[𝑐𝑙(𝐺𝛿)]𝑐 and 𝐾𝛾=[𝑐𝑙(𝐹𝜇)]𝑐. Then, 

𝐻𝜈,∈𝑇, 𝐹𝜇𝑞𝐾𝛾 and 𝐺𝛿𝑞𝐻𝜈. The converse is 

obvious.  

Theorem 3.4 

  Let 𝐹𝜇 and 𝐺𝛿 are 𝐺𝐹𝑆 𝑄-separated 

(respectively, separated, strongly separated, 

weakly separated) sets in (𝑋,) and 

𝐻𝜈⊑𝐹𝜇,𝛾⊑𝐺𝛿. Then, 𝐻𝜈 and 𝐾𝛾 are 𝐺𝐹𝑆 𝑄-

separated (respectively, separated, strongly 

separated, weakly separated) sets in (𝑋, .).  

Proof. As a sample, we will prove the case 𝐺𝐹𝑆 

𝑄−separated. Let 𝐹𝜇 and 𝐺𝛿 are 𝐺𝐹𝑆 

𝑄−separated in (𝑋,). Then, 

(𝐹𝜇)⊓𝐺𝛿=𝐹𝜇⊓𝑐𝑙(𝐺𝛿)=0 𝜃. Since 𝐻𝜈⊑𝐹𝜇,⊑𝐺𝛿, 

then  

(𝐻𝜈)⊓𝐾𝛾=𝐻𝜈⊓𝑐𝑙(𝐾𝛾)=0 𝜃, therefore, 𝐻𝜈 and 𝐺𝛿 

are 𝐺𝐹𝑆 𝑄−separated set in (𝑋,𝐸).  

Theorem 3.5 

  Let (𝑋,,) be a 𝐺𝐹𝑆𝑇-space and 

𝐹𝜇,𝐺𝛿∈𝐺𝐹𝑆(𝑋,𝐸). Then, 𝐹𝜇 and 𝐺𝛿 are 𝐺𝐹𝑆 

𝑄−separated in (𝑋,) if and only if there exist 𝐺𝐹𝑆 

closed sets 𝐻𝜈 and 𝐾𝛾 such that 𝐹𝜇⊑𝐻𝜈,𝛿⊑𝐾𝛾 

and 𝐹𝜇⊓𝐾𝛾=𝐺𝛿⊓𝐻𝜈=0 𝜃.  

Proof. Let 𝐹𝜇 and 𝐺𝛿 are 𝐺𝐹𝑆 𝑄−separated in 

(𝑋,). Then, (𝐹𝜇)⊓𝐺𝛿=𝐹𝜇⊓𝑐𝑙(𝐺𝛿)=0 𝜃. Taking 

𝐻𝜈=(𝐹𝜇) and 𝐾𝛾=𝑐𝑙(𝐺𝛿). Therefore, 𝐻𝜈 and 𝐾𝛾 

are 𝐺𝐹𝑆 closed sets in (𝑋,) such that 

𝐹𝜇⊑𝐻𝜈,𝛿⊑𝐾𝛾 and 𝐹𝜇⊓𝐾𝛾=𝐺𝛿⊓𝐻𝜈=0 𝜃. The 

converse is obvious. 

Theorem 3.6 

  Let (𝑋,,𝐸) be a 𝐺𝐹𝑆𝑇-space and 

𝐺𝛿⊑𝐹𝜇∈ 𝐺𝐹𝑆𝑆(𝑋,𝐸).Then, 

𝑐𝑙𝐹𝜇(𝐺𝛿)=𝑐𝑙(𝐺𝛿)⊓𝐹𝜇, where 𝑐𝑙𝐹(𝐺𝛿) denotes 

the 𝐺𝐹𝑆 closure in the 𝐺𝐹𝑆 subspace 

(𝐹𝜇,𝑇𝐹𝜇,𝐸).  

Proof. We know (𝐺𝛿) is 𝐺𝐹𝑆 closed set in 

(𝑋,𝑇,𝐸) ⟹ 𝑐𝑙(𝐺𝛿)⊓𝐹𝜇 is 𝐺𝐹𝑆 closed set in 

(𝐹𝜇,𝑇𝐹𝜇,𝐸). Now, 𝐺𝛿⊑𝑐𝑙(𝐺𝛿)⊓𝐹𝜇 and 𝐺𝐹𝑆 

closure of 𝐺𝛿 in (𝐹𝜇,𝑇𝐹𝜇,𝐸) is the smallest 𝐺𝐹𝑆 

closed set containing 𝐺𝛿, so, 𝐺𝐹𝑆 closure of 𝐺𝛿 

in (𝐹𝜇,𝑇𝐹𝜇,𝐸) is contained in 𝑐𝑙(𝐺𝛿)⊓𝐹𝜇 i.e., 

𝑐𝑙𝐹𝜇(𝐺𝛿)⊑𝑐𝑙(𝐺𝛿)⊓𝐹𝜇.  

Conversely, let 𝑐𝑙𝐹(𝐺𝛿) be a 𝐺𝐹𝑆 closure of 𝐺𝛿 

in (𝐹𝜇,𝑇𝐹𝜇,𝐸). Since, 𝑐𝑙(𝐺𝛿) is 𝐺𝐹𝑆 closed set in 

(𝐹𝜇,𝑇𝐹𝜇,𝐸) ⟹ 𝑐𝑙𝐹𝜇(𝐺𝛿)=𝐾𝛾⊓𝐹𝜇 where 𝐾𝛾 is 

𝐺𝐹𝑆 closed set in (𝑋,𝑇,𝐸). Then, 𝐾𝛾 is 𝐺𝐹𝑆 

closed set containing 𝐺𝛿 ⟹ 

(𝐺𝛿)⊑𝐾𝛾⟹𝑐𝑙(𝐺𝛿)⊓𝐹𝜇⊑𝐾𝛾⊓𝐹𝜇⊑𝑐𝑙𝐹𝜇(𝐺𝛿).  

Theorem 3.7 

  Let (𝑋, 𝐸) be a 𝐺𝐹𝑆𝑇-space and 

𝐺𝛿⊑𝐹𝜇∈𝐺𝐹(𝑋,𝐸). If 𝐻𝜈 and 𝐾𝛾 are 𝐺𝐹𝑆 

separated ( respectively, 𝑄−separated, strongly 

separated, weakly separated) in (𝐹𝜇,𝑇𝐹𝜇,𝐸), then 

𝐻𝜈 and 𝐾𝛾 are 𝐺𝐹𝑆 separated ( respectively, 𝑄-

separated, strongly separated, weakly separated) 

in (𝐺𝛿,𝑇𝐺𝛿,𝐸).  

