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SUMMARY

Phylogenies reconstructed from contemporary taxa do not contain information about lineages that have
gone extinct. We derive probability models for such phylogenies, allowing real data to be compared with
specified null models of evolution, and lineage birth and death rates to be estimated.

1. INTRODUCTION

The simplest null model for the growth of a
phylogenetic tree is a birth—death process in which
the rates at which lineages either give birth to new
lineages, or die, remain constant through time. This
process has been studied before, both analytically and
by simulation, for comparison with the changes in the
numbers of taxa through a fossil record (Raup et al.
1973). Here we describe a null model appropriate for
molecular phylogenies, which only record lineages
which have given rise to at least one contemporary
descendant. This stochastic process, which, for
convenience, we call the ‘reconstructed process’, is
what Kendall (1948a,6) calls a generalized birth
process and 1is, in some ways, simpler than the
birth—death process on which it is based. We derive
the geometric distribution for the number of lineages
existing at any particular time in the reconstructed
process, and the distribution of waiting times between
birth events, and generalize the results to varying
birth and death rates. We construct the likelihood
function for a reconstructed phylogeny which provides
the basis for the estimation of birth and death rates.
These latter can be distinguished, even in molecular
phylogenies that do not contain information about
lineages which have gone extinct. We also show how
the theory can be generalized to phylogenies that
contain only a sample of the extant members of a
clade. Jagers (1991) provides a recent perspective on
birth—death population models. Throughout this
manuscript, we assume that molecular phylogenies
are accurate; we discuss the influence of particular
inaccuracies in such phylogenies elsewhere (e.g.
Mooers et al. 1994).

2. THE BIRTH-DEATH PROCESSES

Consider a continuous time birth—death process which
starts at time O with a single lineage. Lineages give rise to
new lineages at a per-lineage rate A and go extinct at a
per-lineage rate u. Even if A> u, such a process can go
extinct because all its lineages have gone extinct. This

Phil. Trans. R. Soc. Lond. B (1994) 344, 305-311
Printed in Great Britain

allows us to distinguish four related processes; figure 1 is
a visual guide to the relevant distinctions. The first is all-
encompassing, and is the simple birth—death process
which may or may not survive to some arbitrary time ¢
between its origin at time 0 and time 7', which is the
present day. The second process is a subset of the
realizations of the first and consists of those realizations
which survive to time ¢ between times 0 and the present,
but may or may not go extinct before the present day.
The third process is the subset of these latter realizations
which do survive to the present. The fourth is the
reconstructed process, derived from the third by
pruning the historical record of those lineages which
do not have contemporary descendants. This corre-
sponds to an ideal molecular phylogeny. Our primary
interest is the third and fourth processes.

Let Pr{s,t} denote the probability that a process has
¢ lineages at time ¢. The Pr{i,t} have geometric (or,
strictly speaking, modified geometric) distributions for
all but the third process, whose distribution is that of
the sum of two independent random variables, each of
which has a geometric distribution. Hence, the Pr{i,¢}
are elementary. To help avoid confusion, we subscript
the Pr{i,}, 1 to 4, thereby emphasizing which of the
four processes, described in the previous paragraph, is
being referred to.

The Pr{i,t} can all be defined in terms of two
functions of time, u, and P(¢,7T):

1= exp(=(1 = ) "
T A—pexp(-(A—p))
A —

—— T (2)

A= pexp{—(A—p)(T - 1)}
P(t,T) is the probability that a single lineage alive at
time ¢ has some descendants, i.e. has not gone extinct,
at the later time 7" (Kendall 1948a). So P(0,7T) is the
probability that a birth—death process which starts at
time O with a single lineage is not extinct at time 7.

For the simple birth—death process (Kendall
19484),

Pri{0,t} =1 - P(0,¢)
{ Prl{i7t} = P(Oat)(l - ut)ugrla

P(:,T) =

(3)

> 0.
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Figure 1. (a) A birth—death process which goes extinct
before time ¢; (b) survives to ¢, but goes extinct before the
present time T'; the process (¢) survives to the present. The
bold lines are those lineages in (¢) which have some
descendants at the present. In (d) we have simply redrawn
the bold lines in (¢), removing the kinks, to construct an
ideal reconstructed phylogeny.

