
Calculus 3 - Greens Theorem

Last class we ended with the problem of trying to evaluate

∮
C

2y dx + x dy (1)

where C is along circle x2 + y2 = 4 in the CCW direction. We said the

vector field is not conservative since

P = 2y, Q = x and Qx = 1 6= Py = 2. (2)

However, there is a nice theorem which relates the line integral over a vec-

tor field for closed curve to the region of the closed curve itself.

Green’s Theorem

Let R be be simply connected region with a piecewise smooth boundary

C, oriented counterclockwise. Let P and Q have continuous first partial

derivatives in an open region containing R, then

∫
C

P dx + Q dy =
∫∫
R

(
Qx − Py

)
dA (3)

Example 1. Evaluate ∮
C

2y dx + x dy (4)

where C is along circle x2 + y2 = 4 in the CCW direction.

Soln.

Since we saw that

Qx = 1, Py = 2, (5)
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then ∮
C

2y dx + x dy =
∫∫
R

(1− 2)dA = −
∫∫
R

dA (6)

Since the integrand is equal to 1, then the double integral is just he area of

the region which is 4π so

∮
C

2y dx + x dy = −4π (7)

Example 2. Verify Green’s theorem for

∮
C

x4 dx + xy dy (8)

where R is the region bound by y = 0, x = 0, and y = 1− x.
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Soln.

We first do the line integral part. Here there are three curve so we do each

one separately.

C1 : y = 0:

Since y = 0, then dy = 0 and our line integral becomes

∫ 1

0
x4 dx =

1
5

x5
∣∣∣1
0
=

1
5

. (9)

C2 : y = 1− x:

Since y = 1− x, then dy = −dx and our line integral becomes

∫ 0

1
x4 dx− x(1− x) dx =

(1
5

x5− 1
2

x2 +
1
3

x3
) ∣∣∣0

1
= − 1

30
. (10)

C3 : x = 0: Along x = 0, then dx = 0 so the line integral is zero. Thus,

∮
C

x4 dx + xy dy =
1
5
− 1

30
=

1
6

. (11)

For the second part, we identify that P = x4 and Q = xy so

Qx − Py = y (12)

so

∫ 1

0

∫ 1−x

0
ydydx =

∫ 1

0

1
2

y2
∣∣∣1−x

0
dx =

∫ 1

0

1
2
(1− x)2 dx

= −1
6
(1− x)3

∣∣∣1
0
=

1
6

.
(13)

the same.
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Example 3. Verify Green’s theorem for

∮
C

y3 dx− x3 dy (14)

where R is the region bound by the circle x2 + y2 = 1

Soln.

We first do the line integral part. Here we parameterize the circle with

x = cos t, y = sin t, (15)

so

dx = − sin t dt, dy = cos t dt, (16)

and the line integral becomes

∮
C

y3 dx− x3 dy =
∫ 2π

0
sin3 t · (− sin tdt)− cos3 t · cos tdt

= −
∫ 2π

0

3 + cos 4t
4

dt = −
(3

4
t + 1

16
sin 4t

) ∣∣∣2π

0
= −3

2
π

(17)
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For the second part, we identify that P = y3 and Q = −x3 so

Qx − Py = −3x2− 3y2 (18)

so

−3
∫∫
R

(
x2 + y2) dA (19)

Since the region is a circle, we switch to polar so

−3
∫∫
R

(
x2 + y2) dA = −3

∫ 2π

0

∫ 1

0
r2 · r dr dθ

= −3
∫ 2π

0

1
4

r4
∣∣∣1
0

dθ

= −3
4

∫ 2π

0
dθ = −3

4
θ
∣∣∣2π

0
= −3

2
π

(20)

the same.

Area of Plane Regions

We can also use Green’s theorem to find the area of a region in the xy plane.

Suppose that

Qx − Py = 1. (21)

Then Green’s theorem says

∫
C

P dx + Q dy =
∫∫
R

(
Qx − Py

)
dA =

∫∫
R

1dA = A. (22)

So as long as we choose P and Q so that it satisfies (21) then the line integral

5



will give the area of the region. Here are some possibilities

∫
C

x dy,
∫
C

−y dx,
∫
C

−1
2

y dx +
1
2

x dy (23)

Example 4. Use Green’s theorem to find the area of the ellipse

x2

a2 +
y2

b2 = 1 (24)

Soln.

Here we use

∫
C

−1
2

y dx +
1
2

x dy (25)

We parameterize the ellipse by

x = a cos t, y = b sin t, (26)

so

dx = −a sin t dt, dy = b cos t dt (27)
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So (28) becomes

∫ 2π

0
− 1

2
(b sin t) (−a sin t dt) + 1

2
(a cos t) (b cos t dt)

=
ab
2

∫ 2π

0

(
sin2 t + cos2 t

)
dt

=
ab
2

∫ 2π

0
dt = πab

(28)

It a = b = r then we get the area of a circle πr2.
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