Proof. As a sample, we will prove the case 𝐺𝐹𝑆 

weakly separated. Let 𝐻𝜈 and 𝐾𝛾 be 𝐺𝐹𝑆 weakly 

separated sets in (𝐹𝜇,𝜇,𝐸). Then, 𝑐𝑙(𝐻𝜈)𝑞𝐾𝛾 and 

𝐻𝜈𝑞𝑐𝑙𝐹𝜇(𝐾𝛾). Since, 𝐺𝛿⊑𝐹𝜇.Then, 

𝑐𝑙𝐺𝛿(𝐻𝜈)=𝑐𝑙𝐹𝜇(𝐻𝜈)⊓𝐺𝛿⊑𝑐𝑙𝐹𝜇(𝐻𝜈) and 

𝑐𝑙𝐺𝛿(𝐾𝛾)=𝑐𝑙𝐹𝜇(𝐾𝛾)⊓𝐺𝛿⊑𝑐𝑙𝐹𝜇(𝐾𝛾). Therefore, 

𝑐𝑙(𝐻𝜈)𝑞𝐾𝛾 and 𝐻𝜈𝑞𝑐𝑙𝐺𝛿(𝐾𝛾). Thus, 𝐻𝜈 and 𝐾𝛾 

be 𝐺𝐹𝑆 weakly separated in (𝐺𝛿,𝛿,𝐸). At this 

point, we introduce different notions of 

connectedness of 𝐺𝐹𝑆𝑆𝑠 and study the relation 

between these notions. We also characterize 

generalized fuzzy soft connected sets.  

Theorem 3.8  

 The 𝐺𝐹𝑆-weakly connected set in (𝑋,) is 

a 𝐺𝐹𝑆 𝑄-connected.  

Proof. Let 𝐹𝜇 be a 𝐺𝐹𝑆-weakly connected set in 

(𝑋,). Suppose 𝐹𝜇 is not a 𝐺𝐹𝑆 𝑄-connected. 

Then, there exist two non-null 𝐺𝐹𝑆 𝑄-separated 

sets 𝐻𝜈 and 𝐾𝛾 such that 𝐹𝜇=𝐻𝜈⊔𝐾𝛾. Now we 

have 𝐻𝜈 and 𝐾𝛾 are non-null 𝐺𝐹𝑆 weakly 

separated sets in (𝑋,) such that 𝐹𝜇=𝐻𝜈⊔𝐾𝛾. 
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Therefore, 𝐹𝜇 is not a 𝐺𝐹𝑆-weakly connected set 

in (𝑋,), a contradiction. Hence, 𝐹𝜇 is a 𝐺𝐹𝑆 𝑄-

connected.  

Remark 3.10.  

 A 𝐺𝐹𝑆 𝑄-connected set may not be 𝐺𝐹𝑆 

weakly-connected  

Theorem 3.11 

  A 𝐺𝐹𝑆𝐶1-connected set in (𝑋,) is 𝐺𝐹𝑆 

weakly-connected.  

Proof. Let 𝐹𝜇 be a 𝐺𝐹𝑆𝐶1-connected set in (𝑋,.). 

Suppose 𝐹𝜇 is not 𝐺𝐹𝑆 weakly-connected. Then, 

there exist two nonvoid 𝐺𝐹𝑆 weakly separated 

sets 𝐻𝜈 and 𝐾𝛾 such that 𝐹𝜇=𝐻𝜈⊔𝐾𝛾. By 

Theorem 3.3, there exist 𝐺𝐹𝑆 open sets 𝑀𝜓 and 

𝑁𝜂 such that 𝐻𝜈⊑𝑀𝜓,⊑𝑁𝜂, 𝐻𝜈𝑞𝑁𝜂 and 

𝑀𝜓𝑞𝐾𝛾. Then, 𝐹𝜇⊑𝑀𝜓⊔𝑁𝜂. Also, 

𝐹𝜇⊓𝑀𝜓 0 𝜃. For, if 𝐹𝜇⊓𝑀𝜓=0 𝜃, then 

𝐹𝜇⊓𝐻𝜈=0 𝜃 so that 𝐻𝜈=0 𝜃 (since 𝐹𝜇=𝐻𝜈⊔𝐾𝛾 

implies that 𝐻𝜈⊑𝐹𝜇), which contradiction that 

𝐻𝜈 is a non-null. Similarly, 𝐹𝜇⊓𝑁𝜂 0 𝜃. Also, 

𝑀𝜓⊓𝑁𝜂⊑(𝐹𝜇)𝑐. For, if 𝑀𝜓⊓𝑁𝜂⋢𝐹𝜇𝑐, then 

there exist 𝑥∈𝑋,∈𝐸 such that 

𝑀(𝑒)(𝑥)>1−𝐹(𝑒)(𝑥), 𝜓(𝑒)>1−𝜇(𝑒) and 

𝑁(𝑒)(𝑥)>1−𝐹(𝑒)(𝑥), 𝜂(𝑒)>1−𝜇(𝑒). This means 

𝑀(𝑒)(𝑥)+𝐹(𝑒)(𝑥)>1, 𝜓(𝑒)+𝜇(𝑒)>1 and 

𝑁(𝑒)(𝑥)+𝐹(𝑒)(𝑥)>1, 𝜂(𝑒)+𝜇(𝑒)>1. Since, 

𝐹𝜇=𝐻𝜈⊔𝐾𝛾, then 𝑀(𝑒)(𝑥)+𝐻(𝑒)(𝑥)>1, 

𝜓(𝑒)+𝜈(𝑒)>1 or 𝑀(𝑒)(𝑥)+𝐾(𝑒)(𝑥)>1, 

𝜓(𝑒)+𝛾(𝑒)>1 and  

𝑁(𝑒)(𝑥)+𝐻(𝑒)(𝑥)>1, 𝜂(𝑒)+𝜈(𝑒)>1 or 

𝑁(𝑒)(𝑥)+𝐾(𝑒)(𝑥)>1, 𝜂(𝑒)+𝛾(𝑒)>1. Hence, 

(𝑀𝜓𝑞𝐻𝜈 or 𝑀𝜓𝑞𝐾𝛾) and (𝑁𝜂𝑞𝐻𝜈 or 𝑁𝜂𝑞𝐾𝛾). 

This a contradiction. So, 𝐹𝜇 is a 𝐺𝐹𝑆 weakly-

connected.  

Remark 3.12  

 The 𝐺𝐹𝑆 weakly-connected set may not 

be a 𝐺𝐹𝑆𝐶1-connected.  

Theorem 3.13 

 A 𝐺𝐹𝑆 weakly-connected set in (𝑋,) is 

𝐺𝐹𝑆𝐶2-connected.  

Proof. Let 𝐹𝜇 be a 𝐺𝐹𝑆 weakly-connected set in 

(𝑋,). Suppose 𝐹𝜇 is not 𝐺𝐹𝑆𝐶2-connected. Then, 

there exist 𝐻𝜈 and 𝐾𝛾∈𝑇 such that 𝐹𝜇⊑𝐻𝜈⊔𝐾𝛾, 

𝐹𝜇⊓𝐻𝜈⊓𝐾𝛾=0 𝜃, 𝐹𝜇⊓𝐻𝜈 0 𝜃 and 𝐹𝜇⊓𝐾𝛾 0 𝜃. 

Then, 𝐹𝜇=𝑀𝜓⊔𝑁𝜂 where 𝑀𝜓=𝐹𝜇⊓𝐻𝜈⊑𝐻𝜈 and 

𝑁𝜂=𝐹𝜇⊓𝐾𝛾⊑𝐾𝛾. Since 𝐹𝜇⊓𝐻𝜈⊓𝐾𝛾=0 𝜃 and 

𝑀𝜓⊑𝐻𝜈, then 𝐹𝜇⊓𝑀𝜓⊓𝐾𝛾=0 𝜃. Also, since 

𝑀𝜓⊑𝐹𝜇, then 𝑀𝜓⊓𝐾𝛾=0 𝜃. Therefore, 𝑀𝜓𝑞𝐾𝛾, 

Similarly, 𝑁𝜂𝑞𝐻𝜈. Hence, 𝐹𝜇 is not a 𝐺𝐹𝑆 

weakly-connected. This complete the proof.  

