Math 4315 - PDEs

Ordinary Differential Equations Review - Part 2

1 Linear Systems

A linear system of equations

$$
\begin{equation*}
\frac{d x}{d t}=a x+b y, \quad \frac{d y}{d t}=c x+d y \tag{1}
\end{equation*}
$$

can be can be written as a matrix ODE

$$
\begin{equation*}
\frac{d \bar{x}}{d t}=A \bar{x} \tag{2}
\end{equation*}
$$

where $\bar{x}=\binom{x}{y}$ and $\bar{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. If we consider solutions of the form

$$
\bar{x}=\bar{c} \mathrm{e}^{\lambda t},
$$

then after substitution into (2) we obtain

$$
\lambda \bar{c} \mathrm{e}^{\lambda t}=A \bar{c} \mathrm{e}^{\lambda t}
$$

from which we deduce

$$
\begin{equation*}
(\lambda I-A) \bar{c}=0 \tag{3}
\end{equation*}
$$

In order to have nontrivial solutions \bar{c}, we require that

$$
\begin{equation*}
|\lambda I-A|=0 \tag{4}
\end{equation*}
$$

This is the eigenvalue-eigenvector problem. If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then (4) becomes

$$
\lambda^{2}-(a+d) \lambda+a d-b c=0,
$$

from which we have three cases:

1. two distinct eigenvalues
2. two repeated eigenvalues,
3. two complex eigenvalues.

Here we consider an example of the first, two distinct eigenvalues. If

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{ll}
1 & 1 \tag{5}\\
2 & 0
\end{array}\right) \bar{x}
$$

then the characteristic equation is

$$
\left|\begin{array}{cc}
\lambda-1 & -1 \\
-2 & \lambda
\end{array}\right|=\lambda^{2}-\lambda-2=(\lambda+1)(\lambda-2)=0
$$

from which we obtain the eigenvalues $\lambda=-1$ and $\lambda=2$.

Case 1: $\lambda=-1$
From (3) we have

$$
\left(\begin{array}{ll}
-2 & -1 \\
-2 & -1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0},
$$

from which we obtain upon expanding $2 c_{1}+c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{-2} .
$$

Case 2: $\lambda=2$
From (3) we have

$$
\left(\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $c_{1}-c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{1}
$$

The general solution to (5) is then given by

$$
\bar{x}=c_{1}\binom{1}{-2} \mathrm{e}^{-\mathrm{t}}+\mathrm{c}_{2}\binom{1}{1} \mathrm{e}^{2 \mathrm{t}} .
$$

Alternate Form

Sometimes a system of ODEs can be written as

$$
\begin{equation*}
\frac{d t}{P(t, x, y)}=\frac{d x}{Q(t, x, y)}=\frac{d y}{R(t, x, y)} \tag{6}
\end{equation*}
$$

This is similar to the alternate form for a single ODE

$$
\frac{d y}{d x}=F(x, y) \text { or } M(x, y) d x+N(x, y) d y=0
$$

One could write (6) in terms of the usual system

$$
\frac{d x}{d t}=\frac{Q}{P}, \frac{d y}{d t}=\frac{R}{P}
$$

and determine whether its linear or nonlinear and proceed as above but sometimes its not possible nor desirable. Consider the following

$$
\frac{d x}{x}=\frac{d y}{2 y}=\frac{d u}{3 u}
$$

Here, it is easier to pick them in pairs, say for example

$$
\frac{d x}{x}=\frac{d y}{2 y}, \quad \frac{d x}{x}=\frac{d u}{3 u}
$$

Each are easily solved giving rise to

$$
\frac{y}{x^{2}}=c_{1}, \quad \frac{u}{x^{3}}=c_{2} .
$$

Example 2

Consider

$$
\begin{equation*}
\frac{d x}{u-x}=\frac{d y}{2 x}=\frac{d u}{u-x} \tag{7}
\end{equation*}
$$

Here we need to be somewhat choosy in how we pick our pairs as not all pairs will work (i.e. a pair with only two variables). The choice here is the first and third

$$
\frac{d x}{u-x}=\frac{d u}{u-x}
$$

as this simplifies to

$$
d x=d u
$$

which integrate to $u=x+c_{1}$. With this we substitute into the original system and obtain

$$
\frac{d x}{c_{1}}=\frac{d y}{2 x}=\frac{d x}{c_{1}} .
$$

noting that we now in fact have only a single pair

$$
\frac{d x}{c_{1}}=\frac{d y}{2 x}
$$

Upon integration, we obtain

$$
x^{2}=c_{1} y+c_{2}
$$

and using c_{1} obtained previously, we get

$$
x^{2}=(u-x) y+c_{2} .
$$

Example 3

Consider

$$
\begin{equation*}
\frac{d x}{x}=\frac{d y}{x+y}=\frac{d z}{x+y+z} \tag{8}
\end{equation*}
$$