For a birth—death process that is not extinct at time ¢,
we have immediately, from distribution (3), the
conditional probability Pre{,¢}:

Pro{it} = (1 —u)ult,  i>0. (4)

It is straightforward to derive from this the further
conditional probability, Prg{i,¢; T}, for a birth—death
process that survives to 7. To do this, we compound
distribution (4) with the probability that at least one
of the ¢ lineages existing at time ¢ has some
descendants at time 7', and normalize appropriately:

Prg{i,; T} =
(1= w)u (1= (1 = P, T))")

S0 = w1 = (1= P TYY)
=1

, i>0. (5

This ugly expression disguises a simple underlying
structure. The generating function of the probabilities
(5) is:

X .
Z Prg{it;T}s' =
=1

s(1—u)) [ 1 —w(l—P(T)) (6)

1 —us 1 —u(l —P(,T))s)’
We recognize the generating function (6) as the
product of the generating functions of two random

variables, say X and Y, where the distribution of X is
given by (4) and the distribution of Y is given by:

Pr{i,;, T} =
(I =u(1 =P T)))(u(1

- P@t,T))), i=0, (7)
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that is, ¥ has a geometric distribution with parameter
u,(1 — P(t,T)). Hence, the number of lineages existing
at time ¢ for a birth—death process which will survive
to the later time T can be treated as the sum of two
independent random variables, each with a geometric
distribution, but with different parameters. This
distribution is, of course, not itself geometric. But we
will now see that the distribution of the process
reconstructed from this one, by pruning all those
lineages from the tree that do not have contemporary
descendants is, once again, characterized by a
geometric distribution for the Pr{:¢}. There are two
ways to derive this distribution. The first continues
our onward march and compounds distribution (5)
with a modified binomial distribution. The second
way ignores the underlying birth—death process and
identifies a generalized birth process which generates
the reconstructed process. We will do both, as each
technique can be more useful than the other for
addressing different questions.

Denote the probabilities (5) by z;. Of the £ lineages
existing at time £, ¢ will have some progeny at the
present time 77, where ¢ has a binomial distribution
with parameter P(t,T) and no zero term (since at
least one will survive to the present). So, for the
reconstructed process:

Pry{it; T} =

-z (’f) P(6,T)(1 - P(1,T))*
Z 1
=1 1—(1 —P(t,T))k

(8)

This simplifies to:
Pr4{i,t; T } =

P(0,T)\ ( PO, T)\'* _

(1 “P(0,) ) ( P(O,n) 20 0)
that is, a geometric distribution with parameter
wP(0,T)/P(0,t). This simplification is most readily
achieved by calculating the generating function of
distribution (8). Notice that P(0,7)/P(0,t) is the
overall probability that a birth—death process will
survive to time 7 given that it has survived to time ¢.

We now identify a generalized birth process which
generates distribution (9). Letting n(¢) be the number
of lineages at time ¢, we grow a reconstructed
phylogenetic tree from time 0, with #(0)=1, as
follows. Each lineage gives rise to daughter lineages
at a rate AP(¢,T), so after the small time interval d¢,

n(t+dt) = n(t) + 1 with probability n(£)AP(¢,T )dt,
n(t+dt) =
n(t) with probability 1 — a(¢)AP(t,T)d¢. (10)

This is a generalized birth process, with birth rate
AP(t,T'), and the formulae in Kendall (19485) give
us:

Pro{i; Ty = (1= mp)nis, >0, (11)
where

A1 = exp(=(A = p)t))
T =X wexp(—( = @) 7) (12
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It is easily confirmed that 7, 7 = »,P(0,7)/P(0,t). We
see that 7,7 is the same as u, except that the
denominator is a function of 7 rather than ¢ The fact
that the progeny distribution for the reconstructed
process is geometric was exploited in Nee et al. (1992)
to identify episodes of ‘species selection’, that is to
identify clades with a surprisingly large (in the
statistical sense) number of lineages.

