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Abstract. In multi-objective problems, it is desirable to use a fast algorithm that
gains coverage over large parts of the Pareto front. The simplest multi-objective
method is a linear combination of objectives given to a single-objective optimizer.
However, it is proven that this method cannot support solutions on the concave
areas of the Pareto front: one of the points on the convex parts of the Pareto front
or an extreme solution is always more desirable to an optimizer. This is a signifi-
cant drawback of the linear combination.
In this work we provide the Pareto Concavity Elimination Transformation (PaC-
cET), a novel, iterative objective space transformation that allows a linear com-
bination (in this transformed objective space) to find solutions on concave areas
of the Pareto front (in the original objective space). The transformation ensures
that an optimizer will always value a non-dominated solution over any dominated
solution, and can be used by any single-objective optimizer. We demonstrate the
efficacy of this method in two multi-objective benchmark problems with known
concave Pareto fronts. Instead of the poor coverage created by a simple linear
sum, PaCcET produces a superior spread across the Pareto front, including con-
cave areas, similar to those discovered by more computationally-expensive multi-
objective algorithms like SPEA2 and NSGA-II.

1 Introduction

Multi-objective optimization is very important in the real world [12]. Multiple compet-
ing objectives must be balanced in applications like the design of high-speed transport
planes [13], the design of trusses [2], job shop scheduling [21], urban planning [1], and
greywater reuse [16]. In these, the “best” solutions characterize a tradeoff between the
multiple objectives. This array of solutions is known as the “Pareto optimal set”, and is
a commonly sought-after solution type for a multi-objective problems [3].

Successful methods function on arbitrarily-shaped Pareto fronts, as the shape is
unknown before optimization. One simple method is to use a linear combination of
all objectives, which has the benefits of being easy to understand and computationally
cheap, but this is unable to find the concave areas of a Pareto front [3, 4, 11, 12, 15,
17–19], because a convex part (or an extreme point) will be more desirable than the
concave region [12].
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The primary contribution of this work is to present the Pareto Concavity Elimitation
Transformation (PaCcET), a novel, optimizer-independent, iterative multi-objective trans-
formation. It transforms the objective space so that the Pareto Front is convex, and re-
quires only a single user-defined parameter. This allows an linear combination with unit
weights (in the transformed objective space) to find concave areas of the Pareto front (in
the original objective space), removing the major drawbacks of a linear combination,
and allowing a simple linear combination to be used instead of more computationally
expensive multi-objective evolutionary algorithms, and produce similar results.

This work is organized as follows: Section 2 provides background on multi-objective
problems and multi-objective methods. Section 3 describes PaCcET. Section 4 provides
theoretical guarantees for PaCcET. Sections 5 and 6 describe two test domains and show
results using PaCcET. Section 7 discusses the work and concludes.

2 Background

This work draws from many distinct concepts from within multi-objective research,
which we introduce in this section. We assume (without loss of generality) pure mini-
mization of k objectives Λ ∈ Rk through the control of the n design variables Ω ∈ Rn.

Dominance: A solution u dominates another solution v (u ≺ v) if it scores lower on
all criteria (objectives c ∈ C): ∀c ∈ C[fc(u) < fc(v)]. A solution u weakly dominates
another solution v (u � v) if it scores equal on some objectives, but less on others:
∀c ∈ C[fc(u) ≤ fc(v)] ∧ ∃j ∈ C[fj(u) < fj(v)] [20].

Pareto optimal set: A solution which is not dominated by any other feasible solution is
part of the Pareto optimal set P∗. As an incomplete optimizer solves a problem, it will
approximate P∗ with a Pareto approximate set P ∗I at iteration I .

Multi-objective spaces: Ω ∈ Rn is the design variable space (domain). Λ ∈ Rk is
objective space (range or codomain) [20]. The mapping from Ω → Λ is unknown to
the chosen optimizer Ξ , but is usually repeatable with some stochastic error. We also
use Λnorm, a normalized version of Λ, which places P ∗I elements ∈ [0:1], and Λτ , the
post-PaCcET analogue to Λ. Additionally, we break Λ into three sub-spaces, ΛD, ΛN,
and ΛB. ΛD is the subspace in Λ that is strongly dominated by the current P ∗I . ΛN is
the subspace of Λ that is non-dominated. ΛB forms the border between the two (Fig. 1),
and includes P ∗I and all points weakly dominated by P ∗I .

