Math 6345 - Advanced ODEs

Elementary ODE Review

1 First Order Equations

Ordinary differential equations of the form

$$
\begin{equation*}
y^{\prime}=F(x, y) \tag{1}
\end{equation*}
$$

are called first order ordinary differential equations. There are a variety of techniques to solve these type of equations and main methods are:
(i) separable
(ii) linear
(iii) Bernoulli
(iv) Ricatti
(v) homogeneous
(vi) linear fractional
(vii) exact
(viii) Legendre transformations

1.1 Separable Equations

A separable first order differential equation has the form:

$$
\begin{equation*}
\frac{d y}{d x}=f(x) g(y) \tag{2}
\end{equation*}
$$

The general solution is found by separating the differential equation and integrating including a single constant of integration, i.e.

$$
\int \frac{1}{g(y)} d y=\int f(x) d x+c
$$

For example, to solve

$$
y^{\prime}=x y+x+2 y+2
$$

it is necessary to rewrite it as

$$
y^{\prime}=(x+2)(y+1)
$$

Separating variables and writing in integral form gives

$$
\int \frac{d y}{y+1}=\int x+2 d x
$$

and integrating yields

$$
\ln |y+1|=\frac{x^{2}}{2}+2 x+c
$$

Letting $c=\ln (k)$ and solving for y gives

$$
y=k \cdot e^{x^{2} / 2+2 x}-1
$$

As a second example, consider

$$
\frac{d x}{d t}=x(2-x), \quad x(0)=x_{0}
$$

Separating variables gives

$$
\int \frac{d x}{x(2-x)}=\int d t
$$

and integrating yields

$$
\frac{1}{2}(\ln |x|-\ln |2-x|)=t+c
$$

Letting $c=\frac{1}{2} \ln (k)$ and solving for x gives

$$
x=\frac{2 k e^{2 t}}{1+k e^{2 t}}
$$

Imposing the initial condition gives

$$
x_{0}=\frac{2 k}{1+k}
$$

which gives on solving for k

$$
k=\frac{x_{0}}{2-x_{0}}, \quad x_{0} \neq 2,
$$

which gives the solution

$$
x(t)=\frac{2 x_{0} e^{2 t}}{2-x_{0}+x_{0} e^{2 t}}
$$

In the case where $x_{0}=2$, then the solution is $x(t)=2$ for all t.

1.2 Linear Equations

Equations of this type are in the form

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=q(x) \tag{3}
\end{equation*}
$$

To solve this, we introduce the integrating factor

$$
\begin{equation*}
\mu=e^{\int p(x) d x} \tag{4}
\end{equation*}
$$

This is created so that when both sides of (3) are multiplied by μ, the left side (3) is a derivative of a product, that is, it becomes

$$
\mu\left(\frac{d y}{d x}+p y\right)=\frac{d}{d x}(\mu y)
$$

and then (3) can be integrated. For example, if

$$
\begin{equation*}
\frac{d y}{d x}-\frac{2 y}{x}=2 x^{3}-1 \tag{5}
\end{equation*}
$$

then $p(x)=-\frac{2}{x}$, so that

$$
\mu=e^{-2 \int \frac{d x}{x}}=e^{-2 \ln x}=\frac{1}{x^{2}} .
$$

On multiplying (5) by μ gives

$$
\frac{1}{x^{2}} \frac{d y}{d x}-\frac{2 y}{x^{3}}=2 x-\frac{1}{x^{2}}
$$

which simplifies to

$$
\frac{d}{d x}\left(\frac{1}{x^{2}} \cdot y\right)=2 x-\frac{1}{x^{2}}
$$

Integrating gives

$$
\frac{1}{x^{2}} \cdot y=x^{2}+\frac{1}{x}+c
$$

and solving for y gives

$$
y=x^{4}+x+c x^{2}
$$

1.3 Bernoulli

Equations of the form

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=q(x) y^{n} \quad(n \neq 0,1) \tag{6}
\end{equation*}
$$

are called Bernoulli equations. Dividing both sides of (6) by y^{n} gives

$$
\begin{equation*}
\frac{1}{y^{n}} \frac{d y}{d x}+\frac{p(x)}{y^{n-1}}=q(x) \tag{7}
\end{equation*}
$$