3. TIMES BETWEEN BIRTH EVENTS IN THE
RECONSTRUCTED PROCESS

There are two ways to derive the distribution of

waiting times between birth events in a reconstructed

phylogeny. The first is to extend the probability model

(10) as follows. Given that we have n lineages at time ¢,,

Pr{time until next lineage > t+d;0 <t < T —¢,} =

Pr{time until next lineage > ¢;

0<t<T—t, {1l —n()AP(t,T)dt}. (13)

Deriving and solving the differential equation gives us
Pr{time until next lineage > ,0 < ¢t < T —1,} =

fytt

exp(—)mj P(s,T)ds), (14)

t

— e—n(/\—,u,)l X

=& exp(—( = )(T =t = )"
(ot ): 1)

The more direct approach is to realize that the
Pr{time until next lineage >0 <t < T —{,} is
simply the probability that each of the n lineages
which we observe at time #, has only one progeny
(itself) an amount of time ¢ later. Hence

Pr{time until next lineage > 0 < ¢t < T —t,} =
(1- 7’h,(T—t,l))”' (16)

The probability that another lineage does not appear at
all is simply (1 — 1(7—,,),(7—,))"- This approach makes
it easy to generalize to varying birth and death rates.

From (15) we can derive the probability density of
¢, the waiting time for a birth:

n(A — p)e "I

(1 =& exp(=(A=u)(T =, = ))""
(I=%exp(-(A=p)(T —8)" ~
and, as noted above, the probability that another
lineage does not appear at all is (1 —97_;) (7))
The term before the quotient in density (17) is an
exponential density with parameter n(A—p). As
discussed in Harvey et al. (19945), the reconstructed
process behaves as a pure birth process with birth rate
(A — u) over much of its early history. (The earliest
information provided by molecular phylogenies is the
time of the first bifurcation. If we wish to guess how
long before that the first lineage arose, 1/(A — ), the
mean of an exponential distribution with parameter
(A — u), is a rational guess.)
The times between birth events in a reconstructed
phylogeny have been analysed for the pure birth

(17)
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process by Hey (1992) and by Sanderson &
Bharathan (1993) for the situation in which we have
all contemporary species, and by Slatkin & Hudson
(1991) for the situation in which we have only a small
sample of the contemporary species. For a birth—
death process, Hey (1992) derived the distribution of
waiting times for a model in which whenever a lineage
is born another one simultaneously goes extinct, so the
overall number of species is kept constant through
time. If the constant number of species is N, then, Hey
shows, the waiting time for the birth of the nth species
is exponentially distributed with parameter An(n — 1)/
(N —1). It is tempting to compare his results with
ours for A = p, when

Pr{time until next lineage > ;0 <t < T —t,} =

{1 —%} (18)

This is nonsense, however. Our model, as it stands,
exhibits qualitatively different behaviour (extinction
is asymptotically certain) when A = p and, so, cannot
be used for comparison with Hey in this way. As an
example, consider < n(¢) >, the average number of
lineages in the reconstructed phylogeny at time ¢, in
the limit A = u:
1+AT

<n(t)>:m, (19)

which says that the average number of lineages
increases to infinity towards the present! Hey’s
model may usefully be viewed as an analytically
tractable model of density-dependent cladogenesis,
and applications of it can be found in Hey (1992) and
Nee et al. (1994). (Density-dependent cladogenesis is a
process in which birth and death rates vary as a
function of the number of other lineages present. In
this paper, we only allow birth and death rates to vary
as functions of time: see below.) A somewhat
unattractive feature of Hey’s model is that the N
lineages may have been around for an arbitrary
length of time, and this possibility is reflected in the
probability distributions of the times between nodes.
Hey notes the intimate relationship between his
model and coalescent models in population genetics.
Among other things, these models analyse the
distribution of the times between nodes in a
phylogeny (genealogy) of alleles from a population
which has had a constant population size throughout
its history. Apart from a difference in timescale, Hey’s
waiting time is the same as that for the canonical
coalescent model (Kingman 1982) which studies the
genealogy of alleles produced in a world with no
selection or recombination (see Hudson (1990) for a
review). This is not surprising, since Hey’s model is, in
fact, Moran’s model (see e.g. Watterson 1984) with
exponentially distributed times between ‘generations’.
/
4. INFERRING BIRTH AND DEATH RATES
FROM MOLECULAR PHYLOGENIES

Given a molecular phylogeny, our data set is the set
{t,ts,...ty} of times when the second, third, fourth
... Nth lineages first appear, where N is the total
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number of lineages in the phylogeny. We can take f
to be the origin. Define x, = T — {,, so x, is the length
of time between the present and the birth of the nth
lineage (figure 2). We will describe the construction of
the likelihood for the simple case illustrated in figure
2. The generalization will then come naturally.