Utopia and nadir vectors: Two important concepts in multi-objective problems are the
utopia and nadir points. The utopia point takes on the best possible value for each ob-
jective, minus some small amount so that it is always infeasible. This point is difficult to
find, requiring an optimization for each objective individually. Instead, we approximate:

û◦(c) = min(P ∗I (c))−∆ (1)

where û◦(c) is the cth element in the estimated utopia vector, min(P ∗I (c)) is the mini-
mum cth element of any vector in P ∗I , and ∆ is a small value [5]. The nadir point takes
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the worst value for each objective in the Pareto optimal set, which we approximate:

ûnad(c) = max(P ∗I (c)) (2)

but it is very important to note that this is a distinct concept from the worst feasible
vector; it is instead the upper bound of the objective values for solutions within P ∗I [5].

2.1 Multi-Objective Methods

Many successful multi-objective algorithms have been developed. In this work we ad-
dress linear combinations since they are a component of PaCcET, as well as NSGA-II
and SPEA2, two successful multi-objective evolutionary algorithms.

Linear Combination: a simple metric that is sufficient, but not necessary, for finding
Pareto optimal points [12]:

LC(w, v) =
∑
c

w(c)v(c) (3)

where LC(w, v) is the linear combination evaluation or L1 norm of vector v, v(c) is
the evaluation of vector v on the cth objective, w is the vector of weights, and w(c) is
the weight for the cth objective.

This method is computationally cheap when paired with typical optimizers like an
evolutionary algorithm [19], but presents three primary problems. First, as the number
of objectives increases, the choice of weights can become difficult. Second, this method
is incapable of finding certain areas of the Pareto Front, those that are non-convex.
Third, incrementing the weights evenly to converge to different parts of the Pareto front
does not necessarily lead to evenly-spaced solutions along the front [4].

NSGA-II: is an evolutionary algorithm which sorts solutions into a series of successive
fronts. Those solutions on the less-dominated fronts are more desirable and are kept. To
break ties, a local density measure is used. Details can be found in [6].

SPEA2: is an evolutionary algorithm which assigns each vector a “strength” equal to
the number of vectors in the current population it dominates. Each vector then sums
the strengths of all vectors which dominate it, and this forms a raw fitness evaluation.
This is altered by a local k-nearest neighbor density calculation, and the best solutions
survive. Details can be found in [8].

3 Pareto Concavity Elimination Transformation (PaCcET)

Each point in the current Pareto-approximate set, P ∗I represents a tradeoff between
which we are indifferent [9]. PaCcET makes each solution onΛB (including P ∗I ) equally
valuable to a linear combination in Λτ through a two step transformation, which first
transforms from Λ to Λnorm, and then transforms from Λnorm to Λτ , where the τ super-
script on any space or set denotes the transformed space or set. This means that any
Pareto-approximate solution will have a linear combination evaluation of (k− 1) when
all weights are set to 1. All solutions in ΛτN will have a linear combination evaluation
< (k− 1), and all solutions in ΛτD will have a linear combination evaluation > (k− 1).
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Fig. 1. Visualization of quantities used in transformation (left) and partitions in the multi-
objective space (right). The vector vnorm is represented by the hollow green X mark, and vτ

by the solid red X mark. vnorm lies outside of the dominated hypervolume, so is a desirable point
to discover. Green dots correspond to vectors in P ∗,norm

I (which form the border, ΛB, between
the non-dominated hyperspace ΛN and the dominated hyperspace, ΛD). Red correspond to their
transformations in P ∗τ

I . All measurements are Manhattan Distance (L1 norm) along r.

Algorithm: To determine the transformed evaluation for a given solution vector v, we
require the current Pareto approximate set P ∗I , from which we can calculate the approx-
imate utopia point û◦ based on P ∗I (Eq. 1), and the matching nadir approximation ûnad

(Eq. 2).
The first step is to normalize the target vector v such that each objective takes on a

value not less than 0, transforming Λ to Λnorm [5, 12]:

vnorm(c) =
v(c)− û◦(c)
ûnad(c)− û◦(c) (4)

By definition ûnad,norm ≡ 1 and û◦,norm ≡ 0, and each element of a member of P ∗I
will be in the range [0:1].