Theorem 3.14 

 A 𝐺𝐹𝑆 weakly-connected set in (𝑋,) is 

𝐺𝐹𝑆𝐶3-connected.  

Proof. Let 𝐹𝜇 be a 𝐺𝐹𝑆 weakly-connected set in 

(𝑋,). Suppose 𝐹𝜇 is not 𝐺𝐹𝑆𝐶3-connected. Then, 

there exist 𝐻𝜈 and 𝐾𝛾∈𝑇 such that 𝐹𝜇⊑𝐻𝜈⊔𝐾𝛾, 

𝐻𝜈⊓𝐾𝛾⊑𝐹𝜇𝑐, 𝐻𝜈⋢𝐹𝜇𝑐 and 𝐾𝛾⋢𝐹𝜇𝑐. Then, 

𝐹𝜇=𝑀𝜓⊔𝑁𝜂 where 𝑀𝜓=𝐹𝜇⊓𝐻𝜈⊑𝐻𝜈 and 

𝑁𝜂=𝐹𝜇⊓𝐾𝛾⊑𝐾𝛾. Let 𝐽𝜎 and 𝐿𝜌∈𝐺(𝑋,𝐸) defined 

by: 𝐽𝜎={𝑀𝜓, 𝐻𝜈⊒𝐾𝛾,0 𝜃, otherwise 𝐿𝜌={𝑁𝜂, 

𝐾𝛾⊐𝐻𝜈,0 𝜃, otherwise. Then 𝐹𝜇=𝐽𝜎⊔𝐿𝜌.  

Now, (𝑒)(𝑥) 0, 𝜎(𝑒) 0. For, (𝑒)(𝑥)=0, 𝜎(𝑒)=0. 

Since, 𝐻𝜈⋢𝐹𝜇𝑐, then there exist 𝑥∈𝑋,𝑒∈𝐸 such 

that 𝐻(𝑒)(𝑥)+𝐹(𝑒)(𝑥)>1, 𝜈(𝑒)+𝜇(𝑒)>1. Then, 

(𝑒)(𝑥)>𝐾(𝑒)(𝑥), 𝜈(𝑒)>𝛾(𝑒). For, 𝐻(𝑒)(𝑥)≤𝐾(𝑒)(𝑥), 

𝜈(𝑒)≤𝛾(𝑒) implies 𝐾(𝑒)(𝑥)+𝐹(𝑒)(𝑥)>1, 

𝛾(𝑒)+𝜇(𝑒)>1 and hence 

(𝐻𝜈⊓𝐾𝛾)(𝑒)(𝑥)>1−𝐹𝜇(𝑒)(𝑥) i.e., 

𝐻(𝑒)(𝑥)>1−𝐹(𝑒)(𝑥), 𝜈(𝑒)>1−𝜇(𝑒) and 

𝐾(𝑒)(𝑥)>1−𝐹(𝑒)(𝑥), 𝛾(𝑒)>1−𝜇(𝑒) this is a 

contradiction with 𝐻𝜈⊓𝐾𝛾⊑𝐹𝜇𝑐. So, (𝑒)(𝑥) 0, 
𝜎(𝑒) 0. Si ilarl , (𝑒)(𝑥) 0, 𝜌(𝑒) 0. Also, 

𝐽𝜎⊑𝑀𝜓⊑𝐻𝜈 and 𝐿𝜌⊑𝑁𝜂⊑𝐾𝛾. Now, 𝐽𝜎𝑞𝐾𝛾. 

For, if 𝐽𝜎𝑞𝐾𝛾, then there exist 𝑥∈𝑋,𝑒∈𝐸 such 

that 𝐽(𝑒)(𝑥)+𝐾(𝑒)(𝑥)>1, 𝜎(𝑒)+𝛾(𝑒)>1 and hence 

𝐽(𝑒)(𝑥)>0, 𝜎(𝑒)>0. This means 𝐻(𝑒)(𝑥)≥𝐾(𝑒)(𝑥), 

𝜈(𝑒)≤𝛾(𝑒) and so 𝐹(𝑒)(𝑥)=𝑀(𝑒)(𝑥), 𝜇(𝑒)=𝜓(𝑒) 

implying 𝐹(𝑒)(𝑥)+𝐻(𝑒)(𝑥)>1, 𝜇(𝑒)+𝜈(𝑒)>1 and 

thus (𝐻𝜈⊓𝐾𝛾)(𝑒)(𝑥)>1−𝐹𝜇(𝑒)(𝑥) which is a 

contradiction with 𝐻𝜈⊓𝐾𝛾⊑𝐹𝜇𝑐. Similarly, 

𝐿𝜌𝑞𝐻𝜈. Thus, 𝐽𝜎 and 𝐿𝜌 are 𝐺𝐹𝑆 weakly 

separated and 𝐹𝜇=𝐽𝜎⊔𝐿𝜌. So, 𝐹𝜇 is not a 𝐺𝐹𝑆 

weakly-connected. This a contradiction. Then 𝐹𝜇 

is a 𝐺𝐹𝑆𝐶3-connected.  

Remark 3.15 

  The 𝐺𝐹𝑆𝐶3-connected set (respectively, 

𝐺𝐹𝑆𝐶2-connected) may not be a 𝐺𝐹𝑆 weakly-

connected.  

Theorem 3.16  

 The 𝐺𝐹𝑆𝐶3-connected set in (𝑋, .) is a 

𝐺𝐹𝑆 𝑄-connected. 

Proof. Let 𝐹𝜇 be a 𝐺𝐹𝑆𝐶3-connected set in (𝑋,.). 

Suppose 𝐹𝜇 is not 𝐺𝐹𝑆 𝑄-connected. Then, there 

exist two non-null 𝐺𝐹𝑆 𝑄-separated sets 𝐻𝜈 and 

𝐾𝛾 such that 𝐹𝜇=𝐻𝜈⊔𝐾𝛾, 

(𝐻𝜈)⊓𝐾𝛾=𝐻𝜈⊓𝑐𝑙(𝐾𝛾)=0 𝜃. This implies that 

𝐾𝛾⊑[𝑐𝑙(𝐻𝜈)]𝑐 and 𝐻𝜈⊑[𝑐𝑙(𝐾𝛾)]𝑐. Let 

𝑀𝜓=[𝑐𝑙(𝐻𝜈)]𝑐 and 𝑁𝜂=[𝑐𝑙(𝐾𝛾)]𝑐. Then, 𝑀𝜓 

and 𝑁𝜂 are non- null 𝐺𝐹𝑆 open sets such that 

𝐹𝜇⊑𝑀𝜓⊔𝑁𝜂. Now, 

𝑀𝜓⊓𝑁𝜂=[𝑐𝑙(𝐻𝜈)]𝑐⊓[𝑐𝑙(𝐾𝛾)]𝑐=[𝑐𝑙(𝐻𝜈)⊔𝑐𝑙(𝐾𝛾)]
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𝑐=[𝑐𝑙(𝐻𝜈⊔𝐾𝛾)]𝑐⊑𝐹𝜇𝑐. Aso, 𝑀𝜓⋢𝐹𝜇𝑐. For, if 

𝑀𝜓⊑𝐹𝜇𝑐, then 𝐹𝜇⊑𝑀𝜓𝑐=(𝐻𝜈) which would 

imply 𝐾𝛾=0 𝜃 ( since 𝑐𝑙(𝐻𝜈)⊓𝐾𝛾=0 𝜃 ). This is a 

contradiction. Similarly, 𝑁𝜂⋢𝐹𝜇𝑐. Therefore, 𝐹𝜇 

is not 𝐺𝐹𝑆𝐶3-connected. So, 𝐹𝜇 is 𝐺𝐹𝑆 𝑄-

connected.  