We arbitrarily designate one of the branches from
each node as the daughter branch. The first
contribution to the likelihood comes from the birth
events at 3 and #4. (The birth of the second lineage
does not contribute to the likelihood. This had to
happen or we would not be looking at a tree!)
These events have probabilities proportional to
(t— 1D)AP(#;,T) (see model (10)). The second con-
tribution comes from the total amount of time that
lineages do not give birth. As is evident from the
broken tree, there are two lineages that have a single
progeny (themselves) after an amount of time x5, one
lineage with a single progeny after an amount of time
x3, and one with a single progeny after an amount of
time x4. The probability of a single progeny after an
amount of time x; is (1 —u,). Multiplying together
these probabilities, and inserting N into the formula
instead of ‘4’, we construct the likelihood for the
general case of N lineages;

lik = (N - D2 x

N N
{HP<tivT)}(l —u, P TJ(1 = ). (20)
=3 =3

In a different context, and by a somewhat different
route, Thompson (1975, pp. 54-58) derived a
likelihood which differs from this in one relevant
respect. In terms of our symbolism, her likelihood is
this one multiplied by the additional term (P(ty, T"))2,
which is the probability that the two lineages from the
first node in the tree are not extinct at the present

I3
X4
«—
< = >
< 2 >

Figure 2. We have ‘broken’ a phylogenetic tree and
arbitrarily designated daughter branches (bold lines). The
t; are the actual dates of the nodes and the x; are the length
of time elapsed between the nodes and the present day.
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time. We can derive likelihood (20) from Thompson’s
likelihood by dividing her likelihood by (P(t, 7 ))?,
that is by conditioning on the fact that they are,
indeed, not extinct (we are looking at a tree).
Likelihood (20) can also be derived by multiplying
together the densities (17) of the waiting times
between births in the reconstructed phylogeny.

Defining the new parameters a =pu/A and 7=
(A — ), likelihood (20) becomes

N-1
lik = (N — 1) Zexp (r Zx,ﬂ_l) (1—a)" x
n=2
N
1
—, (21)
w3 (exp(rx,) — a)?
and one can inspect the likelihood surface in the
convenient space {0 <a < 1,0 <r}. Elsewhere, we

have applied this and other theory described in this
paper (Nee ef al. 1994).

5. TOPOLOGICAL FEATURES OF TREES

Although tree topologies are not our primary
concern here, there is one point we wish to make
which may not be widely appreciated. If different
processes give rise to trees with the same topological
features, then one can use whatever process is
convenient to make inferences about these features.
For example, the simplest coalescent model for a
genealogy of alleles in population genetics supposes
that, as we look back in time, any two lineages are as
likely to fuse into a single lineage as any other two.
Looking forward, this means that when a lineage
divides in two, this node is as likely to occur on any
particular lineage as any other. But this is the
defining feature of the tree topologies generated by,
in the simplest case, a pure birth process. This means
that, as long as we are interested in purely
topological features of the tree, any inferences
based on a pure birth process are valid for the
genealogical trees of population genetics.