The second step is to perform the transformation from Λnorm to Λτ . Within this
process, we use the unit vector r that points from û◦,norm toward vnorm:

r =
vnorm

|vnorm| (5)

All distance measurements in the transformation process are taken along the direc-
tion of r. We measure three distances for use in PaCcET:

Algorithm 1 PaCcET for iteration I

Require: Set of solutions V
Require: Pareto Approximate Set P ∗

I

1: Find û◦, ûnad (Eq. 1–2)
2: ∀c wc = 1
3: for all Solutions i ∈ V do
4: Find vnorm

i (Eq. 4)
5: Find r (Eq. 5)

6: Find ||vnorm||1 (Eq. 6)
7: Find ||v||B (Eq. 7)
8: Find ||v||hp (Eq. 8)
9: Find dτ (Eq. 9)

10: Find vτi (Eq. 10)
11: FitPaCcET(vi) = LC(vτi ) (Eq. 3)
12: end for
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– L1 distance (linear combination or Manhattan Distance) from û◦,norm to vnorm:

||vnorm||1 =
∑
i

vnorm
i (6)

– L1 distance from û◦,norm to the normalized dominated border Λnorm
B along r:

||v||B = min(γ) 3 γr � P ∗I (7)

– L1 distance from û◦,norm to the normalized utopia hyperplane ΛτB [14] along r:

||v||hp = β 3
∑
i

βri = (k − 1) (8)

We then calculate dτ , which determines where vτ is located:

dτ = ||v||hp
||vnorm||1
||v||B

(9)

And finally we determine the location of vτ , enclosing the whole process:

vτ = dτr = PaCcET (v) (10)

Choosing the Maximum Size of P ∗I , the Pareto approximate set: P ∗I is maintained in the
same way as any Pareto optimality calculation. However, for computation and memory
concerns, its size must be limited. The size of P ∗I is the only user-defined parameter in
PaCcET, and corresponds directly to the granularity of the Pareto front estimation. In
our experiments we use 250 as the size. We ran tests with a size as small as 50, in which
the algorithm still functions, but provides a very coarse approximation of the true Pareto
front. Once over the chosen size, we used random elimination of non-extreme elements.
We also tested with nearest-neighbor elimination and k-nearest neighbor elimination,
the performance of PaCcET was not sensitive.

4 Theoretical Properties of PaCcET

In this section we provide two theorems which together prove that PaCcET finds Pareto
optimal solutions, even in concave areas of the Pareto front. We begin by assuming:

Assumption A1 The system designer specifies k points that are incomparable to the
Pareto front, which describe a hyper-prism that completely bounds the Pareto Front.

Assumption A2 Optimizer Ξ solves the PaCcET problem exactly in a single iteration.

Assumption A3 The feasible region has no solutions that are weakly dominated by the
Pareto Front.

Assumption A4 The Pareto Front is continuous.
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A1 provides us vectors with which we seed P ∗I , and assures PaCcET is calculable in
the whole feasible objective space. A2 allows us to use the exact solution to the PaCcET
minimization problem to determine how P ∗I changes over iterations. A3 and A4 allow
us to draw conclusions in k-objective space without any other restrictions on the shape
of the Pareto Front.

Theorem 1 The solution to the PaCcET optimization problem will be Pareto Optimal.

Proof. There exists an infinite number of possible rays r ∈ R (where R is the set of all
rays originating from 0) on which the true solution may exist. This solution exists only
along one of those rays, which must pass through the feasible space. We do not seek to
determine which r it lies on. For any individual r, the PaCcET optimization problem
takes the form (Eq. 9, reorganized):

min(dτ ) = min

(
||v||hp

||vnorm||1
||v||B

)
(11)

And for a constant r, ||v||B and ||v||hp are constant on a given iteration:

min(dτ ) = min(α||vnorm||1) (12)

where α is some positive constant. ||vnorm||1 increases monotonically as distance from
the origin increases, therefore dτ does as well. The minimum of dτ , then, will be on
the border of the feasible space, a Pareto Optimal Solution or a weakly dominated
solution [12]. By A3 and A4, this is a Pareto optimal solution. This can also be assured
by the same logic as [4], since it is equivalent to a scaled linear combination. ut
Theorem 2 PaCcET finds solutions in concave areas of the Pareto front.