Let $v=\frac{1}{y^{n-1}}$, then $\frac{d v}{d x}=(1-n) \frac{1}{y^{n}} \frac{d y}{d x}$ or $\frac{1}{(1-n)} \frac{d v}{d x}=\frac{1}{y^{n}} \frac{d y}{d x}$. Upon making this substitution into (7) gives

$$
\frac{1}{1-n} \frac{d v}{d x}+p(x) v=q(x)
$$

which is linear. So Bernoulli equations can be reduced to linear equations.
Example
Consider

$$
\frac{d y}{d x}-\frac{y}{2 x}=y^{3}
$$

This is an example of a Bernoulli equation where $n=3$. Putting this into standard form gives

$$
\begin{equation*}
\frac{1}{y^{3}} \frac{d y}{d x}-\frac{1}{2 x} \frac{1}{y^{2}}=1 \tag{8}
\end{equation*}
$$

Letting $v=\frac{1}{y^{2}}$, then $\frac{d v}{d x}=\frac{-2}{y^{3}} \frac{d y}{d x}$, and (8) is transformed to

$$
-\frac{1}{2} \frac{d v}{d x}-\frac{1}{2 x} v=1
$$

or

$$
\frac{d v}{d x}+\frac{v}{x}=-2
$$

As this is linear, then $p(x)=\frac{1}{x}$, and the integrating factor for this is x, so that

$$
x \frac{d v}{d x}+v=\frac{d}{d x}(x v)=-2 x
$$

and thus

$$
x v=-x^{2}+c,
$$

or

$$
v=-x+\frac{c}{x}
$$

So that

$$
\frac{1}{y^{2}}=-x+\frac{c}{x}
$$

or

$$
y=\frac{ \pm 1}{\sqrt{-x+\frac{c}{x}}}
$$

1.4 Ricatti Equations

Ricatti equations have the form:

$$
\begin{equation*}
\frac{d y}{d x}=a(x) y^{2}+b(x) y+c(x) \tag{9}
\end{equation*}
$$

To find a general solution to this requires having one solution first. Given this solution, it is possible to change equation (9) to a linear equation. If we let

$$
y=y_{0}+\frac{1}{u}
$$

where y_{0} is a solution to (9), then (9) is transformed to the linear equation

$$
u^{\prime}=-\left(2 a(x) y_{0}+b(x)\right) u-a(x)
$$

which is linear. To illustrate, we consider the following example

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{y^{2}}{x^{2}}+\frac{y}{x}+1 \tag{10}
\end{equation*}
$$

Since $y_{0}=x$ is a solution to this equation, let $y=x+\frac{1}{u}$, and (10) becomes

$$
1-\frac{u^{\prime}}{u^{2}}=-\frac{1}{x^{2}}\left(x^{2}+2 \frac{x}{u}+\frac{1}{u^{2}}\right)+\frac{1}{x}\left(x+\frac{1}{u}\right)+1 .
$$

Simplifying gives

$$
-\frac{u^{\prime}}{u^{2}}=-\frac{1}{x u}-\frac{1}{x^{2} u^{2}}
$$

and multiplying by $-u^{2}$ and rearranging gives rise to the linear equation

$$
\begin{equation*}
u^{\prime}-\frac{1}{x} u=\frac{1}{x^{2}} \tag{11}
\end{equation*}
$$

Here $p(x)=-\frac{1}{x}$ so this has the integrating factor $\mu=e^{\int \frac{d x}{x}}=\frac{1}{x}$, so (11) becomes

$$
\frac{u^{\prime}}{x}-\frac{u}{x^{2}}=\frac{d}{d x}\left(\frac{u}{x}\right)=\frac{1}{x^{3}},
$$

and upon integration gives

$$
\frac{u}{x}=-\frac{1}{2 x^{2}}+c
$$

or

$$
u=c x-\frac{1}{2 x}
$$

Since $y=x+\frac{1}{u}$, this gives y as

$$
y=x+\frac{1}{c x-\frac{1}{2 x}}
$$

1.5 Homogeneous Equations

Equations of the form

$$
\begin{equation*}
\frac{d y}{d x}=F\left(\frac{y}{x}\right) \tag{12}
\end{equation*}
$$

are called homogeneous equations. Substituting $y=x u$ will yield the equation

$$
x \frac{d u}{d x}+u=F(u)
$$

which separates to

$$
\frac{d u}{F(u)-u}=\frac{d x}{x} .
$$

Consider the previous example,

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{y^{2}}{x^{2}}+\frac{y}{x}+1 \tag{13}
\end{equation*}
$$