This can be quite useful for generating results.
Consider, for example, the ‘remarkable fact’ to which
Felenstein (1992, p. 143) draws attention: ‘If we
consider the two lineages that result from the earliest
fork, and wait until a total of n lineages exist, the
distribution of the number of descendants of the left
lineage is uniform on 1, 2,..., n—1.” The general-
ization of this would be as follows. If there are £
lineages at any particular time and =z lineages
sometime later, then all vectors of progeny numbers,
(%1,%g, . . . x¢), such that the sum total of the elements is
n, are equally probable. This generalization, which
was used in Nee et al. (1992), is true and follows
immediately from the geometric distribution of
progeny number under the pure birth process, as the
probability of any vector of progeny numbers is
proportional to (1 — u)*u"~*,

We will now give an example of how further results
can be easily achieved with simple combinatorial
formulae (e.g. Feller 1968, Chapter 1). There are
(n — 1)1/ (k= 1)!(n — k)! distinguishable and equiprob-
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able progeny vectors, and n!/x;!...x;! arrangements
of progeny into each such vector. So, for a given
ancestor ordering, the probability of a vector is
(k= Dl(n—k)lxq!. .. x ! /0l (n — 1)!. Multiplying this
by k!, the number of ancestor orderings, we have the
probability of the familial relationships defined by a
vector. This is another derivation of probability (2.3)
of Theorem 1 in Kingman (1982).

6. WHEN BIRTH AND DEATH RATES VARY
OVER TIME

So far, our development has been in terms of the
functions u;, and P(¢, 7). Let r({)= —(A — p)t. It is
readily confirmed, from (1) and (2), that

u, = 1 — P(0,t) exp[r(?)]. (22)

One consequence of this is that the results presented
so far can be expressed entirely in terms of the
conceptually meaningful functions P(¢,7) and
exp[—r(t)], the latter being the expected number of
progeny at time ¢ for the simple birth—death process.
A more important consequence is that this formula-
tion allows a ready generalization to the case in which
birth and death rates vary as functions of time.

We will now designate the birth and death rates as
A(t) and wu(t) to denote their time dependence. Define

T

plr) = [{4() — 26} (23)

which is the natural generalization of r(z).
In the general case (Kendall 19484),

T -1

P(t,T)= |1+ J}L(T) exp(p(m,0))dr| (24)
t

and it is still true that

u, =1 —P(0,t) exp[p(1,0)], (25)

where «; is the parameter of the geometric distribution
of progeny of a birth—death process when birth and
death rates vary through time.

The earlier derivations of generating function (6),
distribution (9) and likelihood (20) do not assume
that birth and death rates are constant. They depend
simply on the existence of meaningful %, and P(¢,T ).
This means that all the distributions, and any
quantities derived from them, are valid in the general
case, and that one simply inserts the appropriate
functions into the formulae.

Consider the expressions for < n(f) >, the average
number of lineages existing at time ¢, for each of the four
birth—death processes we have defined. For the simple
birth—death process, we have from distribution (3)

()

<n(t) >= T2 = explp(10)] (26)
— U
For the process which survives to at least ¢,
1 CXp[—‘p(l,O)]
= = . 27
<n(t) > 11— P(0,) (27)

For the process which survives to 7', < n(¢) > is the
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sum of the means of the two geometric distributions
discussed after generating function (6):

1 u(l =P, T))
<M0>_l—m+l—mU—P@T»’ (282)

_ exp[—p(t,O)] P(O’t) - P(O’T)

~P(0,T)  PON)P(LT) (28b)
Finally, we have for the reconstructed process:
<n(t)>= _;(‘6,7—)’ (292)

SRR
_ expl-p(t0)|P(1,T)
= PO.T) . (29b)

(28b) and (29b) can be derived from (28a) and (29a),
respectively, using the identity

1 1 1
CWH“WQ&TYHwﬁzmuv”’“m

which can be readily confirmed by substituting the
explicit equations (23) and (24) into equation (30).

We emphasize that these expressions are valid for
arbitrarily time-dependent A(¢) and w(¢). In practice,
this means that one need only derive the appropriate
P(-) and p(-) functions for the problem of interest,
from equations (23) and (24).

7. EXAMPLES

Experience with simulation shows that the increase in
the average number of lineages through time is a
useful and reliable guide to general features of the
behaviour of the processes (Harvey and Nee 1994;
Harvey et al. 1994a). In Harvey et al. (1994b) we
discuss this increase under various evolutionary
scenarios. We will consider two new ones here. First,
a model of changing birth rates suggested by
Strathmann & Slatkin (1983). Second, we will show
how to deal with a situation in which the recon-
structed phylogeny consists of only a random sample
of the extant species, rather than all the members of
the clade, and see how this sampling affects the
picture.

