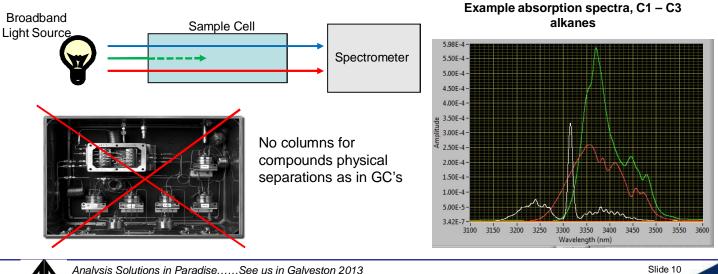

Typical Application Detail and Interface to TDL/TCD/2500/Systems - Part Ethylene Plant (Hydrocarbon Sep)

SAMPLE STREAM AND TASK	COMPONENTS MEASURED	TYPICAL RANGES	CURRENT METHODOLOGY	SOLUTION
	C1, C2, C2=	300/10/1000ppm	PGC	Extractive TDL
Ethylene product for quality	CO, CO2, NH3	2/5/1 ppm range	PGC	Conventional IR, GFC
, ,	MeOH, PrOH, CO	0-1ppm	PGC/IR	
	C1, C2, C2=	1000/10/1000ppm	PGC	Tuneable Filter
To DeButaniser for process control	CO, CO2, NH3	0-2/5/1 ppm	PGC	
	MeOH, PrOH, CO	0-1ppm	PGC	
DePropaniser overhead for process control	C2, C3=, C3, C4+	%	PGC	Tuneable Filter IR
Propylene Product ,C3	C3=, C4+. Propadiene (C3==)	%	PGc and IR	Tuneable Filter IR
split bottoms for quality	Propyne (methyl acetylene, MA)	Nb also trace ammonia, 5 ppm ,MA ,CO,CO2		Extractive TDL
Butene-1 product for process control	C2, C2=, C4, C4=, C6=	Ranges vary between 0- 100ppm and 0-3000ppm	PGC	Tuneable Filter IR, TDLAS

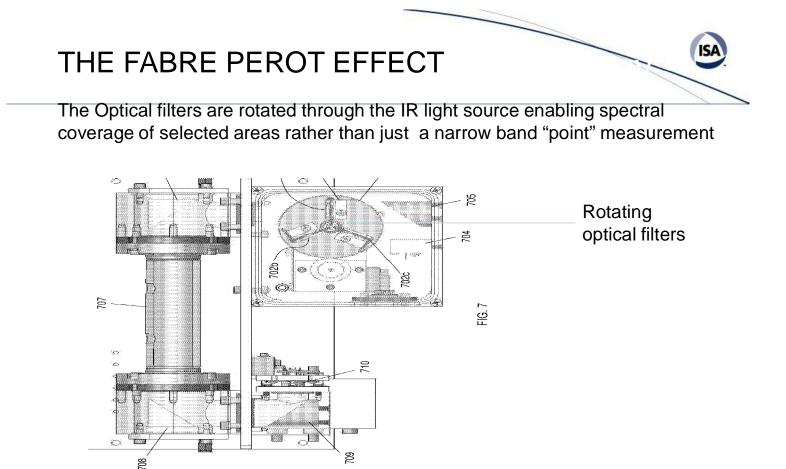
<u>Analysis Solutions in Paradise.....See us in Galveston 2013</u> The 58th Annual Symposium of the Analysis Division Galveston, Texas, USA; 14-18 April 2013 Slide 7

ISA

Setting the Standard for Automation™

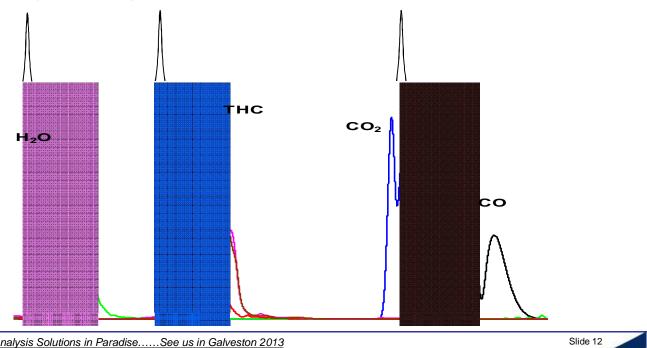


Tunable Filter Spectrometer (TFS[™])