Theorem 3.17  

 A 𝐺𝐹𝑆𝑆 𝐹𝜇 in (𝑋, .) is 𝐺𝐹𝑆𝐶2-connected 

if and only if 𝐹𝜇 is 𝐺𝐹𝑆 𝑠-connected.  

Proof. Let 𝐹𝜇 be a 𝐺𝐹𝑆𝐶2-connected set in (𝑋,). 

Suppose 𝐹𝜇 is not a 𝐺𝐹𝑆 𝑠-connected. Then 

there exist non-null 𝐺𝐹𝑆 separated sets 𝐻𝜈 and 

𝐾𝛾 in (𝑋,) such that 𝐹𝜇=𝐻𝜈⊔𝐾𝛾. Then, there 

exist two non- null 𝐺𝐹𝑆 open sets 𝑀𝜓 and 𝑁𝜂 

such that 𝐻𝜈⊑𝑀𝜓, 𝐾𝛾⊑𝑁𝜂, and 

𝐻𝜈⊓𝑁𝜂=𝐾𝛾⊓𝑀𝜓=0 𝜃. Then, 𝐹𝜇⊑𝑀𝜓⊔𝑁𝜂. 

Now, 

𝐹𝜇⊓𝑀𝜓⊓𝑁𝜂=(𝐻𝜈⊔𝐾𝛾)⊓𝑀𝜓⊓𝑁𝜂=(𝐻𝜈⊓𝑀𝜓⊓
𝑁𝜂)⊔(𝐾𝛾⊓𝑀𝜓⊓𝑁𝜂)=0 𝜃 and 

𝐹𝜇⊓𝑀𝜓=(𝐻𝜈⊔𝐾𝛾)⊓𝑀𝜓=(𝐻𝜈⊓𝑀𝜓)⊔(𝐾𝛾⊓𝑀𝜓)

=𝐻𝜈 0 𝜃. Similarly, 𝐹𝜇⊓𝑁𝜂 0 𝜃. So, 𝐹𝜇 is not 

𝐺𝐹𝑆𝐶2− onnected which is a contradiction. 

Conversely, let 𝐹𝜇 be 𝐺𝐹𝑆 𝑠-connected. Suppose 

that 𝐹𝜇 is not 𝐺𝐹𝑆𝐶2-connected. Then there 

exist two non-null 𝐺𝐹𝑆 open sets 𝑀𝜓 and 𝑁𝜂 

such that 𝐹𝜇⊑𝑀𝜓⊔𝑁𝜂, 𝐹𝜇⊓𝑀𝜓⊓𝑁𝜂=0 𝜃, 

𝐹𝜇⊓𝑀𝜓 0 𝜃, 𝐹𝜇⊓𝑁𝜂 0 𝜃. Hence, 𝐹𝜇=𝐻𝜈⊔𝐾𝛾 

where 𝐻𝜈=𝐹𝜇⊓𝑀𝜓⊑𝑀𝜓 and 𝐾𝛾=𝐹𝜇⊓𝑁𝜂⊑𝑁𝜂. 

Also, 𝐾𝛾⊓𝑀𝜓=(𝐹𝜇⊓𝑁𝜂)⊓𝑀𝜓=0 𝜃, Similarly, 

𝐻𝜈⊓𝑁𝜂=0 𝜃. So, 𝐹𝜇 is not 𝐺𝐹𝑆 𝑠-connected and 

this complete the proof.  

Theorem 3.18 

 The 𝐺𝐹𝑆𝐶4-connected set in (𝑋, .) is a 

𝐺𝐹𝑆 strongly-connected.  

Proof. Let 𝐹𝜇 be a 𝐺𝐹𝑆𝐶4-connected set in (𝑋,.). 

Suppose 𝐹𝜇 is not a 𝐺𝐹𝑆 strongly-connected. 

Then there exist two non-null 𝐺𝐹𝑆 strongly 

separated sets 𝐻𝜈 and 𝐾𝛾 in (𝑋,) such that 

𝐹𝜇=𝐻𝜈⊔𝐾𝛾. So, there exist two non- null 𝐺𝐹𝑆 

open sets 𝑀𝜓 and 𝑁𝜂 such that 𝐻𝜈⊑𝑀𝜓, 

𝐾𝛾⊑𝑁𝜂, and 𝐻𝜈⊓𝑁𝜂=𝐾𝛾⊓𝑀𝜓=0 𝜃, 𝐻𝜈 and 𝑀𝜓 

𝐺𝐹𝑆 quasi-coincident with respect to 𝐻𝜈, and 𝐾𝛾 

and 𝑁𝜂 𝐺𝐹𝑆 quasi-coincident with respect to 𝐾𝛾. 

Then, for every 𝑥,𝑒∈𝑆(𝐻𝜈) we have 

𝐻(𝑒)(𝑥)+𝑀(𝑒)(𝑥)>1 and 𝜈(𝑒)+𝜓(𝑒)>1 and for 

every 𝑥,𝑒∈𝑆(𝐾𝛾) we have 𝐾(𝑒)(𝑥)+𝑁(𝑒)(𝑥)>1 

and 𝛾(𝑒)+𝜂(𝑒)>1. Then, 𝐹𝜇⊑𝑀𝜓⊔𝑁𝜂. Also, 

𝐹𝜇⊓𝑀𝜓⊓𝑁𝜂=0 𝜃. Again, 

𝐹(𝑒)(𝑥)+𝑀(𝑒)(𝑥)>𝐻(𝑒)(𝑥)+𝑀(𝑒)(𝑥) and 

𝜇(𝑒)+𝜓(𝑒)>𝜈(𝑒)+𝜓(𝑒)> for every 𝑥,𝑒∈𝑆(𝐻𝜈). 

Therefore, 𝑀𝜓⋢𝐹𝜇𝑐, Similarly, 𝑁𝜂⋢𝐹𝜇𝑐. Thus, 

𝐹𝜇 is not a 𝐺𝐹𝑆𝐶4− onne ted. This is a 
contradiction. So, 𝐹𝜇 is a 𝐺𝐹𝑆 strongly-

connected. 

Theorem 3.19 

 Let (𝑋,𝑇1,𝐸) and (𝑌,𝑇2,𝐾) be a 𝐺𝐹𝑆𝑇-

spaces and 𝑓𝑢𝑝:(𝑋,𝑇1,𝐸)⟶(𝑌,𝑇1,𝐾) be a 𝐺𝐹𝑆-

continuous bijective mapping. If 𝐹𝜇 is a 𝐺𝐹𝑆𝐶𝑖-
connected (respectively, 𝐺𝐹𝑆 𝑠-connected, 𝐺𝐹𝑆 

strongly-connected, 𝐺𝐹𝑆 weakly-connected, 𝐺𝐹𝑆 

clopen-connected) set in (𝑋,) for 𝑖=1, 2, then 

𝑓𝑢(𝐹𝜇) is a 𝐺𝐹𝑆𝐶𝑖-connected (respectively, 𝐺𝐹𝑆 

𝑠-connected, 𝐺𝐹𝑆 strongly-connected, 𝐺𝐹𝑆 

weakly-connected, 𝐺𝐹𝑆 clopen-connected) set in 

(𝑌,𝐾) for 𝑖=1, 2. 

