The Importance of ARDS net and Delta P in ARDS Treatment

Tristen Patterson

Objectives

- Briefly describe Acute Respiratory Distress Syndrome.
- Understand the history, purpose, and protocols developed from the ARDSnet research.
- Describe how the optimal use of Delta P can help prevent and treat ARDS.

What is ARDS?

- ARDS is a type of acute lung injury affecting ~200,000 patients annually in the U.S.¹
- Results in nearly 75,000 deaths per year¹
- Mortality rate is approximately 35-46%¹

Criteria

- Mild: P/F 200-300
- Moderate: P/F 100-200
- Severe: P/F < 100
- 1. Radiographic severity
- 2. Compliance ≤ 40ml/cmH₂O
- 3. $PEEP \ge 10cmH_2O$
- 4. $VE \ge 10L/min^2$

Salihefendic N, Zildzic M, Ahmetagic S. Acute Respiratory Distress Syndrome (ARDS) from Endemic Influenza A/H1N1: Prehospital Management. <u>Med Arch (2015)</u> Figure 5: Chest X-ray third day of disease-ARDS. Bilateral lung infiltrates Influenza A/H1N1

ARDSnet

- Formed in 1994 by the NIH and NHLBI to research effective treatments for ARDS patients.³
- Tested use of lower VT as a mechanical ventilation strategy in ARDS patients.
- Found a 22% decease in mortality.⁴⁻⁵

ARDSnet Protocols

- First recognize the patient is experiencing acute onset of ARDS.
- Use patient's PBW to achieve a V_T of 6ml/kg and set a RR to achieve appropriate M_{Ve} .
- Then adjust accordingly to achieve pH of 7.30-7.45 and $P_{PL} \le 30 \text{ cmH}_2\text{O}$.
- Use a minimum PEEP setting of 5 cmH₂O and adjust PEEP and FiO₂ incrementally to achieve PaO₂ of 55-80 mmHg and SpO₂ of 88-95%.⁶

NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary

INCLUSION CRITERIA: Acute onset of

- PaO₂/FiO₂ ≤ 300 (corrected for altitude)
- Bilateral (patchy, diffuse, or homogeneous) infiltrates consistent with pulmonary edema
- No clinical evidence of left atrial hypertension

PART I: VENTILATOR SETUP AND ADJUSTMENT

- Calculate predicted body weight (PBW)
 Males = 50 + 2.3 [height (inches) 60]
 Females = 45.5 + 2.3 [height (inches) -60]
- Select any ventilator mode
- Set ventilator settings to achieve initial V_T = 8 ml/kg PBW
- Reduce V_T by 1 ml/kg at intervals ≤ 2 hours until V_T = 6ml/kg PBW.
- Set initial rate to approximate baseline minute ventilation (not > 35 bpm).
- Adjust V_T and RR to achieve pH and plateau pressure goals below.

OXYGENATION GOAL: PaO₂ 55-80 mmHg or SpO₂ 88-95%

Use a minimum PEEP of 5 cm H₂O. Consider use of incremental FiO₂/PEEP combinations such as shown below (not required) to achieve goal.

Lower PEEP/higher FiO2

zowei rzzi / mgnei rioz								
FiO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7
PEEP	5	5	8	8	10	10	10	12

FiO ₂	0.7	0.8	0.9	0.9	0.9	1.0
PEEP	14	14	14	16	18	18-24

Higher PEEP/lower FiO2

FiO ₂	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5
PEEP	5	8	10	12	14	14	16	16

FiO ₂	0.5	0.5-0.8	0.8	0.9	1.0	1.0
PEEP	18	20	22	22	22	24

PLATEAU PRESSURE GOAL: ≤ 30 cm H₂O

Check Pplat (0.5 second inspiratory pause), at least q 4h and after each change in PEEP or V_T .

If Pplat > 30 cm H_2O : decrease V_T by 1ml/kg steps (minimum = 4 ml/kg).

If Pplat < 25 cm H_2O and V_T < 6 ml/kg, increase V_T by 1 ml/kg until Pplat > 25 cm H_2O or V_T = 6 ml/kg.

If Pplat < 30 and breath stacking or dys-synchrony occurs: may increase V_T in 1ml/kg increments to 7 or 8 ml/kg if Pplat remains \leq 30 cm H_2O .

pH GOAL: 7.30-7.45

Acidosis Management: (pH < 7.30)

If pH 7.15-7.30: Increase RR until pH > 7.30 or $PaCO_2 < 25$ (Maximum set RR = 35).

If pH < 7.15: Increase RR to 35.

If pH remains < 7.15, V_T may be increased in 1 ml/kg steps until pH > 7.15 (Pplat target of 30 may be exceeded).

May give NaHCO₃

Alkalosis Management: (pH > 7.45) Decrease vent rate if possible.

I: E RATIO GOAL: Recommend that duration of inspiration be \leq duration of expiration.