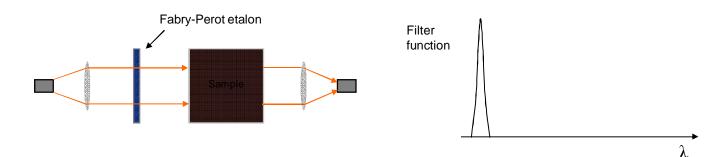


Measurement Principle

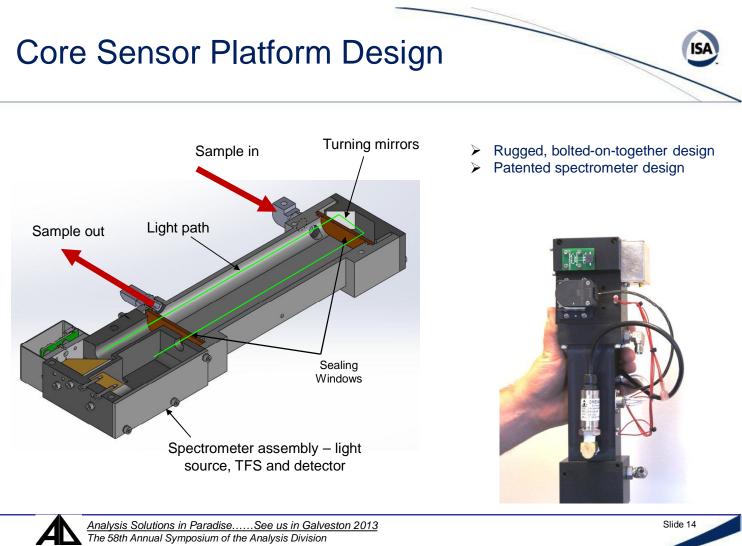
- Measurement in based on NIR/IR absorption spectroscopy with advanced spectral decomposition analysis
 - Molecules absorb light radiation at certain frequencies or wavelengths
 - Absorption spectrum of each hydrocarbon compound is unique => this acts as "fingerprint" and can be used to speciate compounds
 - Intensity of the absorption is proportional to the concentration of the molecules => this can be used to compute concentrations



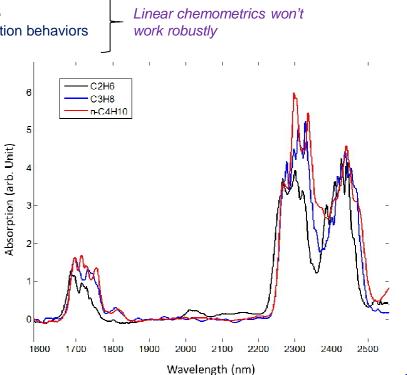
Slide 11


TFS™ Sensor Wavelength Scanning

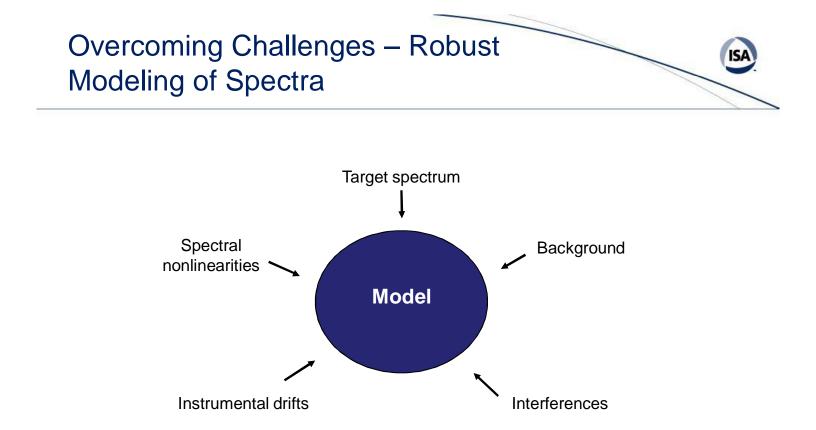
- Custom designed Fabry-Perot element
- Focused on relevant band(s)
- Wavelength scanning within the band(s)


TFS – Wavelength Scanning Mechanism

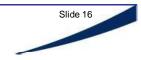
- Custom designed Fabry-Perot element
- Wavelength scanning within particular band(s)
- > One rugged rotational element with low-precision requirement
 - "over engineered" with <1% of dynamic load capability used</p>
- Patented technology



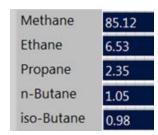
Galveston, Texas, USA; 14-18 April 2013


Challenges of Hydrocarbon Spectroscopic Analysis

- Overlapping spectra
- Presence of nonlinear behaviors
 - > Peak shifts & other feature modification behaviors
 - Non-additive characteristics
 - Due to "real-world" conditions

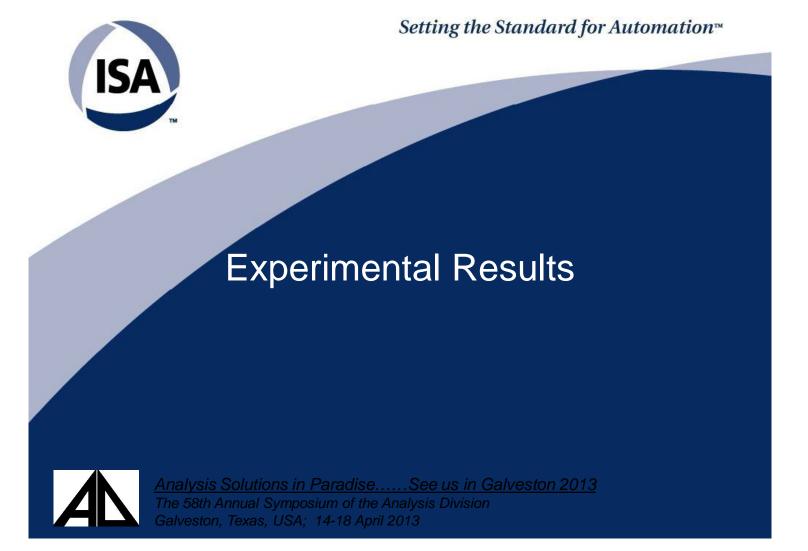


Slide 15



Real-time, On-Line, All-Optical Hydrocarbon Gas Analyzer

Hydrocarbon gas analyzer, providing:


