
Math 6345 - Advanced ODEs

Elementary ODE Review

1 First Order Equations

Ordinary differential equations of the form

y′ = F(x, y) (1)

are called first order ordinary differential equations. There are a variety of techniques to

solve these type of equations and main methods are:

(i) separable
(ii) linear
(iii) Bernoulli
(iv) Ricatti
(v) homogeneous
(vi) linear fractional
(vii) exact
(viii) Legendre transformations

1.1 Separable Equations

A separable first order differential equation has the form:

dy
dx

= f (x)g(y) (2)

The general solution is found by separating the differential equation and integrating in-

cluding a single constant of integration, i.e.
∫

1
g(y)

dy =
∫

f (x)dx + c.

For example, to solve

y′ = xy + x + 2y + 2,
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it is necessary to rewrite it as

y′ = (x + 2)(y + 1).

Separating variables and writing in integral form gives
∫

dy
y + 1

=
∫

x + 2 dx,

and integrating yields

ln |y + 1| = x2

2
+ 2x + c.

Letting c = ln(k) and solving for y gives

y = k · ex2/2+2x − 1.

As a second example, consider

dx
dt

= x(2− x), x(0) = x0.

Separating variables gives ∫
dx

x(2− x)
=

∫
dt,

and integrating yields
1
2

(ln |x| − ln |2− x|) = t + c.

Letting c = 1
2 ln(k) and solving for x gives

x =
2ke2t

1 + ke2t .

Imposing the initial condition gives

x0 =
2k

1 + k
,

which gives on solving for k

k =
x0

2− x0
, x0 6= 2,

which gives the solution

x(t) =
2x0e2t

2− x0 + x0e2t .

In the case where x0 = 2, then the solution is x(t) = 2 for all t.
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1.2 Linear Equations

Equations of this type are in the form

dy
dx

+ p(x)y = q(x). (3)

To solve this, we introduce the integrating factor

µ = e
∫

p(x)dx. (4)

This is created so that when both sides of (3) are multiplied by µ, the left side (3) is a

derivative of a product, that is, it becomes

µ

(
dy
dx

+ py
)

=
d

dx
(µy),

and then (3) can be integrated. For example, if

dy
dx
− 2y

x
= 2x3 − 1, (5)

then p(x) = − 2
x , so that

µ = e−2
∫ dx

x = e−2 ln x =
1
x2 .

On multiplying (5) by µ gives

1
x2

dy
dx
− 2y

x3 = 2x− 1
x2 ,

which simplifies to
d

dx

(
1
x2 · y

)
= 2x− 1

x2 .

Integrating gives
1
x2 · y = x2 +

1
x

+ c,

and solving for y gives

y = x4 + x + cx2.

1.3 Bernoulli

Equations of the form
dy
dx

+ p(x)y = q(x)yn (n 6= 0, 1) (6)
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are called Bernoulli equations. Dividing both sides of (6) by yn gives

1
yn

dy
dx

+
p(x)
yn−1 = q(x) (7)

Let v = 1
yn−1 , then dv

dx = (1− n) 1
yn

dy
dx or 1

(1−n)
dv
dx = 1

yn
dy
dx . Upon making this substitution

into (7) gives
1

1− n
dv
dx

+ p(x)v = q(x)

which is linear. So Bernoulli equations can be reduced to linear equations.

Example

Consider
dy
dx
− y

2x
= y3.

This is an example of a Bernoulli equation where n = 3. Putting this into standard form

gives
1
y3

dy
dx
− 1

2x
1
y2 = 1 (8)

Letting v = 1
y2 , then dv

dx = −2
y3

dy
dx , and (8) is transformed to

−1
2

dv
dx
− 1

2x
v = 1,

or
dv
dx

+
v
x

= −2.

As this is linear, then p(x) = 1
x , and the integrating factor for this is x, so that

x
dv
dx

+ v =
d

dx
(xv) = −2x,

and thus

xv = −x2 + c,

or

v = −x +
c
x

.

So that
1
y2 = −x +

c
x

,

or

y =
±1√−x + c

x
.
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1.4 Ricatti Equations

Ricatti equations have the form:

dy
dx

= a(x)y2 + b(x)y + c(x). (9)

To find a general solution to this requires having one solution first. Given this solution, it

is possible to change equation (9) to a linear equation. If we let

y = y0 +
1
u

,

where y0 is a solution to (9), then (9) is transformed to the linear equation

u′ = − (2a(x)y0 + b(x)) u− a(x),

which is linear. To illustrate, we consider the following example

dy
dx

= −y2

x2 +
y
x

+ 1. (10)

Since y0 = x is a solution to this equation, let y = x + 1
u , and (10) becomes

1− u′

u2 = − 1
x2

(
x2 + 2

x
u

+
1
u2

)
+

1
x

(
x +

1
u

)
+ 1.

Simplifying gives

− u′

u2 = − 1
xu

− 1
x2u2 ,

and multiplying by −u2 and rearranging gives rise to the linear equation

u′ − 1
x

u =
1
x2 . (11)

Here p(x) = − 1
x so this has the integrating factor µ = e

∫ −dx
x = 1

x , so (11) becomes

u′

x
− u

x2 =
d

dx

(u
x

)
=

1
x3 ,

and upon integration gives
u
x

= − 1
2x2 + c,

or

u = cx− 1
2x

.

Since y = x + 1
u , this gives y as

y = x +
1

cx− 1
2x

.
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1.5 Homogeneous Equations

Equations of the form
dy
dx

= F
(y

x

)
(12)

are called homogeneous equations. Substituting y = xu will yield the equation

x
du
dx

+ u = F (u) .

which separates to
du

F(u)− u
=

dx
x

.