If we let $y=x u$, then (13) becomes

$$
\frac{d(x u)}{d x}=-u^{2}+u+1
$$

or

$$
x \frac{d u}{d x}+u=-u^{2}+u+1
$$

and simplifying and separating gives

$$
\frac{d u}{1-u^{2}}=\frac{d x}{x}
$$

Integrating gives

$$
\frac{1}{2} \ln \left|\frac{u+1}{u-1}\right|=\ln |x|+\frac{1}{2} \ln c
$$

or

$$
\frac{u+1}{u-1}=c x^{2}
$$

Since $y=x u$ this gives

$$
\frac{\frac{y}{x}+1}{\frac{y}{x}-1}=c x^{2}
$$

or

$$
\frac{y+x}{y-x}=c x^{2}
$$

solving for y leads to the solution

$$
y=\frac{c x^{3}+x}{c x^{2}-1}
$$

1.6 Linear Fractional

Equations that have the form

$$
\begin{equation*}
\frac{d y}{d x}=\frac{a x+b y+e}{c x+d y+f} \tag{14}
\end{equation*}
$$

are called linear fractional. Under a change of variables,

$$
x=\bar{x}+\alpha, \quad y=\bar{y}+\beta,
$$

we can change equation (14) to one that is either homogeneous (if $a d-b c \neq 0$) or to one that is separable (if $a d-b c=0$). The following examples illustrate.
Consider

$$
\begin{equation*}
\frac{d y}{d x}=\frac{2 x-3 y+8}{3 x-2 y+7} \tag{15}
\end{equation*}
$$

If we let

$$
x=\bar{x}+\alpha, \quad y=\bar{y}+\beta,
$$

then (15) becomes

$$
\frac{d \bar{y}}{d \bar{x}}=\frac{2 \bar{x}-3 \bar{y}+2 \alpha-3 \beta+8}{3 \bar{x}-2 \bar{y}+3 \alpha-2 \beta+7} .
$$

Choosing

$$
\begin{equation*}
2 \alpha-3 \beta+8=0, \quad 3 \alpha-2 \beta+7=0 \tag{16}
\end{equation*}
$$

leads to

$$
\begin{equation*}
\frac{d \bar{y}}{d \bar{x}}=\frac{2 \bar{x}-3 \bar{y}}{3 \bar{x}-2 \bar{y}^{\prime}} \tag{17}
\end{equation*}
$$

a homogeneous equation. The natural question is, "does (16) have a solution?" In this case, it does and we can find that the solution is $\alpha=-1$ and $\beta=2$. The solution of (17) is

$$
\begin{equation*}
\bar{x}^{2}-3 \bar{x} \bar{y}+\bar{y}^{2}=c \tag{18}
\end{equation*}
$$

and from our change of variables $(x=\bar{x}-1, y=\bar{y}+2)$ we find the solution to (15) is

$$
\begin{equation*}
(x+1)^{2}-3(x+1)(y-2)+(y-2)^{2}=c \tag{19}
\end{equation*}
$$

As a second example, consider

$$
\begin{equation*}
\frac{d y}{d x}=\frac{4 x-2 y+8}{2 x-y+7} \tag{20}
\end{equation*}
$$

If we let

$$
x=\bar{x}+\alpha, \quad y=\bar{y}+\beta,
$$

then

$$
\frac{d \bar{y}}{d \bar{x}}=\frac{4 \bar{x}-2 \bar{y}+4 \alpha-2 \beta+8}{2 \bar{x}-\bar{y}+2 \alpha-\beta+7}
$$

We choose

$$
4 \alpha-2 \beta+8=0, \quad 2 \alpha-\beta+7=0
$$

but this has no solution! However, if we let $u=2 x-y$, then (20) becomes

$$
\frac{d u}{d x}=\frac{6}{u+7}
$$

which is separable! Its solution is given by

$$
u^{2}+14 u=12 x+c
$$

and upon back substitution, we obtain the solution of (20) as

$$
(2 x-y)^{2}+14(2 x-y)=12 x+c
$$

1.7 Exact Equations

An ordinary differential equation of the form

$$
\begin{equation*}
\frac{d y}{d x}=F(x, y) \tag{21}
\end{equation*}
$$

has the alternate form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{22}
\end{equation*}
$$

If M and N have continuous partial derivatives of first order in some region R and

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

then the ODE (22) is said to be "exact" and can be integrated by setting

$$
\frac{\partial \phi}{\partial x}=M, \text { and } \frac{\partial \phi}{\partial y}=N
$$

For example, consider the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{2 x y}{x^{2}+y^{2}} \tag{23}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
2 x y d x+\left(x^{2}+y^{2}\right) d y=0 \tag{24}
\end{equation*}
$$