- Individual component concentration, such as C1 C4
- Calculated BTU/CV value
- Calculated Wobbe index value
- Calculated specific gravity
- Real-time measurement in seconds
- Low-cost installation and operation:
 - No carrier gas requirement
 - No calibration gases or "clean" air requirement
 - No "shelter" or air conditioning requirement
 - No sample drying or other sampling requirement

Mixtures Test (example validation at Precisive)

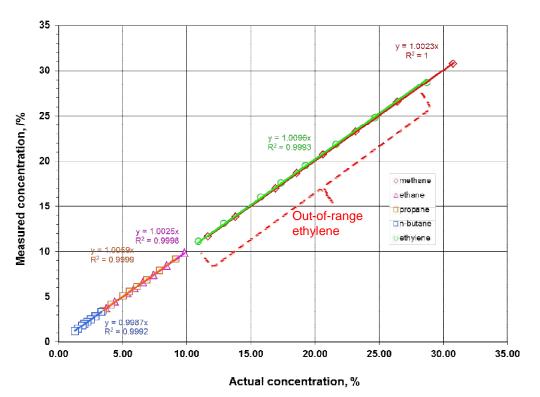
	Theoretical (%)	Reading (%)	Error (%)
Methane	92.01	91.95	-0.06
Ethane	2.97	3.03	0.06
Propane	0.99	1.00	0.01
Iso-Butane	0.31	0.28	-0.03
N-Butane	0.30	0.27	-0.03

Two independent certified mixtures

ISA

Mixture 1

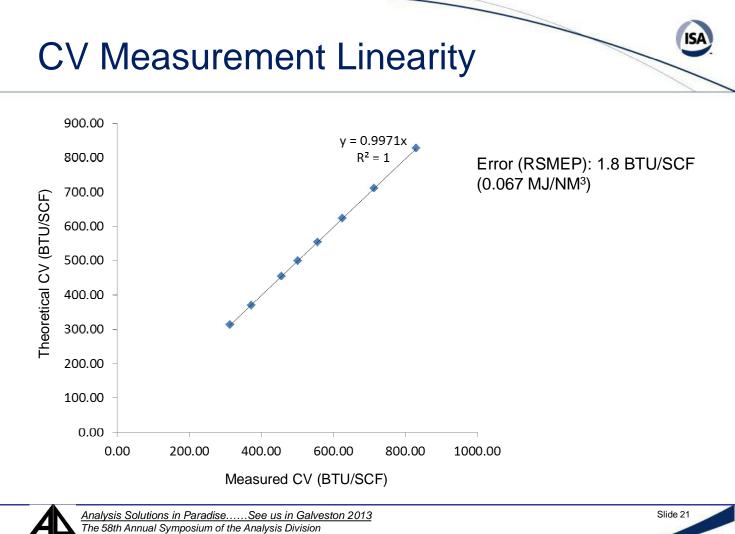
	Theoretical (%)	Reading (%)	Relative Error (%)
Methane	50.01	50.13	0.12
Ethane	10.0	10.03	0.03
Propane	10.0	9.93	-0.07
Iso-Butane	1.00	1.01	0.01
N-Butane	1.00	0.88	-0.12
Propylene	3.00	3.03	0.03
Ethylene	5.00	5.09	0.09



<u>Analysis Solutions in Paradise.....See us in Galveston 2013</u> The 58th Annual Symposium of the Analysis Division Galveston, Texas, USA; 14-18 April 2013 Slide 19

Accuracy – C1 to C4 alkanes and ethylene (continued)

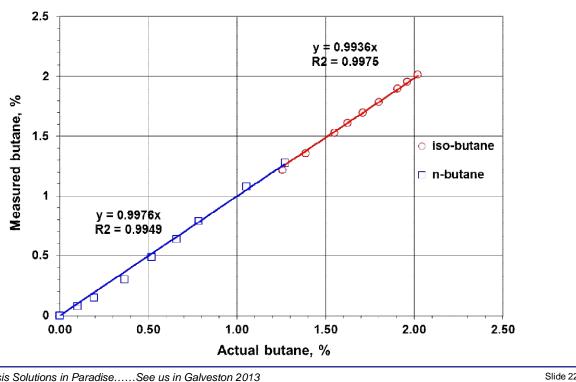
Linearity



Analysis Solutions in Paradise.....See us in Galveston 2013 The 58th Annual Symposium of the Analysis Division Galveston, Texas, USA; 14-18 April 2013 **2**

20

Slide 20



21

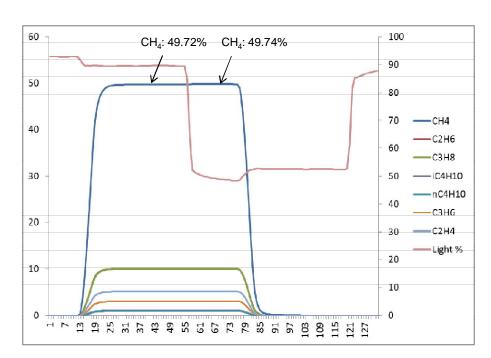
Galveston, Texas, USA; 14-18 April 2013

Linearity

Analysis Solutions in Paradise.....See us in Galveston 2013 The 58th Annual Symposium of the Analysis Division Galveston, Texas, USA; 14-18 April 2013

22

Slide 22


Stability – effects of source drifts

Test Procedure:

- 1. Zero the instrument (with pure N₂)
- 2. Flow sample mixture
- Reduced light source intensity by ~ 50%
- 4. Flow back N₂

Results:

- Span drift due to ~50% light intensity reduction: < 0.03% on all channels
- Zero drift: virtually zero on all channels (< 0.01%)

CURRENT TFS AVAILABLE MEASUREMENTS

Channel	Gas	NATURAL GAS -AND CV		
	CH4	0 – 100%	0 – 100%	0 – 100%
	C2H6	0 – 25%	0-25%	0-25%
	C3H8	0-25%	0-25%	0-25%
	lso C4H10	0 – 10%	0 – 10%	0 – 10%
	N C4H10	0 – 10%	0 – 10%	0 – 10%
	C3H6	0 - 50%	0 – 50%	0-50%
	C2H4	0-50%	0 – 50%	0-50%
	CO2	0-100%	0 – 100%	0 – 100%
	C2H2	n/a	0 – 30%	0-30%
	lso-C5H12	n/a	0 – 10%	0 – 10%
	1-Butene	n/a	n/a	0 – 10%
	Cis-2-Butene	n/a	n/a	0-10%
	Trans-2-Butene	n/a	n/a	0 – 10%
	Isobutylene	n/a	n/a	0-10%
	1,3 Butadiene	n/a	n/a	Can interfere C3s, cis butene

Analysis Solutions in Paradise.....See us in Galveston 2013 The 58th Annual Symposium of the Analysis Division Galveston, Texas, USA; 14-18 April 2013

ISA

Slide 25

Summary

- Patented Tunable Filter Spectrometer with hydrocarbon speciation chemometrics
 - GC-like speciation performance (C1 C5, alkanes, alkynes, alkenes)
 - Fast update rate (1 second)
 - No carrier gas or other consumables
 - Proven technology & platform with 1600+ units deployed with 160+ years of cumulative run time
- Test results
 - Robust baseline and span stability
 - Robust speciation performance
- An attractive alternative to GC, residual oxygen and refraction based analyzers in hydrocarbon/fuel gas analysis

Trace Gas Measurements using Tunable Diode Laser Absorption Spectroscopy

Jiwan Jain

Outline

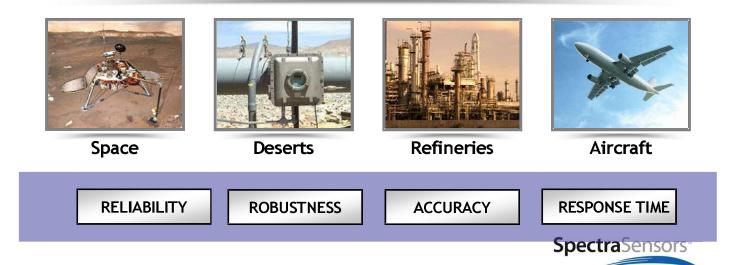
- SpectraSensors Introduction
- What are TDL analysers
- Absorption Spectrscopy
- Tunable Diode Laser and WMS
- Response Characteristics of TDL Analysers
- Technolgy implementation
- Application Examples: H2S and H2O
- Summary
- Questions

SpectraSensors,Inc. An Introduction

SpectraSensors :

- An Endress+Hauser subsidiary
- Founded in 1999 by a group of NASA engineers
- Headquartered in Houston, Texas
- Production facility in California
- Pioneer in on-line Tunable Diode Laser Analyzers (TDLAS)

Over 5000 units installed to date

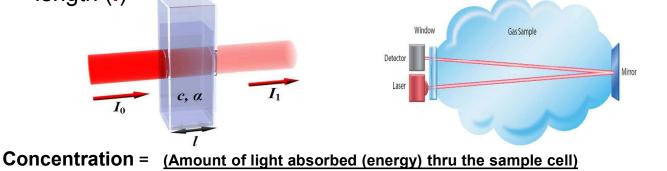

California Office

Houston Office

Proven Tunable Diode Laser (TDL) Sensors for Measuring Conditions in Extreme Environments

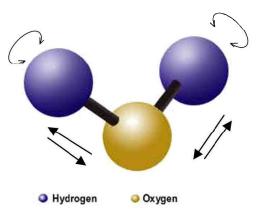
Sampling of Some of SpectraSensors Current Customers

What Are TDL Analyzers?

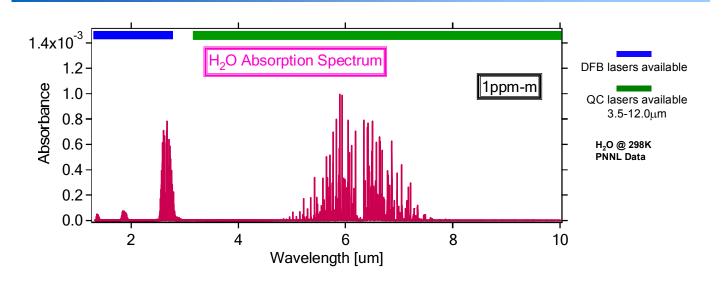

- Like NDIR Analyzers* that users are already familiar with.
- But rather than using a lamp to produce IR light, TDL analyzers use a focused Laser beam.
- Laser Beam is generated by a Semiconductor Diode called Tunable Diode Laser (TDL).
- TDL technology is being driven by the fiber-optic telecom industry
- Goal is to retain the simplicity of NDIR analyzers while avoiding some of the measurement issues associated with IR analyzers
- * Note that TDL analyzers are available in IR and UV ranges depending on laser selected