Proof. We prove this by contradiction. Assume a globally concave search space. By
theorem 1, in the worst case, the solution to the PaCcET optimization problem will
lead to the k anchor points (single objective extremes) in the first k iterations. By A4,
we know additional Pareto optimal points exist. We show that the dτ calculations for
those points in the current P ∗I is greater than those in ΛN (super/sub-scripts denoting
the calculation for a member of the set named in the super/sub-script):

dτP∗
I
> dτΛN

(13)

||v||P
∗
I

hp

||vnorm
P∗
I
||1

||v||P
∗
I

B

> ||v||ΛN
hp

||vnorm
ΛN
||1

||v||ΛN
B

(14)

(k − 1)
||vnorm
P∗
I
||1

||v||P
∗
I

B

> (k − 1)
||vnorm
ΛN
||1

||v||ΛN
B

(15)

By definition ||v||P
∗
I

hp = (k − 1). Also,
||vnorm
P∗
I
||1

||v||P
∗
I

B

= 1 because ||vnorm
P∗
I
||1 = ||v||P

∗
I

B ,

and the quantity
||vnorm
ΛN
||1

||v||ΛN
B

∈ [0 : 1), because it is in the non-dominated subspace (so

||vnorm
ΛN
||1 < ||v||ΛN

B ), and the inequality in Eq. 15 holds. Because of Theorem 1, we
know that the solution will be Pareto Optimal, and because of the globally concave
assumption, we know this point is on a concave region of the Pareto front. ut
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Fig. 2. Visualization of PaCcET procedure over iterations. The left column is the normalized ob-
jective space Λnorm. The right column is the transformed objective space, Λτ . The rows show, in
turn, the optimizer working at the 1st, 2nd, 3rd, and 200th iteration. In the left column, Black
points are candidate solutions. Red points are solutions in P ∗

I , the Pareto approximate set. The
green solid line denotes Λnorm

B The blue square denotes the true solution to the PaCcET optimiza-
tion problem at that iteration. The blue dashed line is the level curve of the PaCcET evaluation
on which all solutions are as valuable as the discovered solution. In the right column, the colors
and symbols map to the transformed versions of the same points as described previously, in Λτ .
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Implications: The significance of these two theorems is as follows: the true solution
to the PaCcET problem will always be a Pareto optimal solution, and PaCcET will be
able to find concave areas of the Pareto front. Because the assumptions used to generate
these conclusions are restrictive, in the following empirical results sections, we take
steps to violate each of the assumptions categorically, and PaCcET is still able to find
good coverage over concave Pareto fronts.

5 Experiment: KUR

As a first experimental domain, we use a test problem (KUR) from multi-objective op-
timization with a discontinuous and locally concave Pareto front (which breaks A4) [5]:

f1(x) =

2∑
i=1

[
−10 exp

(
(−0.2)

√
x2i + x2i+1

)]
(16)

f2(x) =

3∑
i=1

[
|xi|0.8 + 5 sin(xi)

3
]

(17)

Where f1 and f2 are to be minimized by controlling the decision variables:

xi ∈ [−5, 5] ; i ∈ {1, 2, 3} (18)

A vector x is evaluated:
FitLC(x) = w1f1 + w2f2 (19)

where in this experiment, w1 = w2 = 1 (other values lead to different portions of the
Pareto front being better covered, but similar overall performance). For PaCcET:

FitPaCcET(x) = fτ1 + fτ2 (20)

where fτ1 and fτ2 represent the transformed objectives, within Λτ , calculated as:

{fτ1 , fτ2 } = PaCcET ({f1, f2}) (21)

As the optimizer Ξ , we use an evolutionary algorithm (which breaks A2), in which
the population members are vectors of length 3 that meet the criteria set forth in Eq. 18.
We maintain a population of 100 solutions, with the 50 worst-performing solutions re-
moved after each generation, replaced by copies of the winner of 50 binary tournaments,
with each element of the vector changed by a random number chosen by a normal dis-
tribution centered around 0 with standard deviation 0.25. We do not seed P ∗I (which
breaks A1).

Figure 3 shows the Empirical Attainment Function (EAF) [10] for each method,
respectively. It shows PaCcET’s worst performance exceeds that of the linear combina-
tion’s median performance, and PaCcET’s worst performance exceeds NSGA-II’s worst
performance. SPEA2 and PaCcET perform comparably after 5000 generations.