If we identify that M and N are

$$
M=2 x y \text { and } N=x^{2}+y^{2}
$$

so

$$
\frac{\partial M}{\partial y}=2 x=\frac{\partial N}{\partial x}
$$

so (24) is exact. Setting

$$
\frac{\partial \phi}{\partial x}=2 x y, \text { and } \frac{\partial \phi}{\partial y}=x^{2}+y^{2}
$$

and integrating the first gives

$$
\phi=x^{2} y+g(y)
$$

taking the partial of this with respect to y gives

$$
\frac{\partial \phi}{\partial y}=x^{2}+g^{\prime}(y) .
$$

Comparing this to $\frac{\partial \phi}{\partial y}=x^{2}+y^{2}$ gives that

$$
g^{\prime}(y)=y^{2}
$$

so

$$
g(y)=\frac{y^{3}}{3}+c
$$

so that

$$
\phi=x^{2} y+\frac{y^{3}}{3}+c
$$

From Cal III we know that

$$
d \phi=\phi_{x} d x+\phi_{y} d y
$$

but in this case this is

$$
d \phi=2 x y d x+\left(x^{2}+y^{2}\right) d y=0
$$

so ϕ is a constant. Thus we have as solutions to

$$
\begin{gathered}
2 x y d x+\left(x^{2}+y^{2}\right) d y=0 \\
\phi=k \text { or } x^{2} y+\frac{y^{3}}{3}+c=k
\end{gathered}
$$

and absorbing the constant k into c gives

$$
x^{2} y+\frac{y^{3}}{3}+c=0
$$

as the set of possible solutions to (23).

1.7.1 Legendre Transformations

Sometimes it is necessary to solve more general equations of the form

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \tag{25}
\end{equation*}
$$

say, for example

$$
\begin{equation*}
y^{\prime 2}-x y^{\prime}+3 y=0 \tag{26}
\end{equation*}
$$

One possibility is to introduce a contact transformation that enables one to solve a given equation. Contact transformations, in general, are of the form

$$
\begin{equation*}
x=F\left(X, Y, Y^{\prime}\right), \quad y=G\left(X, Y, Y^{\prime}\right), \quad y^{\prime}=H\left(X, Y, Y^{\prime}\right), \tag{27}
\end{equation*}
$$

with the contact condition that

$$
\frac{G_{X}+G_{Y} y^{\prime}+G_{Y^{\prime}} Y^{\prime \prime}}{F_{X}+F_{Y} y^{\prime}+F_{Y^{\prime}} Y^{\prime \prime}}=H .
$$

One such contact transformation is called a Legendre transformation and is given by

$$
\begin{equation*}
x=\frac{d Y}{d X^{\prime}} \quad y=X \frac{d Y}{d X}-Y, \quad y^{\prime}=X \tag{28}
\end{equation*}
$$

One can verify that

$$
\frac{d y}{d x}=\frac{\frac{d}{d X}\left(X \frac{d Y}{d X}-Y\right)}{\frac{d}{d X}\left(\frac{d Y}{d X}\right)}=\frac{X \frac{d^{2} Y}{d X^{2}}}{\frac{d^{2} Y}{d X^{2}}}=X
$$

Substitution of (28) in (26) gives

$$
\begin{equation*}
2 X \frac{d Y}{d X}-3 Y+X^{2}=0 \tag{29}
\end{equation*}
$$

a linear ODE! Solving gives

$$
\begin{equation*}
Y=C X^{\frac{3}{2}}-X^{2} \tag{30}
\end{equation*}
$$

Substituting (30) back into (28) gives

$$
\begin{equation*}
x=\frac{3}{2} c X^{\frac{1}{2}}-2 X, \quad y=\frac{1}{2} c X^{\frac{3}{2}}-X^{2} . \tag{31}
\end{equation*}
$$

Solving the first of (31) for $X^{\frac{1}{2}}$ gives

$$
\begin{equation*}
X^{\frac{1}{2}}=\frac{3 c \pm \sqrt{9 c^{2}+32 x}}{8} \tag{32}
\end{equation*}
$$

and from the second of (31) gives

$$
y=\frac{c}{2}\left(\frac{3 c \pm \sqrt{9 c^{2}+32 x}}{8}\right)^{3}-\left(\frac{3 c \pm \sqrt{9 c^{2}+32 x}}{8}\right)^{4}
$$

the exact solution of (26).