What are TDL analysers

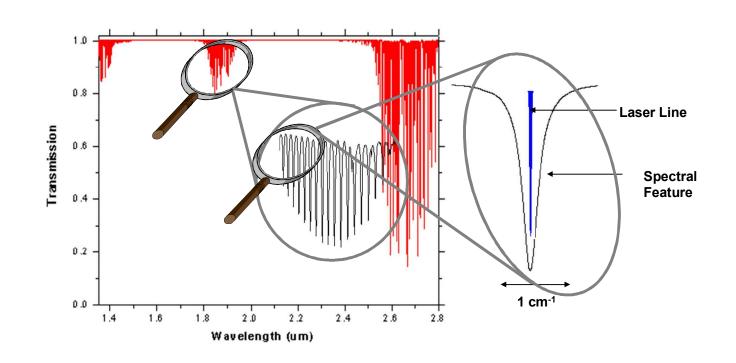
Measurement Mechanics Of Optical Spectroscopy


- Absorbance = f(conc, pathlength, and molar absorptivity) $\mathbf{A} = \mathbf{c} \cdot \mathbf{I} \cdot \mathbf{\alpha}$
- Concentration increases Absorption increases (I, α are constant)
- If analyte concentration is low, increase A by increasing path length (I)

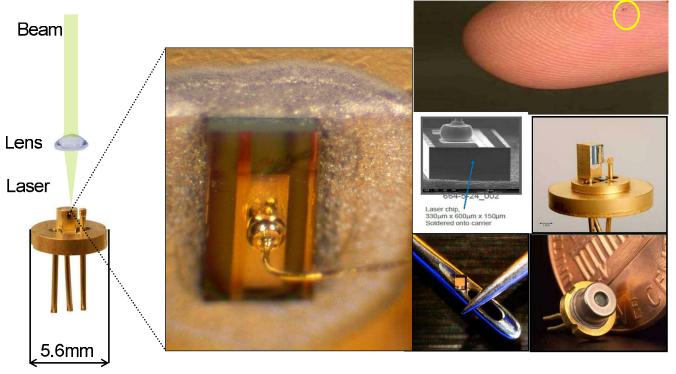
(Absorption Coefficient for a species) x (its path length) (Absorption Coefficient for a species) x (its path length) SpectraSensors


Absorption Spectroscopy: IR Absorption By Molecules

- Light at certain harmonic wavelengths will cause the molecular bonds to twist or stretch.
- This "vibration" absorbs energy.
- Gas concentration can be accurately measured by the amount of light absorbed


Absorption Spectroscopy: Moisture spectrum example

- Over 26,000 individual absorption lines exist for $\rm H_2O$ between 1.3 and 3.0 microns
- TDL analyzers need only one line in that region that is free of interference to work successfully!
- SSI has special development software to search for the optimum wavelength based on concentrations and background gases



Absorption Spectroscopy: Reading The Fine Print Of Spectral Signatures

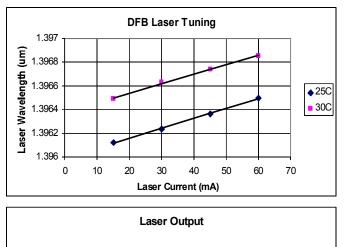
Tunable Diode Laser: How does a Tunable Diode Laser (TDL) looks like?

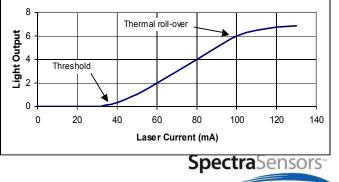
Tunable Diode Laser:

Tuning TDL: Multiple IR Wavelengths with One TDL

 Most TDLs are in the Near InfraRed (NIR) wavelength range:

0.7 to 3.0 microns


• Laser Wavelengths can be changed by:

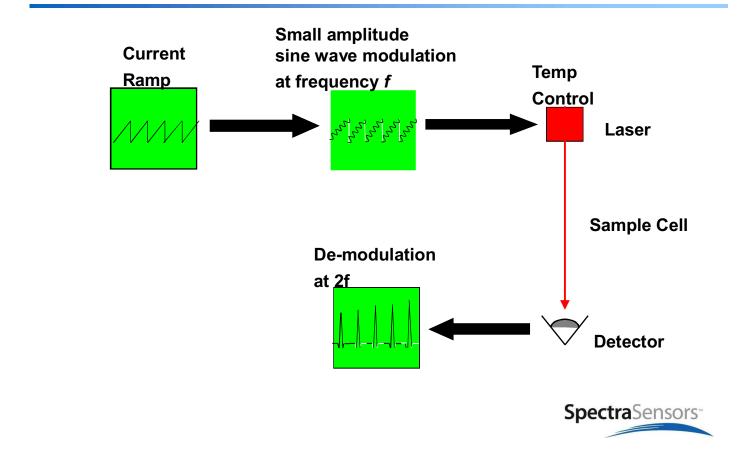

Laser construction Temperature control Current (fine tuning)

• For Analysis:

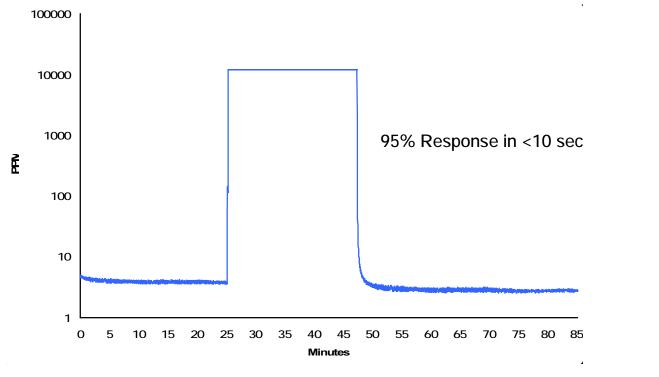
- Temperature of laser is held constant and the current flowing through it is varied

Tunable range is ~3 nanometers

Tunable Diode Laser: Laser Scan

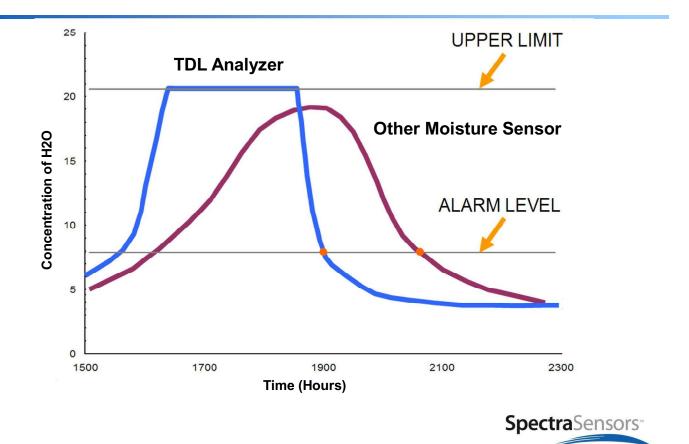


Tunable range 3 nanometers Measures 250 discrete wavelengths Scanning 4 times per second

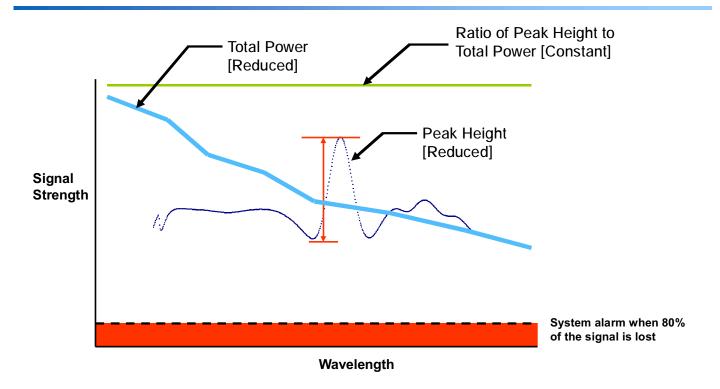


Tunable Diode Laser:

Wavelength Modulation Spectroscopy (WMS)



Response Characteristics: Extremely Fast Speed of Response


Response Characteristics: Faster Recovery From Process Upsets

Response Characteristics:

Window Contamination: Not a problem because of ratio measurement

Technology Implementation

Variety Of On-Line TDL Analyzers On Market

Cross Stack design

Used to measure components in a combustion process; e.g., stack gases

Open Air design

Used to measure components in ambient air monitoring; eg, toxic and flammable gases

Portable design

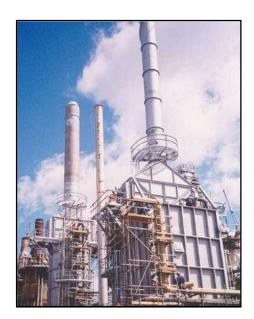
Used to measure components in air or processes; e.g., moisture in natural gas

Extractive design

Used to measure components in chemical processes; e.g., gas purity applications

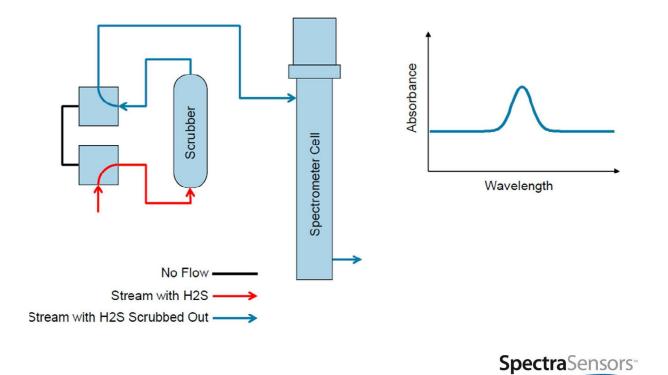
Technology implementation SpectraSensors Analyzers

- Flexible analytical hardware Choice of IR lasers Single and dual channel configurations Multi-pass cells available Heated cell cabinets available
- Extremely low cost of ownership No routine maintenance No routine calibration needed
- Fast measurement response Most applications are done in 1 second