Proof. The case of 𝐺𝐹𝑆𝐶𝑖-connected set (𝑖=1,2) 

previously proved (see [11] ). Now, we prove the 

case of 𝐺𝐹𝑆 clopen-connected. Let 𝐹𝜇 be a 𝐺𝐹𝑆-

clopen connected set in (𝑋, .). Suppose 𝑓(𝐹𝜇) is 

not a 𝐺𝐹𝑆 clopen-connected set in (𝑌,𝐾). Then, 

𝑓(𝐹𝜇) has non-null proper clopen 𝐺𝐹𝑆 subset of 

𝐽𝜎. So, there exist 𝑆𝜀∈𝑇2 and 𝐿𝜌∈𝑇2𝑐 such that 

𝐽𝜎=𝑓(𝐹𝜇)⊓𝑆𝜀=𝑓𝑢𝑝(𝐹𝜇)⊓𝐿𝜌. Since, 𝑓𝑢𝑝 is 

injective mapping, then 

𝑓𝑢𝑝−1
(𝐽𝜎)=𝐹𝜇⊓𝑓𝑢𝑝−1

(𝑆𝜀)=𝐹𝜇⊓𝑓𝑢𝑝−1
(𝐿𝜌). Also, 

since 𝑆𝜀∈𝑇2 and 𝐿𝜌∈𝑇2𝑐 and 𝑓𝑢𝑝 is a 𝐺𝐹𝑆- 

continuous mapping, then 𝑓𝑢𝑝−1
(𝑆𝜀)∈𝑇1 and 

𝑓𝑢𝑝−1
(𝐿𝜌)∈𝑇1𝑐 . Hence, 𝑓𝑢𝑝−1

(𝐽𝜎) is non-null 

proper clopen 𝐺𝐹𝑆 subset of 𝐹𝜇 which is a 

contradiction. Therefore, 𝑓(𝐹𝜇) is a 𝐺𝐹𝑆-clopen 

connected set in (𝑌,𝐾). The cases of 𝐺𝐹𝑆𝐶3-

connected and 𝐺𝐹𝑆𝐶4-connected sets we need to 

the 𝐺𝐹𝑆-continuous surjective mapping 

previously proved (see [11] ).  

Theorem 3.20 

 Let (𝑋,𝑇1,𝐸) and (𝑌,𝑇2,𝐾) be a 𝐺𝐹𝑆𝑇-

spaces and 𝑓𝑢𝑝:(𝑋,𝑇1,𝐸)⟶(𝑌,𝑇1,𝐾) be a 𝐺𝐹𝑆 

injective mapping. If 𝐹𝜇 is a 𝐺𝐹𝑆 𝑄−connected 

set in (𝑋,), then 𝑓𝑢(𝐹𝜇) is a 𝐺𝐹𝑆 𝑄-connected set 

in (𝑌,𝐾).  

Proof. Let 𝐹𝜇 be a 𝐺𝐹𝑆 𝑄−connected set in (𝑋,). 

Suppose 𝑓(𝐹𝜇) is not a 𝐺𝐹𝑆 𝑄−connected set in 

(𝑌,𝐾). Then, there exist two non- null 𝐺𝐹𝑆 𝑄 

separated sets 𝐽𝜎 and 𝐿𝜌 in (𝑋,) such that  

𝑓(𝐹𝜇) =𝐽𝜎⊔𝐿𝜌, 𝑐𝑙(𝐽𝜎)⊓𝐿𝜌=𝐽𝜎⊓𝑐𝑙(𝐿𝜌)=0 𝜃𝑌. 

Since, 𝑓𝑢𝑝 is injective mapping, then 

𝑓𝑢𝑝−1
(𝑓𝑢𝑝(𝐹𝜇) ) =𝑓𝑢𝑝−1

(𝐽𝜎)⊔𝑓𝑢𝑝−1
(𝐿𝜌), This 

means that, 𝑓𝑢𝑝−1
(𝐽𝜎), 𝑓𝑢𝑝−1

(𝐿𝜌) are 𝐺𝐹𝑆 𝑄 

separated sets of 𝐹𝜇 in (𝑋,𝐸), which is 

contradicts of the 𝐺𝐹𝑆 𝑄-connectedness of 𝐹𝜇 in 

(𝑋,𝐸). 



Okelo, 2019.                                                                                          Characterization of fuzzy soft sets in topological spaces 

©2018 The Authors. Published by G. J. Publications under the CC BY license. 16 

𝑐𝑙(𝑓𝑢𝑝−1
(𝐽𝜎))⊓𝑓𝑢𝑝−1

(𝐿𝜌)⊑𝑓𝑢𝑝−1
(𝑐𝑙(𝐽𝜎))⊓𝑓𝑢𝑝−1

(𝐿𝜌)=𝑓𝑢𝑝−1
(𝑐𝑙(𝐽𝜎)⊓𝐿𝜌))=𝑓𝑢𝑝−1

(0 𝜃𝑌)=0 𝜃𝑋,  

𝑓𝑢𝑝−1
(𝐽𝜎)⊓𝑐𝑙(𝑓𝑢𝑝−1

(𝐿𝜌))⊑𝑓𝑢𝑝−1
(𝐽𝜎⊓𝑓𝑢𝑝−1

(𝑐𝑙(
𝐿𝜌))=𝑓𝑢𝑝−1

(𝐿𝜌⊓𝑐𝑙(𝐿𝜌))=𝑓𝑢𝑝−1
(0 𝜃𝑌)=0 𝜃𝑋.  

Therefore, 𝑓(𝐹𝜇) is a 𝐺𝐹𝑆 𝑄-connected set in 

(𝑌,𝐾).  

Theorem 3.21 

 Let (𝑋,𝑇1,𝐸) and (𝑌,𝑇2,𝐾) be a 𝐺𝐹𝑆𝑇-

spaces and 𝑓𝑢𝑝:(𝑋,𝑇1,𝐸)⟶(𝑌,𝑇1,𝐾) be a 𝐺𝐹𝑆- 

bijective open mapping. If 𝐺𝛿 is a 𝐺𝐹𝑆𝐶𝑖-
connected(respectively, 𝐺𝐹𝑆 𝑠-connected, 𝐺𝐹𝑆 

strongly-connected, 𝐺𝐹𝑆 𝑄-connected, 𝐺𝐹𝑆 

weakly-connected, 𝐺𝐹𝑆 clopen-connected) set in 

(𝑌,𝐸) for 𝑖=1,2,3,4, then 𝑓𝑢𝑝−1
(𝐺𝛿) is a 𝐺𝐹𝑆𝐶𝑖-

connected (respectively, 𝐺𝐹𝑆 𝑠-connected, 𝐺𝐹𝑆 

strongly-connected, 𝐺𝐹𝑆 𝑄-connected,𝐺𝐹𝑆 

weakly-connected, 𝐺𝐹𝑆-clopen connected) set in 

(𝑌,𝐸) for 𝑖=1,2,3,4.  