Strathmann & Slatkin (1983) asked whether the
observed numbers of phyla with small numbers of
species are improbable under a birth—death model
with constant birth and death rates. They concluded
that they are. They then suggested a model in which
birth rates are initially higher than death rates but
subsequently decline. Such a situation could be
generated by an unusual event, such as the break up
of Gondwanaland. We model this as follows. We
suppose that the death rate is constant. Initially, the
birth rate is higher than the death rate and then
decays hyperbolically with time, i.e. A(t) =ku/(1 + at).
k and a are chosen so that initially the birth rate is
four times the death rate and becomes equal to the
death rate half way towards the present, i.e. at 7'/2.
There is no explicit expression for P(¢,T") in this case
and we must resort to numerical integration. The
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results of this analysis are depicted in figure 3. The
contrast between what actually occurred and what we
see in the reconstructed phylogeny is quite stark in
this case. A smooth deceleration in birth rate
manifests itself as a quick radiation followed by a
long period of stasis, with another burst of clado-
genesis in the recent past.

So far, our models have assumed that the
reconstructed phylogeny is based on all the extant
members of the clade. There is a large number of ways
that this assumption may be violated. One way is that
the species chosen for study are a random set with
respect to their phylogenetic relationships. Even with
this restriction there is still a variety of ways in which
this random set may be constructed. We will now
consider the simplest. Suppose that each species has a
probability, f, of being included in our analysis. We
can pretend that a mass extinction happened a
moment before the analysis and all surviving species
are included in the analysis. Because the mass
extinction is an entirely notional event, we will use
model (10) which deals directly with the recon-
structed phylogeny. We will suppose that birth and
death rates are constant.

Kendall’s derivations are in continuous time and,
so, do not allow for simultaneous extinction or, to put
it another way, a finite probability of death at any
particular instant in time. We can circumvent this
problem by exploiting the reasoning that leads to
Dirac delta functions. Let the death rate be the
following function of time:

l"’(t1T) =p—g(t,T)Inf. (31)
Here u is a constant, f is the probability of surviving
the mass extinction, and g(¢,7") is essentially the Dirac

delta function: a continuous function of time which is
very close to zero everywhere except at ¢ = T, the

100000 +
10000
8
g 1000
g
b
[}
5
-g 100 5
=
10 4
1 T v T L
0 100 200 300

time

Figure 3. The top line is the average actual number of
lineages through time, from equation (28b), and the bottom
line is the average number of lineages at each time in the
reconstructed phylogeny, from equation (29b). As described
in the text, P(¢,T) is found by numerical integration.
p(7,t) = p(r — t) + (In(1 + at) — In(1 + a7))uk/a. For this
figure we chose 7" = 300, u = 0.075, k = 4,a = 0.2.
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present, where it is very sharply peaked. Thus,

Jg(t,T)dt =0, s< T,

0 (32)
=1, s>T.

By wusing such functions we can validly exploit
continuous time models and then, when we have our
results, pass to the limit representing an instantaneous
force of mortality at time 7" which is survived with
probability f. Proceeding in this way we find the
following expression for <n(t) >, the average number
of lineages at time ¢ for the reconstructed process
(compare equation (29b)):

exp[()t — /’L)t}Ps(ta T)

<a(l) >= P0.7) , (33)
where
P(t,T) =

SA+ A =) = w) exp(=(A = p)(T = 1))’
P (t,T) has the same meaning as P(t,T), and we
have subscripted it solely to denote that it is the
appropriate function for the postulated sampling
régime. Figure 4 shows that the effect of this sampling
is to create a spurious impression of a decline in birth
rate and/or increase in death rate through time. This
sampling theory has numerous biological interpreta-
tions and applications (Nee e al. 1994).
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Figure 4. The top curve shows the increase through time for
the average number of lineages that actually existed. This
curve is generated by equation (28b) with A = 0.139 and
p = 0.114. Of the 10000 species alive today, a fraction f is
randomly chosen to construct the reconstructed phylogeny.
Counting from the top, the second, third and fourth curves
are generated by equation (33) with f=0.1, 0.01 and
0.001, respectively, with A and p as for the top curve.
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