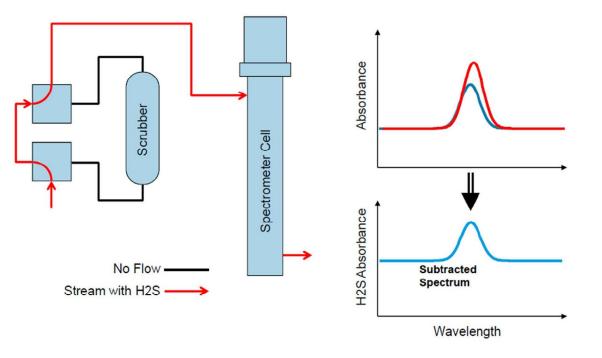

Application Examples H₂S Measurement: Use of spectral Subtraction

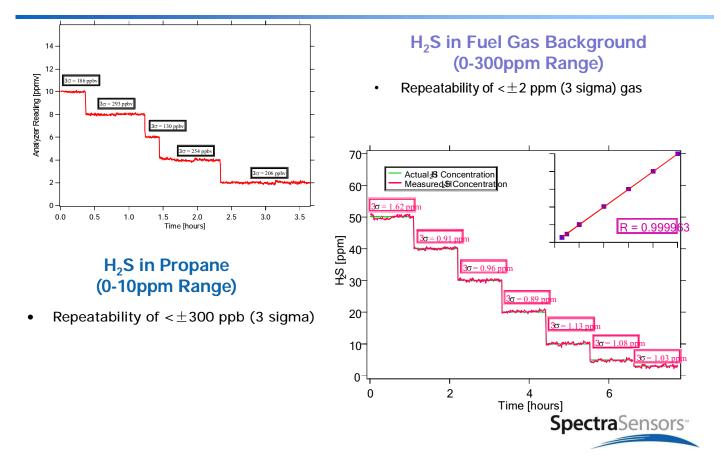
Background gases are nearly impossible to predict due to changing nature of the Fuel Gas

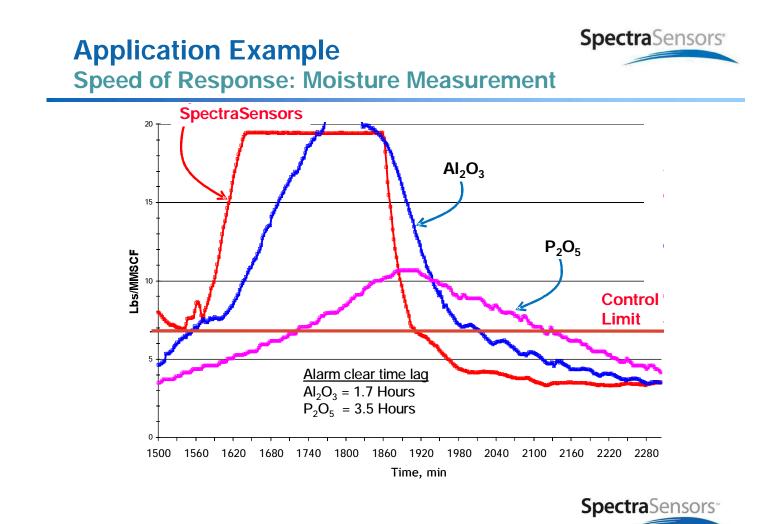
 Fuel Gas can have anything from H₂ to C₄+ at any time


Sample composition changes preclude avoiding of interferences

- TDL system assumes there are always interferences present
- Process sample flows through an H₂S scrubber to take snap-shots of interferences
- Software then subtracts these interferences to give precise H₂S measurements




Application ExampleSIH2S measurement: Use of spectral subtraction



Application Example H2S measurement Performance

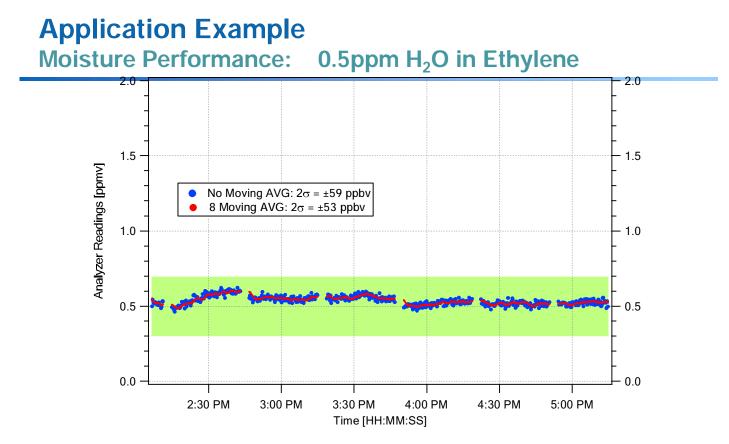
Application Example Superior Availability of TDL moisture analysers

	Othe	Other H ₂ O Measurement Technologies SpectraSensors					
Contaminant	Al ₂ O ₃	P ₂ O ₅	Quartz Crystal	Chilled Mirror	TDL Senso		
Methanol							
Glycol							
Amine							
Mercury							
Hydrogen Sulphide							
Hydrogen Chloride							
Chlorine							
Ammonia							

Analyser Unaffected by Contaminant

Can Cause Slow or Inaccurate Readings

Can Cause Permanent Damage to Sensor


Application Example

Moisture Performance: Water and Methanol in Natural Gas

Here, moisture concentration is monitored by two analyzers, as methanol is injected, the TDL analyzer does not register a change while the P2O5 analyzer sees the Methanol as though it were moisture. This is a big problem for operators that inject methanol and need to read moisture

• The 3hour long term test shows repeatability (2σ) is well within the ±200 ppb spec.