Proof. The case of 𝐺𝐹𝑆𝐶𝑖-connected set 

(𝑖=1,2,3,4) previously proved (see [13] ). Now, 

we will prove the case of 𝐺𝐹𝑆 𝑠-connected. Let 

𝐺𝛿 is a 𝐺𝐹𝑆 𝑠−connected set in (𝑌,). Suppose 

𝑓𝑢𝑝−1
(𝐺𝛿) is not a 𝐺𝐹𝑆 𝑠-connected set in (𝑋,𝐸). 

Then, there exist two non- null 𝐺𝐹𝑆 separated 

sets 𝐻𝜈 and 𝐾𝛾 in (𝑋,) such that 

𝑓𝑢𝑝−1
(𝐺𝛿)=𝐻𝜈⊔𝐾𝛾. Therefore, there exist two 

non- null 𝐺𝐹𝑆 open sets 𝑀𝜓 and 𝑁𝜂 in (𝑋,) such 

that 𝐻𝜈⊑𝑀𝜓 and 𝐾𝛾⊑𝑁𝜂 and 

𝐻𝜈⊓𝑁𝜂=𝐾𝛾⊓𝑀𝜓=0  . Sin e, 𝑓𝑢𝑝 is a 𝐺𝐹𝑆 

surjective mapping, then 𝑓(𝑓𝑢𝑝−1
(𝐺𝛿))=𝐺𝛿 and 

so 𝐺𝛿=𝑓𝑢𝑝(𝐻𝜈⊔𝐾𝛾)=𝑓𝑢𝑝(𝐻𝜈)⊔𝑓𝑢𝑝(𝐾𝛾). 

Since, 𝑓𝑢𝑝 is a 𝐺𝐹𝑆 open mapping, then 𝑓(𝑀𝜓) 

and 𝑓𝑢𝑝(𝑁𝜂) are non-null 𝐺𝐹𝑆 open sets in 

(𝑌,𝐾) such that 𝑓𝑢𝑝(𝐻𝜈)⊑𝑓𝑢𝑝(𝑀𝜓), 

𝑓𝑢𝑝(𝐾𝛾)⊑𝑓𝑢𝑝(𝑁𝜂). Since, 𝑓𝑢𝑝 is a 𝐺𝐹𝑆 

injective mapping, then 

𝑓𝑢𝑝(𝐻𝜈)⊓𝑓𝑢𝑝(𝑁𝜂)=𝑓𝑢𝑝(𝐻𝜈⊓𝑁𝜂)=0 𝜃𝑌 and 

𝑓𝑢𝑝(𝐾𝛾)⊓𝑓𝑢𝑝(𝑀𝜓)=0 𝜃𝑌. It follows that 𝐺𝛿 is 

not a 𝐺𝐹𝑆 𝑠-connected set, a contradiction.  

Theorem 3.22 

 If 𝐹𝜇 and 𝐺𝛿 are intersecting 𝐺𝐹𝑆𝐶1-

(respectively, 𝐺𝐹𝑆𝐶2-connected, 𝐺𝐹𝑆 

𝑠=connected, 𝐺𝐹𝑆 weakly-connected, 𝐺𝐹𝑆 𝑄-

connected, 𝐺𝐹𝑆 strongly-connected) sets in (𝑋,). 

Then, 𝐹𝜇⊔𝐺𝛿 is a 𝐺𝐹𝑆𝐶1-connected 

(respectively, 𝐺𝐹𝑆𝐶2-connected, 𝐺𝐹𝑆 𝑠-

connected, 𝐺𝐹𝑆 weakly-connected, 𝐺𝐹𝑆 𝑄-

connected, 𝐺𝐹𝑆 strongly-connected) set in (𝑋, .). 

Proof. The cases of 𝐺𝐹𝑆𝐶1-connected and 

𝐺𝐹𝑆𝐶2connected sets is previously proved (see 

[14] ). Now, we will prove the case of 𝐺𝐹𝑆 𝑄-

connected sets. Let 𝐹𝜇 and 𝐺𝛿 are intersecting 

𝐺𝐹𝑆 𝑄-connected sets in (𝑋,). Suppose𝐹𝜇⊔𝐺𝛿 is 

not a 𝐺𝐹𝑆 𝑄-connected set. Then, there exist two 

non- null 𝐺𝐹𝑆 𝑄−separated sets 𝐻𝜈 and 𝐾𝛾 in 

(𝑋,) such that 𝐹𝜇⊔𝐺𝛿=𝐻𝜈⊔𝐾𝛾. Therefore, 

𝐹𝜇⊓𝐻𝜈, 𝐹𝜇⊓𝐾𝛾, 𝐺𝛿⊓𝐻𝜈 and 𝐺𝛿⊓𝐾𝛾 are non- 

null 𝐺𝐹𝑆 𝑄−separated sets in (𝑋,) as subsets of 

𝐻𝜈 and 𝐾𝛾. Since, 𝐹𝜇=(𝐹𝜇⊓𝐻𝜈)⊔(𝐹𝜇⊓𝐾𝛾) and 

𝐺𝛿=(𝐹𝜇⊓𝐻𝜈)⊔(𝐹𝜇⊓𝐾𝛾), then 𝐹𝜇 and 𝐺𝛿 are not 

𝐺𝐹𝑆 𝑄−connected which is a contradiction.  

Theorem 3.23 

 Let {(𝐹𝜇):𝑖∈𝐽} be a family of a 𝐺𝐹𝑆𝐶1-

connected (respectively, 𝐺𝐹𝑆𝐶2-connected, 𝐺𝐹𝑆 

𝑠-connected, 𝐺𝐹𝑆 weakly-connected, 𝐺𝐹𝑆 𝑄-

connected, 𝐺𝐹𝑆 strongly-connected) sets in (𝑋,) 

such that for 𝑖,𝑗∈𝐽, the 𝐺𝐹𝑆𝑆𝑠 (𝐹𝜇)𝑖 and (𝐹𝜇)𝑗 
are intersecting. Then, 𝐹𝜇=⨆𝑖∈(𝐹𝜇)𝑖 is a 

𝐺𝐹𝑆𝐶1-connected (respectively, 𝐺𝐹𝑆𝐶2-

connected, 𝐺𝐹𝑆 𝑠-connected, 𝐺𝐹𝑆 weakly-

connected, 𝐺𝐹𝑆 𝑄-connected, 𝐺𝐹𝑆 strongly-

connected) set in (𝑋,𝐸).  

Proof. The case of 𝐺𝐹𝑆𝐶1-connected set 

previously proved (see [5]). Now, we will prove 

the case of 𝐺𝐹𝑆𝐶2-connected set. Let {(𝐹𝜇):𝑖∈𝐽} 

be family of 𝐺𝐹𝑆𝐶2-connected sets in (𝑋,). 

Suppose that 𝐹𝜇 is not a 𝐺𝐹𝑆𝐶2-connected set in 

(𝑋,). Then, there exist two 𝐺𝐹𝑆 open sets 𝐻𝜈 and 

𝐾𝛾 in (𝑋,) such that 𝐹𝜇⊑𝐻𝜈⊔𝐾𝛾, 

𝐹𝜇⊓𝐻𝜈⊓𝐾𝛾=0 𝜃, 𝐹𝜇⊓𝐻𝜈 0 𝜃 and 𝐹𝜇⊓𝐾𝛾 0 𝜃.  

Now, let (𝐹𝜇)0 be any 𝐺𝐹𝑆𝑆 of the given family. 