Figure 4 shows the percent of dominated hypervolume by PaCcET and two success-
ful multi-objective methods, SPEA2 and NSGA-II, as a function of number of individ-
ual fitness evaluations. PaCcET proceeds faster than the other two methods toward the
Pareto front. All methods shown eventually converge to a good approximation of the
Pareto front, and dominate a similar amount of hypervolume.
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6 Experiment: DTLZ2

As a second experimental domain, we use one of the test problems out of the battery
developed by Deb, Thiele, Laumanns and Zitzler, DTLZ2 [7]. A solution is described
by a vector (x = {x1, x2,xM}) of length 12, where 2 elements (x1, x2) determine at
what angles in the 3 dimensional objective space evaluation v will lie and the remaining
10 elements (xM) determine the distance from the origin at which v will lie. The three
functions to be minimized are:

f1(x) = (1 + g(xM )) cos
(
x1
π

2

)
cos
(
x2
π

2

)
(22)

f2(x) = (1 + g(xM )) cos
(
x1
π

2

)
sin
(
x2
π

2

)
(23)

f3(x) = (1 + g(xM )) sin
(
x1
π

2

)
(24)

Fig. 3. KUR Empirical Attainment Functions, shown in Λ.
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√
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subject to each element of x remaining in the range [0:1], and the evaluation g(xM )
calculated as:

g(xM ) =
∑

xi∈xM
(xi − 0.5)2 (25)

This results in a known Pareto front that can be described by the octant of a sphere
of radius 1 for which f1, f2, and f3 are all positive. The feasible space has a large area
that is weakly dominated by the Pareto front (which breaks A3).

The fitness of a vector x is calculated as:

FitLC(x) = w1f
norm
1 + w2f

norm
2 + w3f

norm
3 (26)

and for PaCcET,
FitPaCcET(x) = fτ1 + fτ2 + fτ3 (27)

where fτ1 , fτ2 , and fτ3 represent the transformed objectives, within Λτ , calculated as:

{fτ1 , fτ2 , fτ3 } = PaCcET ({f1, f2, f3}) (28)

We use the same optimizer Ξ for DTLZ2 as for KUR (which breaks A2), except
members are vectors of length 12 with each element in the range [0:1], and the mutation
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operator alters each element by a random number drawn from a normal distribution
centered around 0 with standard deviation 0.05. We do not seed P ∗I (which breaks A1).

Figure 5 shows the results on DTLZ2 for a typical experimental run of 5000 genera-
tions for each method (simulated annealing allowed the same number of global function
calls as the EAs), reporting the non-dominated points found through the entire experi-
mental run (Note that this is distinct from P ∗I , which was kept at a size of 250). SPEA2
and PaCcET using an evolutionary algorithm (PaCcET – EA) both find a similar num-
ber of solutions spread all across the Pareto front. PaCcET using simulated annealing
(PaCcET – SA) is slightly less successful but still generates good coverage, even though
it is not using a population-based optimizer. NSGA-II produces fewer Pareto optimal
points, but still maintains coverage. The linear combination (not shown) converges to
one of the extremes very quickly, producing very poor coverage, regardless of the choice
of weights.

7 Discussion and Conclusion

In this work we have presented a low computational cost way to improve the perfor-
mance of a linear combination in multi-objective problems. PaCcET convexities con-
cave regions of the Pareto front for the sake of training, and allows for solutions in these
areas to be found by an optimizer using a linear combination of transformed objectives.

The primary benefits of PaCcET displayed in this work are:

1. It allows a linear combination of transformed objectives to find concave areas of
the Pareto front in the original objective space.

2. It acts independently of the chosen optimizer.
3. It creates a wide spread of solutions along the Pareto front on concave or discon-

tinuous fronts.
4. It removes the need for the system designer to choose weights.
5. It functions in higher-than-two objective problems.

The first benefit (1) allows a simple linear combination to be applied to a much broader
class of multi-objective problems than it could be otherwise. Benefit (2) means that
optimizers like evolutionary algorithms, A* search, simulated annealing, or particle
swarm optimization can be applied to multi-objective problems through PaCcET with
little alteration; it also means that future developments in single-objective optimizers
are immediately useful to a large class of multi-objective problem, but comes at the
cost that PaCcET is limited by the quality of the optimizer. Benefit (3) reinforces (1):
Even on challenging Pareto fronts, PaCcET develops a desirable array of solutions to
choose between. Benefits (4,5) remove one of the primary challenges in using a linear
combination on more-than-two objective problems.

PaCcET offers a fundamentally different possible avenue for multi-objective re-
search: the elimination of concavity as opposed to the development of methods that
deal well with concave Pareto fronts. Future work in this area includes testing the PaC-
cET on a large testbed of multi-objective problems including many-objective problems,
examining how reference points can be used in the τ -objective space to steer the search
or otherwise altering the method so that it is steerable, and developing guarantees for
complete Pareto front coverage.
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