Again, choose wisely. Here we choose the first pair

$$
\frac{d x}{x}=\frac{d y}{x+y}, \quad \text { or } \quad \frac{d y}{d x}=\frac{x+y}{x}
$$

which we find as its solution

$$
y=x \ln |x|+c_{1} x .
$$

Eliminating y in the first and third pairing in (8) gives

$$
\frac{d x}{x}=\frac{d z}{x+x \ln |x|+c_{1} x+z}
$$

or

$$
\frac{d z}{d x}=\frac{x+x \ln |x|+c_{1} x+z}{x} .
$$

which is linear in z. Integrating gives

$$
\frac{z}{x}=\frac{1}{2} \ln ^{2}|x|+\left(c_{1}+1\right) \ln |x|+c_{2},
$$

and eliminating c_{2} gives

$$
\frac{z}{x}=\frac{1}{2} \ln ^{2}|x|+(y-x \ln |x|+1) \ln |x|+c_{2} .
$$

Example 4

Consider

$$
\begin{equation*}
\frac{d x}{y+z}=\frac{d y}{y}=\frac{d z}{x-y} \tag{9}
\end{equation*}
$$

Here it is impossible to choose a pair that only involves 2 variables so we need to be very clever. Consider the first and second as a pair and the second and third terms as a pair and re-write as

$$
\begin{equation*}
\frac{d x}{d y}=\frac{y+z}{y}, \quad \frac{d z}{d y}=\frac{x-y}{y} . \tag{10}
\end{equation*}
$$

Now here's the clever part, add and subtract the two ODEs in (10)

$$
\begin{equation*}
\frac{d(x+z)}{d y}=\frac{x+z}{y}, \quad \frac{d(x-z)}{d y}=\frac{2 y-x+z}{y} . \tag{11}
\end{equation*}
$$

If we let $u=x+z$ and $v=x-z$, then (11) becomes

$$
\frac{d u}{d y}=\frac{u}{y^{\prime}}, \quad \frac{d v}{d y}=\frac{2 y-v}{y}
$$

from which we find the solution

$$
\frac{u}{y}=c_{1}, \quad y v=y^{2}+c_{2}
$$

or, in term of the original variables

$$
\frac{x+z}{y}=c_{1}, \quad(x-z)-y^{2}=c_{2} .
$$

Example 5

Consider

$$
\begin{equation*}
\frac{d x}{x}=\frac{d y}{y}=\frac{d u}{1}=\frac{d p}{2 p}=\frac{d q}{2 q} \tag{12}
\end{equation*}
$$

Here, there a 5 independent variables x, y, u, p, and q. Again, we pick in pairs. First we pick only the first two in (12)

$$
\begin{equation*}
\frac{d x}{x}=\frac{d y}{y} \tag{13}
\end{equation*}
$$

and obtain the solution $y=c_{1} x$. Using this in (12) gives

$$
\begin{equation*}
\frac{d x}{x}=\frac{c_{1} d x}{c_{1} x}=\frac{d u}{1}=\frac{d p}{2 p}=\frac{d q}{2 q} \tag{14}
\end{equation*}
$$

noting the first two terms in (14) are identical (after cancellation) and thus we really only have

$$
\begin{equation*}
\frac{d x}{x}=\frac{d u}{1}=\frac{d p}{2 p}=\frac{d q}{2 q} \tag{15}
\end{equation*}
$$

Now we pick another pair - first and second in (15) so

$$
\frac{d x}{x}=\frac{d u}{1}
$$

so

$$
u-\ln |x|=c_{2}
$$

The first and third in (15) integrates to

$$
\frac{p}{x^{2}}=c_{3}
$$

and the first and forth in (15) integrates to

$$
\frac{q}{x^{2}}=c_{4} .
$$

Thus, the solution to the system (12) is

$$
\frac{y}{x}=c_{1}, \quad u-\ln |x|=c_{2}, \quad \frac{p}{x^{2}}=c_{3}, \quad \frac{q}{x^{2}}=c_{4} .
$$