Then, (𝐹𝜇)0⊑𝐻𝜈⊔𝐾𝛾, 𝐻𝜈⊓𝐾𝛾⊑(𝐹𝜇)𝑖0𝑐. But, 

(𝐹𝜇)0 is a 𝐺𝐹𝑆𝐶2-connected set. Hence, 

(𝐹𝜇)0⊓𝐻𝜈=0 𝜃 or (𝐹𝜇)𝑖0⊓𝐾𝛾=0 𝜃. Now if 

(𝐹𝜇)0⊓𝐻𝜈=0 𝜃, we can prove that (𝐹𝜇)𝑖⊓𝐻𝜈=0 𝜃 

for each 𝑖∈𝐽−{𝑖0} and so 𝐹𝜇⊓𝐻𝜈=0 𝜃. This 

complete the proof.  

Corollary 3.24  

 If {(𝐹𝜇):𝑖∈𝐽} is a family of a 𝐺𝐹𝑆𝐶1-

connected (respectively, 𝐺𝐹𝑆𝐶2-connected, 𝐺𝐹𝑆 

𝑠-connected, 𝐺𝐹𝑆 weakly-connected, 𝐺𝐹𝑆 𝑄-

connected, 𝐺𝐹𝑆 strongly-connected) sets in 𝑋 

and ⨅𝑖∈𝐽(𝐹𝜇)𝑖 0 𝜃, then 𝐹𝜇=⨆𝑖∈𝐽(𝐹𝜇)𝑖 is a 

𝐺𝐹𝑆𝐶1-connected (respectively, 𝐺𝐹𝑆𝐶2-

connected, 𝐺𝐹𝑆 𝑠-connected, 𝐺𝐹𝑆 weakly-

connected, 𝐺𝐹𝑆 𝑄-connected, 𝐺𝐹𝑆 strongly-

connected) set in (𝑋,𝐸).  

Theorem 3.25 

 If 𝐹𝜇 and 𝐺𝛿 are 𝐺𝐹𝑆 quasi-coincident 

𝐺𝐹𝑆𝐶3-connected (respectively, 𝐺𝐹𝑆𝐶4-

connected) sets in (𝑋,), then 𝐹𝜇⊔𝐺𝛿 is a 𝐺𝐹𝑆𝐶3-
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connected (respectively, 𝐺𝐹𝑆𝐶4-connected) set 

in (𝑋,𝐸).  

Proof. As a sample, we will prove the case 

𝐺𝐹𝑆𝐶3− onne ted. Let 𝐹𝜇 and 𝐺𝛿 be 𝐺𝐹𝑆 quasi-

coincident 𝐺𝐹𝑆𝐶3− onne ted sets in (𝑋,). 

Suppose there exist two non-null 𝐺𝐹𝑆 open sets 

𝐻𝜈 and 𝐾𝛾 in (𝑋,) such that 𝐹𝜇⊔𝐺𝛿⊑𝐻𝜈⊔𝐾𝛾 

and 𝐻𝜈⊓𝐾𝛾⊑(𝐹𝜇⊔𝐺𝛿)𝑐. (1) [ we prove that 

𝐻𝜈⊑(𝐹𝜇⊔𝐺𝛿)𝑐 or 𝐾𝛾⊑(𝐹𝜇⊔𝐺𝛿)𝑐] Therefore, 

𝐹𝜇⊑𝐻𝜈⊔𝐾𝛾, 𝐻𝜈⊓𝐾𝛾⊑𝐹𝜇𝑐, 𝐺𝛿⊑𝐻𝜈⊔𝐾𝛾 and 

𝐻𝜈⊓𝐾𝛾⊑𝐺𝛿𝑐. Since, 𝐹𝜇 and 𝐺𝛿 are 

𝐺𝐹𝑆𝐶3− onne ted, then (𝐻𝜈⊑𝐹𝜇𝑐 or 𝐾𝛾⊑𝐹𝜇𝑐) 
and (𝐻𝜈⊑𝐺𝛿𝑐 or 𝐾𝛾⊑𝐺𝛿𝑐).  Moreover, since 𝐹𝜇 

and 𝐺𝛿 are 𝐺𝐹𝑆 quasi-coincident, there exist 

𝑥∈𝑋,∈𝐸 such that  

(𝑒)(𝑥)>1−(𝑒)(𝑥) and 𝜇(𝑒)>1−𝛿(𝑒). (2) Now, 

consider the following cases:  

Case 1. Suppose 𝐻𝜈⊑𝐹𝜇𝑐. Then, by (2) we have, 

1−𝐻(𝑒)(𝑥)≥𝐹(𝑒)(𝑥)>1−𝐺(𝑒)(𝑥) and 

1−𝜈(𝑒)≥𝜇(𝑒)>1−𝛿(𝑒) ⟹𝐻(𝑒)(𝑥)<𝐺(𝑒)(𝑥) and 

𝜈(𝑒)<𝛿(𝑒). (3) We claim that, 𝐾𝛾⋢𝐺𝛿𝑐. For if 

not, then 𝐾(𝑒)(𝑥)≤1−𝐺(𝑒)(𝑥)<𝐹(𝑒)(𝑥) and 

𝛾(𝑒)≤1−𝛿(𝑒)<𝜇(𝑒). (4)  Now by (3) and (4), we 

have 𝐻(𝑒)(𝑥)∨𝐾(𝑒)(𝑥)<𝐹(𝑒)(𝑥)∨𝐺(𝑒)(𝑥) and 

𝜈(𝑒)∨𝛾(𝑒)<𝜇(𝑒)∨𝛿(𝑒) which implies 

𝐹𝜇⊔𝐺𝛿⋢𝐻𝜈⊔𝐾𝛾, this contradicts (1). Hence, 

𝐻𝜈⊑𝐺𝛿𝑐. Therefore, 𝐻𝜈⊑𝐹𝜇𝑐⊓𝐺𝛿𝑐=(𝐹𝜇⊔𝐺𝛿)𝑐.  
Case 2. Suppose 𝐾𝛾⊑𝐹𝜇𝑐. Here, we can show as 

in Case 1 that 𝐻𝜈⋢𝐺𝛿𝑐. Therefore, 𝐾𝛾⊑𝐺𝛿𝑐. 
Hence, 𝐾𝛾⊑𝐺𝛿𝑐. Therefore, 

𝐾𝛾⊑𝐹𝜇𝑐⊓𝐺𝛿𝑐=(𝐹𝜇⊔𝐺𝛿)𝑐. This complete the 

proof.  

Theorem 3.26 

 Let {(𝐹𝜇):𝑖∈𝐽} be a family of 𝐺𝐹𝑆𝐶3-

connected (respectively, 𝐺𝐹𝑆𝐶4-connected,) sets 

in (𝑋,) such that for 𝑖,𝑗∈𝐽, the 𝐺𝐹𝑆𝑆𝑠 (𝐹𝜇)𝑖 and 

(𝐹𝜇)𝑗 are 𝐺𝐹𝑆 quasi-coincident. Then, 

𝐹𝜇=⨆𝑖∈(𝐹𝜇)𝑖 is a 𝐺𝐹𝑆𝐶3-connected 

(respectively, 𝐺𝐹𝑆𝐶4− onne ted ) set in (𝑋,𝐸).  