Consider the previous example,

dy
dx

= −y2

x2 +
y
x

+ 1. (13)

If we let y = xu, then (13) becomes

d(xu)
dx

= −u2 + u + 1,

or

x
du
dx

+ u = −u2 + u + 1

and simplifying and separating gives

du
1− u2 =

dx
x

.

Integrating gives
1
2

ln
∣∣∣∣
u + 1
u− 1

∣∣∣∣ = ln |x|+ 1
2

ln c,

or
u + 1
u− 1

= cx2.

Since y = xu this gives
y
x + 1
y
x − 1

= cx2,

or
y + x
y− x

= cx2,

solving for y leads to the solution

y =
cx3 + x
cx2 − 1

.
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1.6 Linear Fractional

Equations that have the form
dy
dx

=
ax + by + e
cx + dy + f

, (14)

are called linear fractional. Under a change of variables,

x = x̄ + α, y = ȳ + β,

we can change equation (14) to one that is either homogeneous (if ad− bc 6= 0) or to one

that is separable (if ad− bc = 0). The following examples illustrate.

Consider
dy
dx

=
2x− 3y + 8
3x− 2y + 7

. (15)

If we let

x = x̄ + α, y = ȳ + β,

then (15) becomes
dȳ
dx̄

=
2x̄− 3ȳ + 2α− 3β + 8
3x̄− 2ȳ + 3α− 2β + 7

.

Choosing

2α− 3β + 8 = 0, 3α− 2β + 7 = 0, (16)

leads to
dȳ
dx̄

=
2x̄− 3ȳ
3x̄− 2ȳ

, (17)

a homogeneous equation. The natural question is, “does (16) have a solution?” In this

case, it does and we can find that the solution is α = −1 and β = 2. The solution of (17) is

x̄2 − 3x̄ȳ + ȳ2 = c (18)

and from our change of variables (x = x̄− 1, y = ȳ + 2) we find the solution to (15) is

(x + 1)2 − 3(x + 1)(y− 2) + (y− 2)2 = c. (19)

As a second example, consider

dy
dx

=
4x− 2y + 8
2x− y + 7

. (20)

If we let

x = x̄ + α, y = ȳ + β,
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then
dȳ
dx̄

=
4x̄− 2ȳ + 4α− 2β + 8

2x̄− ȳ + 2α− β + 7
.

We choose

4α− 2β + 8 = 0, 2α− β + 7 = 0,

but this has no solution! However, if we let u = 2x− y, then (20) becomes

du
dx

=
6

u + 7
,

which is separable! Its solution is given by

u2 + 14u = 12x + c,

and upon back substitution, we obtain the solution of (20) as

(2x− y)2 + 14(2x− y) = 12x + c,

1.7 Exact Equations

An ordinary differential equation of the form

dy
dx

= F(x, y), (21)

has the alternate form

M(x, y)dx + N(x, y)dy = 0. (22)

If M and N have continuous partial derivatives of first order in some region R and

∂M
∂y

=
∂N
∂x

,

then the ODE (22) is said to be “exact” and can be integrated by setting

∂φ

∂x
= M, and

∂φ

∂y
= N.

For example, consider the differential equation

dy
dx

= − 2xy
x2 + y2 , (23)

which can be written as

2xy dx + (x2 + y2)dy = 0. (24)
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If we identify that M and N are

M = 2xy and N = x2 + y2,

so
∂M
∂y

= 2x =
∂N
∂x

,

so (24) is exact. Setting
∂φ

∂x
= 2xy, and

∂φ

∂y
= x2 + y2,

and integrating the first gives

φ = x2y + g(y),

taking the partial of this with respect to y gives

∂φ

∂y
= x2 + g′(y).

Comparing this to ∂φ
∂y = x2 + y2 gives that

g′(y) = y2,

so

g(y) =
y3

3
+ c,

so that

φ = x2y +
y3

3
+ c.

From Cal III we know that

dφ = φxdx + φydy,

but in this case this is

dφ = 2xydx + (x2 + y2)dy = 0

so φ is a constant. Thus we have as solutions to

2xy dx + (x2 + y2)dy = 0

φ = k or x2y +
y3

3
+ c = k,

and absorbing the constant k into c gives

x2y +
y3

3
+ c = 0

as the set of possible solutions to (23).
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1.7.1 Legendre Transformations

Sometimes it is necessary to solve more general equations of the form

F(x, y, y′) = 0, (25)

say, for example

y′2 − xy′ + 3y = 0. (26)

One possibility is to introduce a contact transformation that enables one to solve a given

equation. Contact transformations, in general, are of the form

x = F(X, Y, Y′), y = G(X, Y, Y′), y′ = H(X, Y, Y′), (27)

with the contact condition that
GX + GYy′ + GY′Y′′

FX + FYy′ + FY′Y′′
= H.

One such contact transformation is called a Legendre transformation and is given by

x =
dY
dX

, y = X
dY
dX

−Y, y′ = X. (28)

One can verify that

dy
dx

=
d

dX

(
X dY

dX −Y
)

d
dX

(
dY
dX

) =
X d2Y

dX2

d2Y
dX2

= X.

Substitution of (28) in (26) gives

2X
dY
dX

− 3Y + X2 = 0 (29)

a linear ODE! Solving gives

Y = CX
3
2 − X2. (30)

Substituting (30) back into (28) gives

x =
3
2

cX
1
2 − 2X, y =

1
2

cX
3
2 − X2. (31)

Solving the first of (31) for X
1
2 gives

X
1
2 =

3c±
√

9c2 + 32x
8

, (32)

and from the second of (31) gives

y =
c
2

(
3c±

√
9c2 + 32x
8

)3

−
(

3c±
√

9c2 + 32x
8

)4

,

the exact solution of (26).
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