PART II: WEANING

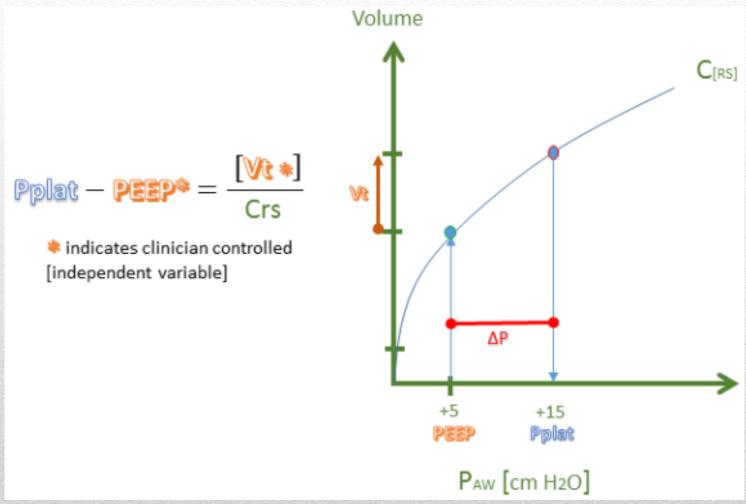
A. Conduct a SPONTANEOUS BREATHING TRIAL daily when:

- 1. $FiO_2 \le 0.40$ and $PEEP \le 8$ OR $FiO_2 \le 0.50$ and $PEEP \le 5$.
- 2. PEEP and $FiO_2 \le values$ of previous day.
- Patient has acceptable spontaneous breathing efforts. (May decrease vent rate by 50% for 5 minutes to detect effort.)
- Systolic BP ≥ 90 mmHg without vasopressor support.
- 5. No neuromuscular blocking agents or blockade.

B. SPONTANEOUS BREATHING TRIAL (SBT):

If all above criteria are met and subject has been in the study for at least 12 hours, initiate a trial of UP TO 120 minutes of spontaneous breathing with FiO2 \leq 0.5 and PEEP \leq 5:

- Place on T-piece, trach collar, or CPAP ≤ 5 cm H₂O with PS < 5
- 2. Assess for tolerance as below for up to two hours.
 - a. $SpO_2 \ge 90$: and/or $PaO_2 \ge 60$ mmHg
 - b. Spontaneous V_T ≥ 4 ml/kg PBW
 - c. RR ≤ 35/min
 - d. $pH \ge 7.3$
 - e. No respiratory distress (distress= 2 or more)
 - > HR > 120% of baseline
 - Marked accessory muscle use
 - Abdominal paradox
 - Diaphoresis
 - Marked dyspnea
- 3. If tolerated for at least 30 minutes, consider extubation.
- If not tolerated resume pre-weaning settings.


Definition of <u>UNASSISTED BREATHING</u> (Different from the spontaneous breathing criteria as PS is not allowed)

- Extubated with face mask, nasal prong oxygen, or room air, OR
- 2. T-tube breathing, OR
- 3. Tracheostomy mask breathing, OR
- 4. CPAP less than or equal to 5 cm H₂0 without pressure support or IMV assistance.

NIH NHLBI ARDS Clinical Network. Mechanical ventilation protocol summary. ARDSNet Website. 2008. Cited on 19 March 2018 from http://www.ardsnet.org/files/ventilator_protocol_2008-07.pdf

What is Delta P?

- ΔP is calculated as "the airway pressure changes from PEEP to end-inspiratory plateau pressure."⁷
- Biotrauma: "Shear Stress" caused by the repeated opening and closing of the lung during ventilation.8
- Amato et al. found that "decreases in ΔP were strongly associated with increased survival."

Kenney JES. ICU Physiology in 1000 Words: Driving Pressure & Stress Index. Cited 20 March 2018 from https://pulmccm.org/review-articles/icu-physiology-in-1000-words-driving-pressure-stress-index/

Summary

- ARDS is a rapid onset disease process that needs to be recognized early and treated aggressively and appropriately with lung protective strategies.
- ARDSnet played a significant role in the development of the protocols used to ventilate ARDS patients.
- While more research needs to be done, using reduced ΔP ventilation strategies can improve patient outcomes.

References

- 1. Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome advances in diagnosis and treatment. JAMA 2018;319(7):698-710
- 2. The ARDS Definition Task Force. Acute respiratory distress syndrome the Berlin definition. JAMA. 2012;307(23):2526-2533
- 3. NHLBI ARDS Network, 2014. About the NHLBI ARDS Network. [Internet]. Cited on 2 March 2018 from http://www.ardsnet.org/index.shtml
- 4. Slutsky AS, Ranieri VM. Mechanical ventilation: lessons from the ARDSNet trial. Respir Res 2000;1:73-77.

- 5. The ARDS Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342(18):1301-1308
- 6. NIH NHLBI ARDS Clinical Network. Mechanical ventilation protocol summary. ARDSNet Website. 2008. Cited on 19 March 2018 from http://www.ardsnet.org/files/ventilator_protocol_2008-07.pdf
- 7. Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Critical Care 2016;20:276-286
- 8. Laycock H, Rajah A. Acute lung injury and acute respiratory distress syndrome: a review article. BJMP 2010;3(2);324-330
- 9. Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372:747-755