Applications: Refinery and Petrochem

	INDUSTRY	PROCESS	STREAM	ANALYTE	TYPICAL CONC. RANGE
	REFINING	UOP CATALYTIC REFORMER	HYDROGEN RECYCLE	H20	CONTROL D-10 PPM MONITOR 0-500 PPM
				H28	0-100 PPM UPTO 0-500 PPM
H ₂ S		PROPANE PRODUCTION	PROPANE, LO PURITY	H28	0-4000 PPM
		FEED PURITY FOR PROPYLENE PRODUCTION	PROPANE	H2S H2O	0-10 PPM 0-10 PPM
49		FUEL GAS (<c4) FLARE GAS (<c4)< td=""><td>H2S</td><td>0-300 PPM 0-300 PPM</td></c4)<></c4) 	H2S	0-300 PPM 0-300 PPM	
NHE	OLEFINS	PRODUCT OR PROCESS FEED	ETHYLENE, PROPANE, & PROPYLENE	H20	0-10 PPM CONTROL AT <1PPM
oddug	MD BED BACK END ACETYLENE CONVERTER	ETHYLENE	C2H2	0-5000 PPM	
CH		PRODUCT OR PROCESS FEED	ETHYLENE	NH3	0-10 PPM CONTROL AT <1PPM

Applications: Natural Gas Processing & LNG

INDUSTRY	PROCESS	STREAM	ANALYTE	TYPICAL CONC. RANGE
GAS PROCESSING	DRYER OUTLET OR TURBOEXPANDER FEED	NATURAL GAS	H2O	0-10 PPM
	VARIOUS	NATURAL GAS	002	0-100 PPM
	DOWNSTREAM FROM GAS CONDITIONING OPERATIONS	NATURAL GAS	H2S	0-10 PPM AND HIGHER
	LIQUEFACTION & FRACTIONATION OUTPUTS (<c4)< td=""><td>NATURAL GAS LIQUIDS</td><td>H2S</td><td>0-10 PPM AND HIGHER</td></c4)<>	NATURAL GAS LIQUIDS	H2S	0-10 PPM AND HIGHER
	GAS PROCESSING PLANTS & SRU	FEED STREAMS	H28	PERCENTAGE LEVELS e.g. 0-30%
LNG	DRYER OUTLET OR TURBOEXPANDER FEED	NATURAL GAS	H2O	0-10 PPM
	TURBOEXPANDER FEED	NATURAL GAS	002	0-100 PPM
SYNGAS		AMINE SCRUBBER INLET	H20	0-10 PPM
		AMINE SCRUBBER OUTLET	002	PPM LEVELS
BULK & SPECIALITY GASES		AIR, NITROGEN, HELJUM, ETC.	H20 C02, H25	0-10 PPM 0-10 PPM 0-100 PPM

Summary: TDL Spectroscopy Technology

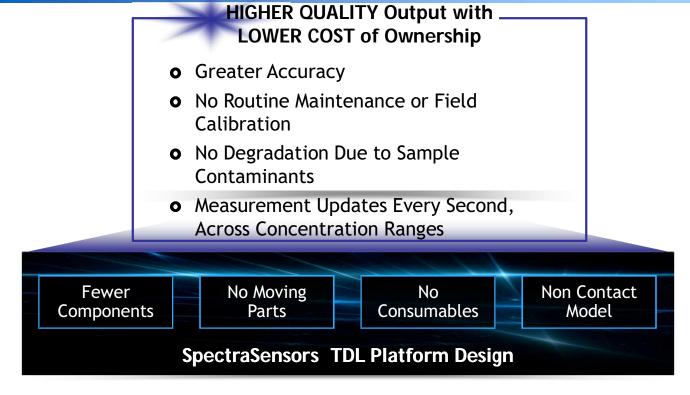
SpectraSensors TDL analyzers are responsive

Fast response to concentration step-changes Possible because TDL measures a fundamental property of the molecule (interaction with light) rather than a derived effect

• SpectraSensors TDL scanning technology is selective

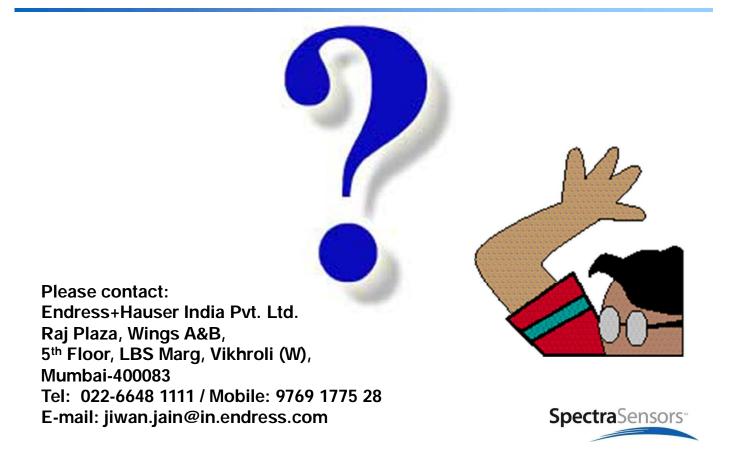
Isolates the measured molecule signal amidst the dominant hydrocarbon background

- SpectraSensors TDL spectrometers are precise
- SpectraSensors TDL analyzer systems are reliable


Pre-calibrated at the factory The intrinsic stability of the technology eliminates the need for field calibration

Very low maintenance due to absence of moving parts

Validation only is required to verify that the original certificate of calibration remains valid



Summary: Superior TDL Technology

Any Questions??