Proof. Let {(𝐹𝜇):𝑖∈𝐽} be family of 𝐺𝐹𝑆𝐶3-

connected sets in (𝑋,). Suppose there exist two 

𝐺𝐹𝑆 open sets 𝐻𝜈 and 𝐾𝛾 in (𝑋,) such that 

𝐹𝜇⊑𝐻𝜈⊔𝐾𝛾 and 𝐻𝜈⊓𝐾𝛾⊑𝐹𝜇𝑐. Let (𝐹𝜇)0 be 

any 𝐺𝐹𝑆𝑆 of the given family. Then, 

(𝐹𝜇)0⊑𝐻𝜈⊔𝐾𝛾, 𝐻𝜈⊓𝐾𝛾⊑(𝐹𝜇)𝑖0𝑐. Since, (𝐹𝜇)0 

is a 𝐺𝐹𝑆𝐶3-connected set, we have 𝐻𝜈⊑(𝐹𝜇)𝑖0𝑐 
or 𝐾𝛾⊑(𝐹𝜇)𝑖0𝑐. Now, the result follows in view 

of the facts that (𝐹𝜇)𝑖0⊑𝐻𝜈𝑐, then (𝐹𝜇)𝑖⊑𝐻𝜈𝑐 
for each 𝑖∈𝐽−{𝑖0}, since (𝐹𝜇)𝑖0 and (𝐹𝜇)𝑖 are 

𝐺𝐹𝑆 quasi-coincident 𝐺𝐹𝑆𝐶3− onne ted sets, 
and 𝐻𝜈⊑[⨅𝑖∈𝐽(𝐹𝜇)𝑖]𝑐=𝐹𝜇𝑐. Hence, 𝐹𝜇 is a 

𝐺𝐹𝑆𝐶3-connected. Similarly, if {(𝐹𝜇):𝑖∈𝐽} is 

family of 𝐺𝐹𝑆𝐶4-connected sets in (𝑋,) such that 

for 𝑖,𝑗∈𝐽, the 𝐺𝐹𝑆𝑆𝑠 (𝐹𝜇)𝑖 and (𝐹𝜇)𝑗 are 𝐺𝐹𝑆 

quasi-coincident, then, 𝐹𝜇=⨆𝑖∈𝐽(𝐹𝜇)𝑖 is a 

𝐺𝐹𝑆𝐶4-connected set in (𝑋,𝐸). This completes 

the proof.  

Corollary 3.27 

  Let {(𝐹𝜇):𝑖∈𝐽} be a family of a 𝐺𝐹𝑆𝐶3-

connected (respectively, 𝐺𝐹𝑆𝐶4-connected,) sets 

in (𝑋,) and (𝑥𝛼,𝑒𝜆) be a 𝐺𝐹𝑆 point such that 

𝛼>12, 𝜆>12 and (𝑥𝛼,𝑒𝜆)∈⨅𝑖∈𝐽(𝐹𝜇)𝑖. Then 

⨆𝑖∈(𝐹𝜇)𝑖 is a 𝐺𝐹𝑆𝐶3-connected (respectively, 

𝐺𝐹𝑆𝐶4− onne ted ) set in (𝑋,𝐸).  

Proof. Since (𝑥𝛼,)∈⨅𝑖∈𝐽(𝐹𝜇)𝑖, then 

(𝑥𝛼,𝑒𝜆)∈(𝐹𝜇)𝑖 for each 𝑖∈𝐽. Therefore, (𝐹𝜇) and 

(𝐹𝜇) are 𝐺𝐹𝑆 quasi-coincident for each 𝑖,𝑗∈𝐽. By 

Theorem 4.13, ⨆𝑖∈(𝐹𝜇)𝑖 is a 𝐺𝐹𝑆𝐶3-connected 

(respectively, 𝐺𝐹𝑆𝐶4-connected ) set in (𝑋,𝐸).  

Theorem 3.28 

 If 𝐹𝜇 is a 𝐺𝐹𝑆𝐶3-connected 

(respectively, 𝐺𝐹𝑆𝐶4-connected, 𝐺𝐹𝑆 strongly-

connected, 𝐺𝐹𝑆 𝑄-connected) set in (𝑋,) and 

𝐹𝜇⊑𝐺𝛿⊑𝑐(𝐹𝜇), then 𝐺𝛿 is also a 𝐺𝐹𝑆𝐶3-

connected (respectively, 𝐺𝐹𝑆𝐶4-connected, 𝐺𝐹𝑆 

strongly-connected, 𝐺𝐹𝑆 𝑄-connected) set in 

(𝑋,𝐸). In particular (𝐹𝜇) is 𝐺𝐹𝑆𝐶3-connected 

(respectively, 𝐺𝐹𝑆𝐶4-connected, 𝐺𝐹𝑆 strongly-

connected, 𝐺𝐹𝑆 𝑄-connected) set in (𝑋,𝐸). 

Proof. As a sample, we will prove the case 

𝐺𝐹𝑆𝐶3− onne ted. Let 𝐻𝜈 and 𝐾𝛾 be 𝐺𝐹𝑆 open 

sets in (𝑋,) such that 𝐺𝛿⊑𝐻𝜈⊔𝐾𝛾 and 

𝐻𝜈⊓𝐾𝛾⊑𝐺𝛿𝑐. Then, 𝐹𝜇⊑𝐻𝜈⊔𝐾𝛾 and 

𝐻𝜈⊓𝐾𝛾⊑𝐹𝜇𝑐. Since 𝐹𝜇 is a 𝐺𝐹𝑆𝐶3− onne ted 
set, we have 𝐹𝜇⊑𝐻𝜈𝑐 or 𝐹𝜇⊑𝐾𝛾𝑐. But, if 

𝐹𝜇⊑𝐻𝜈𝑐, then (𝐹𝜇)⊑𝐻𝜈𝑐 and on the other hand, 

if 𝐹𝜇⊑𝐾𝛾𝑐, then 𝑐𝑙(𝐹𝜇)⊑𝐾𝛾𝑐. Therefore, 

𝐺𝛿⊑(𝐹𝜇)⊑𝐻𝜈𝑐 or 𝐺𝛿⊑𝑐𝑙(𝐹𝜇)⊑𝐾𝛾𝑐. Hence, 𝐺𝛿 

is a 𝐺𝐹𝑆𝐶3− onne ted set in (𝑋,). This 

completes the proof. 

Conclusions 

In the present paper have extended the notion of 

connectedness of fuzzy soft topological spaces to 

generalized fuzzy soft topological spaces. We 

have introduced different notions of generalized 

fuzzy soft separated sets and studied the 

relationship between them. The study has also 

been devoted to introduce the different notions 

of connectedness in generalized fuzzy soft 

topological spaces and study the implications 

that exist between them. However, we note that 

the last theorem above fails in case of 𝐺𝐹𝑆𝐶1-

connectedness (respectively, 𝐺𝐹𝑆𝐶2-
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connectedness, 𝐺𝐹𝑆 clopen-connectedness, 𝐺𝐹𝑆 

weakly-connectedness, 𝐺𝐹𝑆 𝑠-connectedness) 

which is a departure from general topology. In 

fact, closure of a 𝐺𝐹𝑆𝐶1-connected 

(respectively, 𝐺𝐹𝑆𝐶2-connected, 𝐺𝐹𝑆 clopen-

connected, 𝐺𝐹𝑆 weakly-connected, 𝐺𝐹𝑆 𝑠-
connected) set need not be a 𝐺𝐹𝑆𝐶1-connected 

(respectively, 𝐺𝐹𝑆𝐶2-connected, 𝐺𝐹𝑆 clopen-

connected, 𝐺𝐹𝑆 weakly-connected, 𝐺𝐹𝑆 𝑠-
connected).   
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